
Non-Stationary Approximate Modified Policy Iteration

Supplementary Material for
Non-Stationary Approximate Modified Policy Iteration

A. Proof of Theorem 3
For clarity, we here provide a detailed and complete proof. Throughout this proof we will write Pk (resp. P∗) for the
transition kernel Pπk (resp. Pπ∗) induced by the stationary policy πk (resp. π∗). We will write Tk (resp. T∗) for the
associated Bellman operator. Similarly, we will write Pk,` for the transition kernel associated with the non-stationary
policy πk,` and Tk,` for its associated Bellman operator.

For k ≥ 0 we define the following quantities:

• bk = Tk+1vk − Tk+1,`Tk+1vk. This quantity which we will call the residual may be viewed as a non-stationary
analogue of the Bellman residual vk − Tk+1vk.

• sk = vk − vπk,` − εk. We will call it shift, as it measures the shift between the value vπk,` and the estimate vk before
incurring the error.

• dk = v∗ − vk + εk. This quantity, called distance thereafter, provides the distance between the kth value function
(before the error is added) and the optimal value function.

• lk = v∗ − vπk,` . This is the loss of the policy vπk,` . The loss is always non-negative since no policy can have a value
greater than or equal to v∗.

The proof is outlined as follows. We first provide a bound on bk which will be used to express both the bounds on sk and
dk. Then, observing that lk = sk + dk will allow to express the bound of ‖lk‖∞ stated by Theorem 3. Our arguments
extend those made by Scherrer et al. (2012) in the specific case ` = 1.

We will repeatedly use the fact that since policy πk+1 is greedy with respect to vk, we have

∀π′, Tk+1vk ≥ Tπ′vk. (5)

For a non-stationary policy πk,`, the induced `-step transition kernel is

Pk,` = PkPk−1 · · ·Pk−`+1.

As a consequence, for any function f : S → R, the operator Tk,` may be expressed as:

Tk,`f = rk + γPk,1rk−1 + γ2Pk,2rk−2 + · · ·+ γ`−1Pk,`−1rk−`+1 + γ`Pk,`f

then, for any function g : S → R, we have

Tk,`f − Tk,`g = γ`Pk,`(f − g) (6)

and
Tk,`(f + g) = Tk,`f + γ`Pk,`(g). (7)

The following notation will be useful.

Definition 1 (Scherrer et al. (2012)). For a positive integer n, we define Pn as the set of discounted transition kernels that
are defined as follows:

1. for any set of n policies {π1, . . . , πn}, (γPπ1
)(γPπ2

) · · · (γPπn) ∈ Pn,

2. for any α ∈ (0, 1) and P1, P2 ∈ Pn, αP1 + (1− α)P2 ∈ Pn

With some abuse of notation, we write Γn for denoting any element of Pn.

Non-Stationary Approximate Modified Policy Iteration

Example 1 (Γn notation). If we write a transition kernel P as P = α1Γi + α2ΓjΓk = α1Γi + α2Γj+k, it should be read
as: “There exists P1 ∈ Pi,P2 ∈ Pj ,P3 ∈ Pk and P4 ∈ Pj+k such that P = α1P1 + α2P2P3 = α1P1 + α2P4.”.

We first provide three lemmas bounding the residual, the shift and the distance, respectively.

Lemma 2 (residual bound). The residual bk satisfies the following bound:

bk ≤
k∑
i=1

Γ(`m+1)(k−i)xi + Γ(`m+1)kb0

where

xk = (I − Γ`)Γεk.

Proof. We have:

bk = Tk+1vk − Tk+1,`Tk+1vk

≤ Tk+1vk − Tk+1,`Tk−`+1vk {Tk+1vk ≥ Tk−`+1vk (5)}
= Tk+1vk − Tk+1Tk,`vk

= γPk+1 (vk − Tk,`vk)

= γPk+1 ((Tk,`)
mTkvk−1 + εk − Tk,` ((Tk,`)

mTkvk−1 + εk))

= γPk+1

(
(Tk,`)

mTkvk−1 − (Tk,`)
m+1Tkvk−1 + (I − γ`Pk,`)εk

)
{(7)}

= γPk+1

(
(γ`Pk,`)

m (Tkvk−1 − Tk,`Tkvk−1) + (I − γ`Pk,`)εk
)

{(6)}
= γPk+1

(
(γ`Pk,`)

mbk−1 + (I − γ`Pk,`)εk
)
.

