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Abstract

Point process data are commonly observed in
fields like healthcare and the social sciences. De-
signing predictive models for such event streams
is an under-explored problem, due to often scarce
training data. In this work we propose a multi-
task point process model, leveraging information
from all tasks via a hierarchical Gaussian pro-
cess (GP). Nonparametric learning functions im-
plemented by a GP, which map from past events
to future rates, allow analysis of flexible arrival
patterns. To facilitate efficient inference, we pro-
pose a sparse construction for this hierarchical
model, and derive a variational Bayes method for
learning and inference. Experimental results are
shown on both synthetic data and as well as real
electronic health-records data.

1. Introduction

Point process data have seen increased attention in fields
like biomedical research (Rad & Paninski, 2011; Lian et al.,
2014), electronic commerce (Xu et al., 2014), and health-
care analysis (Lasko, 2014). One thread of work focuses on
learning arrival rates by imposing smoothness on a latent
rate function (Adams et al., 2009; Rao & Teh, 2011; Lloyd
et al., 2014). Another consists of predicting future arrivals
as a direct function of past observations (Pillow et al., 2008;
Gunawardana et al., 2011). Taking healthcare analysis as a
motivating example, we focus on the latter problem: given
a patient’s hospital visit history up to time ¢, (¢) when will
the next visit happen? and (i¢) how many visits will the pa-
tient have in [t, ¢ + L]? Answering such questions provides
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a quantitative evaluation of the patient’s risk, which helps
to make treatment plans and allocate hospital resources ef-
ficiently (Amarasingham et al., 2010). Similar problems
also arise in other fields, such as predicting purchasing be-
havior for individual customers, or predicting failures in
distributed computer systems.

A few works have explored the prediction problem in point
processes by learning a functional mapping from history
features to the current intensity rate (Pillow et al., 2008; Ra-
jaram et al., 2005; Gunawardana et al., 2011). In Gunawar-
dana et al. (2011), the intensity function is constrained
to be piecewise-constant, learned using decision trees and
used for prediction. In our proposed multitask point pro-
cess model, we build upon this piecewise-constant inten-
sity model. To allow for flexibility of the function mapping
from history features to future rate, and to capture the un-
certainty of estimation, we use a nonparametric method,
by imposing a Gaussian process (GP) prior on the intensity
rate. However, when building such predictive models for
event arrival processes, one difficulty is that the available
training data are scarce for each subject/task. Therefore,
we treat each individual arrival process as a task and follow
a multitask learning approach to share information from all
tasks in a hierarchical manner.

Methods for learning GPs from multiple tasks have been
proposed (Yu et al., 2005), but involve a shared global mean
function, inferred at all observed inputs (history features)
across all the tasks. The posterior of this function cannot
be directly updated due to non-conjugacy of the point pro-
cess likelihood to GP priors. One approximation method,
variational Bayes, is often applied, leading to the number
of unknown parameters scaling as O(N?), where N is the
number of unique features from all tasks. Borrowing from
the framework of pseudo inputs in the GP literature (Snel-
son & Ghahramani, 2006; Titsias, 2009), we constrain the
rate functions to an M -dimensional latent space, where
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M < N, reducing the parameter space to O(M?2 + M P),
where P is the GP input dimension. By adjusting the lo-
cations of the pseudo inputs, we can effectively share data
across tasks and efficiently represent these functions.

Learning the history-to-rate mapping functions allows one
to predict future events by analytical integration or forward
sampling. We consider both, evaluating our model and
inference methodology on both synthetic and a real Elec-
tronic Health Records (EHR) dataset. The latter involves
different categories of health problems, and we demon-
strate that future hospital visits for some types of diseases
are predictable even with simple history features. Our work
has two main contributions: (¢) providing an efficient ap-
proach to share data/parameters in hierarchical/multitask
GP models; and (%) building a predictive model for arrival
data from multiple event streams, using point processes in
a multitask scheme.

