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1. Key quantities in variational inference

Variational E-step:
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Variational M-step:

Updates for ,u?vf can be derived in closed form as follows,
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Gradient methods are needed for updating other parameters
(denoted as 0y,), including pseudo input positions and GP
hyper-parameters, with key quantities summarized below:
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2. Hierarchical Gaussian process construction

Using the construction in (2) and (3), we can integrate over
1% to obtain the marginal prior distribution for f3 as

fi ~ N <g, (1 + 2>KNN> . S1)
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Using the construction in (9)-(11), we can integrate out fj;
using (10) and (11), obtaining,

fulws ~N <g + K Ko (05 — 9),
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Then, integrating out p9, using (9), we can get the same
marginal prior as in (S1),

fn~N <g, (1 + 2>K11<7N> : (82)

The only difference between (S1) and (S2) is that we need
a realization of the function at possible features from all
tasks in (S1), while only the features from task u need to
be specified in (S2).

3. Confluent hypergeometric functions

When |z| is small, for example |z| < 30, we use the power
series to compute the confluent hypergeometric function:
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where (a)g = 1, (a)r = Hf;ol (a + 7). In practice, the
summation can be terminated at a sufficiently large number
to achieve a given error tolerance level.

When |z| is large, for example |z| > 30, we use the follow-
ing computation (Thompson, 1997):

1Fi(a,b,x) =
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Having 1 Fi(a, b, x), the gradient é(x) =

be numerically computed, where G(a, b, )
(Ancarani & Gasaneo, 2008).
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Finally, the expectation needed to compute F; during vari-
ational E-step can be estimated as (Lloyd et al., 2014):
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