2. Related Work

GP-modulated point processes are a popular approach for
modeling event streams (Adams et al., 2009; Rao & Teh,
2011; Lloyd et al., 2014; Lasko, 2014). Assuming a
smoothly varying intensity function, the intensity rate, as
well as its uncertainty, can be estimated from observed
streams. Extrapolation can be used for short-term predic-
tion. There are two main limitations of these models. First,
the smoothness assumption does not hold in many scenar-
i0s. Sudden rate changes often happen upon event arrivals,
e.g., the risk of a patient’s hospital visit might change sig-
nificantly after a single visit. Second, these models involve
a common modulating GP, so that multiple streams have to
be aligned, something not always appropriate or possible.
For example, similar arrival patterns might appear at differ-
ent periods of time for different streams, which cannot be
captured by such models.

Another relevant line of work on point process predic-
tive modeling comes from the neural decoding literature
(Kulkarni & Paninski, 2007; Rad & Paninski, 2011; Pillow
et al., 2008), where multiple subjects/neurons are affected
by common stimuli (features), generating event streams. A
generalized linear model can be trained on the stimuli or
spiking history to learn the rate function, and further pre-
dict future spiking events. Meanwhile, the network struc-
ture across neurons can be inferred, which in turn, helps
with prediction. However, temporal alignment is also as-
sumed in these models, which is valid in the setting of neu-
ral decoding, but not in the cases we consider.

Also related is the work of Weiss & Page (2013),
which integrates the multiplicative forest Continuous Time
Bayesian Network (mfCTBN) with the piecewise-constant
intensity model of Gunawardana et al. (2011). More pre-

cisely, they learn forests mapping from demographic and
event history features to intensity rates, but under the as-
sumption that all subjects have the same function, i.e., each
event stream is a realization trajectory of some underlying
model. In our work, we consider a different setting, where
the variability across subjects cannot be ignored. This dif-
ference is crucial in scenarios such as healthcare analysis
and electronic commerce, where variability among mem-
bers of a population affects arrival pattern discovery and
predictive performance.

3. Piecewise-constant Conditional Intensity
Model

Multi-task point process observations are sequences of ar-
rival time stamps {y“}, withn = 1,--- D" and u =
1,---,U, where y;* represents the time stamp of the n-th
arrival of subject/task u. Our goal is to model the sequences
and make predictions for future event arrivals.

The event streams can be naturally modeled using an inten-
sity model, with a hazard rate function ~(¢). In an infinites-
imal time interval A, the probability of an event occuring
in this interval is given by A~v(t). To build the temporal
dependency between past observations and future events,
we choose the hazard rate as a function of past observa-
tions h(t), denoted as y(t|h(t)), in which h(t) summa-
rizes the history of past observations (Gunawardana et al.,
2011); details on the potential form of h(t) are discussed
subsequently. Denoting Y* = {y},--- ,y%.} as the set of
arrival time stamps in task u, the likelihood is

DU Yn1
p(V*) =[] v (walh*(ys)) exp(~ / Y (rlh"(7))dr) .
n=1 Yo

Assuming ~“(t|h*(t)) as piecewise constant with N“
change points (pieces) at {t¥ fvzl and piece length A¥ =
¥, — ti, we have the likelihood

N

(") = @ e ) ) 0
=1

x exp{—Aj~y"(t/|h"(t}))} -

Many approaches exist to extract features h(t) from past
event arrivals. One possible feature-construction approach
uses empirical rates at recent time points (Rajaram et al.,
2005), i.e., h"(t¥) € REY with hy(ty) = H(tf — Lyp)
for Ly, Lo, - -- , Lp predefined lengths of memory. Here
(¥ — L) refers to the empirically computed rate at time
ti — L,. Keeping the algorithm simple, we adopt a con-
struction similar in spirit to Gunawardana et al. (2011):
h*(t}) is P dimensional, where its p-th element denotes
the count of arrivals in [t — L,,t}]. Therefore, h"(t)
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is a piecewise constant function. Revisiting the likelihood
in (1), we observe that N is the number of change points
(pieces) of the feature function h*(t) going through the
whole event stream {y“}2", and that N* scales linearly
with D" (the number of events). Side information in the
form of covariates can also be considered as a natural ex-
tension, by augmenting the feature space. Constructing
richer features from history observations is left as an in-

teresting direction for future work.

To complete the intensity model, the functional mapping
from feature space to intensity rate must be specified. De-
fine the space of the history features h*(t}') as H, where
each point h*(t%) £ h¥ € H is a possible feature vec-
tor. Here we impose a GP prior on a set of functions
f4() : H — R, followed by a transformation to en-
sure the non-negativity of intensity rates. We use a square
transformation (y*(-) = {f%(-)}?) rather than the com-
mon v*(-) = exp{f*“(-)}, because the uncertainty of f*(-)
cannot be properly estimated in the latter construction, as
discussed by Lloyd et al. (2014); this issue is addressed
thoroughly in Section 5. To resolve the ambiguity caused
by {f“(")}? = {—f*(-)}?, a prior specification favoring
the positive half-space is imposed and works well in prac-
tice.

4. Multitask Point Process Predictive Model

As mentioned in Section 1, sharing information across
tasks is necessary when learning the rate functions from
sparse data. Accordingly, we consider a hierarchical GP
construction. Denote the rate at feature vector h¥ as 7},
with the corresponding transformed rate denoted as [y ;.
The generative process from history features to rates may
be described as follows

1
pl ~ GP (97€KNN>7 )
v~ N(pX,Knn), 3)
o= {f8R 4)

In (2), g is a prior mean, which may be set according to
prior knowledge or the empirical average intensity rate over
all tasks. Parameter ¢ controls the complexity of the hyper-
prior. The covariance matrix K can be obtained from
a squared-exponential or Matérn function with automatic
relevance determination (ARD) covariance kernel, for ex-
ample,

hyi — hyy)? o
o 2,\2pr) >+02]1(@=J),

1 p
(%)

where h; € H may be any possible history feature. In (2),
p% determines the global mean function of transformed

P
2

KNN,ij =T €exXp | —

p=

rate functions, fy;, from all U tasks. For each individ-
ual task, the task-specific transformed rate function, f,
is a “noisy version” of the global mean function u%;. Our
construction is inspired by Yu et al. (2005), which can be
shown analogous to a hierarchical construction of the mul-
titask linear regression model

w’ ~ N(v,zI) , (6)
w"  ~ N(wO,I) , )
v~ ./\/'(w“Thi,UQ), ®)

where w® and w" are the global and task-specific re-
gression parameters, respectively, and v is the hyper-
mean for w°. Choosing a linear kernel for (2) and (3)
(KnNyij = hiThj), and letting v = g = 0, the construc-
tion through (2)-(3) is equivalent to the multitask linear re-
gression model in (6)-(8) on a finite observed dataset.

If there exists enough training data, i.e., {h¥} N densely
covers the feature space H, f}; is mainly determined by the
data in task u. Otherwise, fy; is significantly affected by
the prior p3;, which pools together information from rate
functions { fx;} from all tasks.

However, a problem with the hierarchal GP construction
using (2) and (3) is that the dimension of /L?\, and fy; is
typically massive, in fact it is not smaller than the number
of unique history features from all tasks, i.e., | U, {h?}i]\gl ,
where |S| refers to the cardinality of a set S. Thus, the
number of unknown parameters in the model scales with
OW X V_ N*), or OU(XY_, N*)?) if variance esti-
mation is also considered. In point process models in par-
ticular, this is impractical because the influence of the like-
lihood is weak and noise levels are high. Therefore, we pro-
pose an alternative approach inspired by the pseudo input
framework for GPs (Snelson & Ghahramani, 2006; Titsias,
2009). Specifically, we propose a two-step process by in-
troducing an M-dimension vector f}, for each task, where
M < | U, {h¥}Y|. Then, using a so-called conditional
Gaussian Processes, we define the generative process as

1
wy o~ N<97£KMM>7 9)
fir ~ N (6 Kuwm) (10)
Inlfar ~ gP(Q*‘K}ffMKA?JVI(f}\?—Q)y (11)

1 u u — u
1+ g)(KNN - KNMKJMlMKNMT)> ;

where f contains the transformed rates at all possible
feature vectors {h¥}N'| in task u, while fy, is a M-
dimensional vector, consisting of the transformed rates at
M feature-vector locations {s; }£,.

In (11), for each task u, only the function values at feature
vectors appearing in task u are required, while in (3), for
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Figure 1. Graphical model representation (filled circle are ob-
served, empty circles denotes latent variables, rectangles refer to
model parameters, and the rest are free hyper-parameters).

each task, the function values at all feature vectors appear-
ing in all tasks need to be specified.

Following the GP literature (Titsias, 2009), we refer to {s;}
as pseudo inputs. These need not appear in any of the tasks
(or even H); we only require that a distance can be properly
defined between s; and hy. And similar to (5), K ;s and
K3}, can be obtained through the squared-exponential or
the Matérn function with ARD kernel, with h;-‘ and s; as
covariates. Specifically,

P

L 2
> (sz)\zsm)> +0%l(i = j),
D

p=1

2
KIMM,ij =T €exXp (—

P u 2
u (hpi — Spj)
KNM,ij =7’ exp <_Z - 2)\21’] )
P

p=1

It can be shown that the construction through (9)-(11) re-
sults in the same marginal prior distribution for fj; as
(2)-(3) (see supplemental material) while having a signif-
icantly reduced computational cost. Overfitting problems
can also be alleviated because model complexity is re-
duced. This is especially beneficial when sophisticated fea-
tures are constructed, resulting in very large history fea-
ture spaces, however, with the rate function likely living
in a low-dimensional manifold. As a result, assuming
{si, fiys}i2, captures the characteristics of the function
{h¥, f]’\‘,7i}£\£1, while achieving computational savings, and
improved estimation accuracy. The proposed full genera-
tive model is summarized by equations (9)-(11), (4) and
(1), as demonstrated in Figure 1.

5. Inference

Model parameters © include the pseudo-input locations,
the global mean of transformed rates, and the GP hyper-
paramters: © = {{sn,})_,,puq,, 0%, 72, {\}}_,}. Ob-
taining a full posterior distribution for 9, is straightfor-
ward due to local conjugacy. However we observed no

significant difference in performance against just a point
estimate, and for easier interpretability, focus on the latter.

Maintaining p(f3;, fx|Y, ©), the full posterior distribu-
tion over the intensity functions of each task is important
for transfer learning across tasks with different numbers of
observations. However, this is not straightforward due to
the non-conjugate point process likelihood, and borrowing
ideas from variational learning for sparse GPs (Lloyd et al.,
2014; Titsias, 2009), we propose a variational form to ap-
proximate the posterior p(f3y, fa|Y, ®). Letting Y refer
to the complete collection of event streams Y. ,yU,
we use

q(f, Fir) = p(FNIFa)a(Fir)
= p(FNIFv)N (Far p", ). (12)

Note that we allow a free-form Gaussian distribution for
fi. the task-specific transformed rates at the pseudo in-
puts. However the transformed rates evaluated at all
features in each task, fj,, are constrained by the low-
dimensional function fj;, via (11). In the following,
we use a simplified notation ¢“ to denote q(f};) =
N (fiy; p*, X"). Because of the special factorized form
in (12), {p*, X%} are the only variational parameters in
the algorithm.

The inference objective is to maximize the variational
lower bound (Beal, 2003) (called ELBO for evidence lower
bound optimization):

logp(Y, ®) > logp(©) (13)
U
P(yuafﬁ7fﬁ4) }
+ B, pu pus[log n 2IN2 IMIg L
2_21{ a i0l08 = ey

Note that in (13), q(fx, fir) and p(Y*, £, fi;) implic-
itly depend on ®. Since we only impose a Gaussian prior
on pl, in (9), log p(®) is simplified to log p(uY,). Pri-
ors on other model parameters may also be imposed, e.g.,
a log-normal prior on GP hyper-parameters, but here we
learn their maximum likelihood estimate (MLE) instead.
To show explicit dependence, we denote the ELBO as
F(q¢*, - ,q¢Y,©). We maximize F(q',---,qY,0) in
(13), giving a variational Expectation Maximization (EM)
algorithm guaranteed to converge to a local optimum (Beal,
2003). In practice, we alternate between a variational E-
step, where © is fixed and F (¢, - - - , ¢V, ©) is maximized
w.rt. {¢“}Y_;, and a variational M-step, where {q*}¥_;
is fixed and F(q',---,qY,®) is maximized w.rt. ©.
Derivation details are standard; we list the key steps below:
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U
Flg' ¢, @) = ZEqu [Emmum[10gp(3’”|f?¢)ﬂ
P IKar) )} + log p(pdy)

+ SR, [10 P wlk)
Z s (filpe, 2w

£ Fi+FR+Fs. (14)

The first term JF; (15) measures how the functions
specified by ¢“ (determining the distribution of func-
tion values at pseudo inputs) fit the observations.
Because of the sparsity assumption of the condi-
tional Gaussian process, we can integrate out fy and
leave F; as a function of only {u“ X%} and O:

Fi= Z / q(Fi|p", =) log p(V*| FR) SR (15)
U N“
= 33 {I(t € Y)Ellog(f1,)%] — AVE[(FE)]}

u=1 =1
The expectation is w.rt. q(fy|pu®, X%) = N(b*, BY),
with parameters in (16) and (17):

b =g+ Ky Kby (1" —g), (16)
1
B" = (1 + 5) (KKIN - KX[MK];[lMKJL\LHWT)
+ K Ky 2 (Ko K T (17)

Eflog(f# ;)?] in (15) can be calculated using confluent hy-
pergeometric functions (Lloyd et al., 2014). Further de-
tails can be found in the Supplemental Material, where
we also provide a robust approximation to tackle the well-
known numerical instability issue in confluent hypergeo-
metric function evaluations (Ancarani & Gasaneo, 2008).

As a side note on why we prefer a squared trans-
formation over the exponential, when using t~he
latter, 7 1is modified as (18), denoted as JFi:

U N“

=> > {1ty € Y)E

u=1i=1

[f5,i] = AfEfexp(fy )]}, (18)
Now the variance of fy ; does not affect E[fy ;] at event
times ¢’ € Y (Lloyd et al., 2014), but only contributes
to the second term through ]E[exp( f3:)]. This leads to in-
stability issues during inference. We also implemented the
algorithm using this transformation, but the estimated func-
tion f* diverged even with strong prior constraints.

Fa, as specified in (19), penalizes the task-specific func-
tion’s deviation from the global mean function u9,.
This is especially important for tasks with few train-
ing data, e.g., short event streams or few event arrivals.

U
Fy=—Ylog|Kyum|+ 3 Y log || (19)
u=1

U u u T u T
=1 3t {KJMAI(#' I N L T T )] :
F3 involves
tion Y,

the hyper-prior on the global func-
with & controlling the belief strength:

1 _ _
F3= 5{10g EK = tr (€K (mh — 9) (sl —9) )}

Having defined the variational objective, we can maximize
the objective alternately w.rt. to {u*, X%} and ©. In the
variational E-step, we update the variational parameters g
and 3" using gradient descent methods. As a practical
consideration, to preserve the positive definiteness of 3%,
we optimize it instead over its lower Cholesky decompo-
sition, L*, where X% = L“L“T, and with positiveness
constraints on the diagonal elements. In the variational M-
step, updates for u, are obtained in closed form due to
local conjugacy. Gradient methods are needed for updat-
ing other parameters, including locations of pseudo inputs
and GP hyperparameters (see Supplemental Material for
details).

When the number of tasks is large, the algorithm can be
readily distributed over a cluster, with the E-step opti-
mization procedures for tasks distributed over individual
cores/machines.

6. Experiments

We evaluate our model on both synthetic data as well as an
EHR dataset. Atany time ¢, the basic challenge is to predict
the event arrival patterns in the interval [¢, ¢+ L]. One base-
line is a simplified model where each task is learned inde-
pendently (fixing u8, in (10) to g) to demonstrate the ben-
efit of sharing across tasks. We refer to our proposed model
as MTPP (for multitask point process model), and the sim-
plified model as IPP (for independent point process model).
Another baseline is Poisson regression (PoiR), specialized
for the prediction problem considered. Here, at each time
stamp t, using observations in a window of length L p (the
maximum memory length), we calculate the history fea-
tures h(t), and treat them as predictors for the number of
arrivals in the succeeding window [t,t + L]. While this
is not a generative processs, the Poisson regression model
can be trained using observations and tested on prediction
tasks.

6.1. Synthetic Experiments

For the first experiment, we synthesize a rate function for
each of U = 10 tasks using a two step process. First
the rates at M = 10 feature locations (pseudo inputs) are
generated from a common Gaussian distribution. The rate
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Figure 2. Left: Predictive log-likelihood per unit time; Right:
mean normalized estimation error of intensity rates.

function is then drawn conditioned on these, as specified by
(11). The features constructed at time ¢ are the event counts
in intervals [t — 5, ¢] and [t — 1, t]. The GP hyperparameters
are set as, \; = Ao = 4,7 = 1.2, and o = 0.01, to pro-
duce moderate rate functions, e.g., the empirical average
rate over each event stream is between 0.05 and 1.5. Using
the conditional intensity model introduced in Section 3, we
generate event streams for each of the U tasks. We train
the models using observations up to time 7', and perform
forward prediction.

For inference, the pseudo points were initialized using K-
means clustering over the history features appearing in the
training set. The GP hyperparameters are initialized setting
the length-scale parameters, {)\p}, as the standard devia-
tion of observed feature vectors, the magnitude, 7, as the
standard deviation of square roots of empirical rates (com-
puted via binning methods), and the noise term, o2 asa
small value, 0.0172. The algorithm converges within 20 it-
erations, after which the relative successive increase of the
variational objective is negligible.

Model fit: We first evaluate the model and inference by
comparing MTPP and IPP with the ground truth model. We
vary the observation length of the training set 7'; the exper-
iments for each setting are repeated for 15 runs, with mean
and standard deviation reported.

The left panel of Figure 2 compares the predictive log-
likelihood per unit time (data log-likelihood discounted by
event stream length) on unseen streams. We see that with
an increasing length of training observations, the predictive
log-likelihood of both MTPP and IPP gradually approaches
the log-likelihood obtained with the true model. When T is
small, which is true in many practical scenarios, IPP cannot
fit the data well while MTPP learns the model accurately.
This is again illustrated in the right panel of Figure 2, where
for both MTPP and IPP, we compute the rate estimation er-
ror ({3-norm), normalized w.r.t. the true rates, and averaged
over all history features occurred in the data. We observe
that MTPP outperforms IPP, especially in scarce-data sce-
narios, demonstrating the benefit of sharing across tasks.

Forward prediction: We evaluate the prediction perfor-
mance using two metrics (mirroring the two questions

0.4

o

o
N
I

w

0123 456 7 89101112

0.4

KL divergence
N

Il True Model
CImMTPP
PP

— Observed count

0.2]

e

0
0123 456 7 8 9101112 40 50 60 70 80 90 100

0
Observation Length T

Event count
Figure 3. Left: Predicted empirical distributions of event counts
in [t, t+5]; Right: KL divergence between predicted distributions
of event counts in [t, ¢ + 5] using the learned and the true model.

posed in Section 1). The first is a binary classification
problem on whether at least one event occurs in [¢,¢ + L],
and the second, estimating the distribution of event arrival
counts in [t, ¢+ L]. For the former, at time ¢, the probability
of no event occurring until £ + L can be analytically com-
puted as exp(— ftHL ~(7|h(7))d7). This is easily solv-
able because h(7) is piecewise-constant. For the latter, be-
cause the intensity model is trained given observations, i.e.,
the history-to-rate functions are learned, at time ¢, we can
generate sample paths in a forward manner. Using Monte
Carlo sampling, we estimate the quantities of interest, e.g.,
the distribution of event arrival counts in [¢, ¢ + L.

To better illustrate how the model performs forward pre-
diction, the left panel of Figure 3, shows for one testing in-
stance, the empirical distribution of event arrival counts ob-
tained from 100 Monte Carlo sample paths. Qualitatively,
the distribution predicted by MTPP matches the one pre-
dicted by the true model best. The actual observed count
can be considered as a draw from the distribution produced
by the true model. To quantitively measure the perfor-
mance, we compute the KL divergence between predicted
distributions using the learned models and the true model,
varying with observation length 7". As indicated in the right
panel of Figure 3, the KL divergence between predicted
distributions using IPP and the true model is large for short
streams, decreasing only with longer streams. For MTPP,
there is a much smaller divergence (which decreases to a
value around 0.75).

We next compare prediction results from MTPP, IPP, and
PoiR, where for PoiR all tasks are trained independently.
The testing instances are constructed by taking a sequence
of snapshots on the unseen streams. In particular, we start
at T with a length L sliding window, extract history fea-
tures, record the event count, and move forward with step-
size g until the end of the stream. Figure 4 demonstrates
the prediction performance as a function of prediction win-
dow L. Shown in the left panel is the Area Under the
Curve (AUC) for the binary problem of whether at least
one event occurs in [¢,t + L]. MTPP performs best, and is
closest to the AUC achieved using the true model. The in-
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Figure 4. Left: AUC of binary prediction on whether at least one
event occurs in [t, ¢ + L]; Right: MAE of event arrival counts in
[t,t+ L].

dependent models perform poorly due to insufficient train-
ing data. One interesting phenomenon is that the predic-
tion accuracy increases first and starts decreasing after a
change point. This phenomenon results from a trade-off be-
tween two effects. First, for small L, the probability of no
event occurring decreases from a moderate value (around
0.5) to 0, leading to an easier prediction problem. Sec-
ond, as L increases further, the accumulating Poisson noise
makes it harder. When L is small, the first effect dominates
leading to a higher AUC. However, after a change point,
the accumulated Poisson noise dominates, driving predic-
tion accuracy down. The right panel of Figure 4 shows
the Mean Absolute Error (MAE) of event arrival counts in
[t,t + L]. Unlike the AUC for binary prediction, the MAE
for all methods increases monotonically as prediction win-
dow length increases. MTPP outperforms other baselines,
achieving the MAE closest to the one obtained by the true
model. The increment is linear because of the linearly ac-
cumulating Poisson noise.

6.2. Applications on Electrical Health Records

We now consider a real-world application involving an
EHR dataset. We use the New Zealand national minimum
dataset ', covering the years 2007 through 2011 (inclusive).
The data contains approximately 3.3 million inpatient vis-
its from 1.5 million unique individuals with ages from 18
to 65. Available variables include ICD-10-AM (Australian
Modification) diagnosis and procedure codes which are
grouped into 22 broad categories (World Health Organiza-
tion, 2010).

We focus on hospital visits for each disease category, as-
sociated with a block of ICD-10-AM billing codes (e.g.
billing codes in the range CO0 to D48 all refer to neo-
plasms). Treating clinical data as point process observa-
tions is a relatively novel approach to the best of our knowl-
edge, and has only been adopted in Lasko (2014). In our
experiments, for each disease category, we record all pa-
tients’ visits associated with billing codes belonging to it,
filter out patients with infrequent visits (fewer than 50), and

"http://www.health.govt.nz/nz-health-statistics

split visit sequences for each patient into training and test-
ing (split at the time stamp when half of the number of
visits are observed).

After preprocessing, we have visit streams of multiple pa-
tients for each disease category, with the number of patients
varying from 36 to 118, and the number of visits per pa-
tient varying from 51 to 98. In total, we analyze 6 dis-
ease types, listed in Table 1, mostly related with chronic
diseases. For example, neoplasms include malignant and
benign ones, and metabolic problems include type-I and
type-1I diabetes. Note we are not exploring the correla-
tion across visits for different disease types, which is also
interesting, and left as future work. The aim of this ap-
plication to EHR data is to show that using the multitask
point process model proposed, with a simple feature con-
struction approach, the visit patterns for some disease types
are reasonably predictable. For each patient’s visit stream
of a disease category, the features constructed include the
number of his/her hospital visits for this disease in the pre-
vious week, month, and six months. For inference, we set
the number of pseudo inputs M = 15, and the initialization
procedure is the same as in the synthetic experiments. The
algorithm generally converges in tens of iterations.

Similar with the above synthetic experiments, we evaluate
the algorithm from two perspectives: model fit and pre-
dictive ability. For model fit, we evaluate the data log-
likelihood, comparing with two state-of-the-art approaches
using GP modulated renewal processes: a direct inference
method in Lasko (2014) and a thinning approach in Rao &
Teh (2011). For the prediction tasks, unlike the synthetic
experiments, we do not have access to the ground truth
model, i.e., knowledge about heterogeneity across popula-
tion/tasks. Thus, we use the test dataset to compare MTPP
with PoiR, using the same model for all patients for the lat-
ter. We also evaluated IPP, but because the patients’ visits
are sparse, the individual models learned with this scarce
training data perform poorly. Hence only results of pooled
MTPP and PoiR are reported.

Model Fit: GP modulated renewal processes are trained
using both direct inference as in Lasko (2014) and thin-
ning approach as in Rao & Teh (2011), for each patient’s
visit sequence in the neoplasm category. We then compare
these two methods with MTPP on the data log-likelihood
per time unit (day) over all sequences. As shown in the top-
left panel of Figure 5, MTPP is comparable with the other
two methods, with a smaller variation due to the sharing
across patients. Shown in the top-right and bottom panels
are the mean intensity functions inferred of anonymous pa-
tients (error bars are omitted for clarity), each associated
with the raster plot of the hospital visits in the bottom. Rel-
ative dates, instead of calendar dates are used for confiden-
tiality. As can be seen, the two temporal GP methods infer
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Figure 5. Model fit results. Top-left: Comparison of data log-
likelihood per day of MTPP, direct inference, and thinning ap-
proach; Top-right and bottom row: Intensity functions inferred of
anonymous patients’ arrival sequences.

a smooth function modeling the rate, which fails to cap-
ture sudden changes. For example, see the small-to-large
change rate around the 33rd month in the top-right panel.
Also note in the bottom-left panel, MTPP performs well at
the beginning and ending of the sequence, with no bound-
ary effects of GPs. Such differences are consistent over the
dataset. Note that the intensity function inferred via our
method is piecewise-constant, with change points located
where recent history changes. The goodness of fit suggests
this current rate’s dependence on history enables forward
prediction.

Forward Prediction: Figure 6 (left panel) shows the
learned history-to-rate mapping function globally shared
by all patients in the neoplasm category. In particular,
we plot the value of the function in terms of two fea-
tures, namely, number of arrivals in windows [t — 7, ¢] and
[t — 30, t] (the previous week and month). As indicated, a
patient with many visits in a month and few visits in a week
has a larger rate of a revisit.

The right panel in Figure 6 shows that for neoplasms, the
MAE increases monotonically as the prediction window
length increases up to 90 days. This is consistent with the
results from synthetic data shown in Figure 4. Interestingly,
because PoiR requires a separate model for each prediction
interval, no noise variance accumulates in the model, and
the increase in MAE results from the data itself. On the
other hand, we just train MTPP once and generate sample
paths for different window lengths, resulting in a Poisson
noise that increases linearly with prediction interval. As a
result, for MTPP the MAE diverges faster than for PoiR as
L increases.

Results in Table 1 show AUC values for the 6 disease cate-
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Figure 6. Neoplasms results. Left: Global rate function inferred
by MTPP as a function of the number of arrivals in windows [t —
7,t] and [t — 30, t]; Right: MAE as a function of the prediction
window length, L, in days.

gories considered. Two settings for the length of the predic-
tion windows, namely, 1 week and 1 month are evaluated.
We see that consistent with the results for artificial data in
Figure 4, AUCs tend to increase for moderate sizes of L.
We also verified (results not shown) that further increas-
ing the prediction window size has an accordingly negative
impact on the AUCs. In fact, predictions become no better
than random as L approaches 6 months for some disease
types. When comparing MTPP to PoiR, we observe that the
former outperforms the latter in 4 of 6 disease types. This
supports the hypothesis that the changes of hospital visit
patterns among the population are disease specific. How-
ever, correlations across diseases and clustering of patient
subpopulations could be exploited, and are left as future
work.

Table 1. AUC of binary predictions of events occurring in weekly
and monthly windows for 6 disease types.

1 WEEK 1 MONTH
DISEASE TYPE | MTPP PoOIR MTPP PoOIR
NEOPLASMS 0.7379 0.7249 | 0.8136 0.8058
METABOLIC 0.6807 0.6170 | 0.6778 0.6195
NERVOUS 0.6926  0.7241 | 0.7978 0.7167
CIRCULATORY 0.6807 0.6778 | 0.6170  0.6195
RESPIRATORY 0.5733  0.6302 | 0.6308  0.6322
DIGESTIVE 0.6050 0.5562 | 0.6555 0.6170

7. Conclusions and Future Work

We have considered the problem of analyzing multiple
streaming point processes in a multi-task setting, and have
proposed a simple predictive strategy. The proposed model,
using hierarchical GPs, leverages information across the
tasks in a nonparametric manner. Exploring multi-task
marked point processes, designing richer feature construc-
tion approaches for predictive models, and clustering tasks
based on their arrival patterns, are left as interesting open
problems.
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