Which can be written as

bk ≤ Γ(Γ`mbk−1 + (I − Γ`)εk) = Γ`m+1bk−1 + xk.

Then, by induction:

bk ≤
k−1∑
i=0

Γ(`m+1)ixk−i + Γ(`m+1)kb0 =

k∑
i=1

Γ(`m+1)(k−i)xi + Γ(`m+1)kb0.

Lemma 3 (distance bound). The distance dk satisfies the following bound:

dk ≤
k∑
i=1

mi−1∑
j=0

Γ`j+i−1xk−i +

k∑
i=1

Γi−1yk−i + zk,

where

yk = −Γεk

and

zk =

mk−1∑
i=0

Γk−1+`ib0 + Γkd0.

Non-Stationary Approximate Modified Policy Iteration

Proof. First expand dk:

dk = v∗ − vk + εk

= v∗ − (Tk,`)
mTkvk−1

= v∗ − Tkvk−1 + Tkvk−1 − Tk,`Tkvk−1 + Tk,`Tkvk−1 − (Tk,`)
2Tkvk−1

+ (Tk,`)
2Tkvk−1 − · · · − (Tk,`)

m−1Tkvk−1 + (Tk,`)
m−1Tkvk−1 − (Tk,`)

mTkvk−1

= v∗ − Tkvk−1 +

m−1∑
i=0

(Tk,`)
iTkvk−1 − (Tk,`)

i+1Tkvk−1

= T∗v∗ − Tkvk−1 +

m−1∑
i=0

(γ`Pk,`)
i (Tkvk−1 − Tk,`Tkvk−1) {(6)}

≤ T∗v∗ − T∗vk−1 +

m−1∑
i=0

(γ`Pk,`)
ibk−1 {Tkvk−1 ≥ T∗vk−1 (5)}

= γP∗(v∗ − vk−1) +

m−1∑
i=0

(γ`Pk,`)
ibk−1 {(6)}

= γP∗dk−1 − γP∗εk−1 +

m−1∑
i=0

(γ`Pk,`)
ibk−1 {dk = v∗ − vk + εk}

= Γdk−1 + yk−1 +

m−1∑
i=0

Γ`ibk−1.

Then, by induction

dk ≤
k−1∑
j=0

Γk−1−j

(
yj +

m−1∑
p=0

Γ`pbj

)
+ Γkd0.

Using the bound on bk from Lemma 2 we get:

dk ≤
k−1∑
j=0

Γk−1−j

(
yj +

m−1∑
p=0

Γ`p

(
j∑
i=1

Γ(`m+1)(j−i)xi + Γ(`m+1)jb0

))
+ Γkd0

=

k−1∑
j=0

m−1∑
p=0

j∑
i=1

Γk−1−j+`p+(`m+1)(j−i)xi +

k−1∑
j=0

m−1∑
p=0

Γk−1−j+`p+(`m+1)jb0 + Γkd0 +

k∑
i=1

Γi−1yk−i.

First we have:

k−1∑
j=0

m−1∑
p=0

j∑
i=1

Γk−1−j+`p+(`m+1)(j−i)xi =

k−1∑
i=1

k−1∑
j=i

m−1∑
p=0

Γk−1+`(p+mj)−i(`m+1)xi

=

k−1∑
i=1

m(k−i)−1∑
j=0

Γk−1+`(j+mi)−i(`m+1)xi

=

k−1∑
i=1

m(k−i)−1∑
j=0

Γ`j+k−i−1xi

=

k−1∑
i=1

mi−1∑
j=0

Γ`j+i−1xk−i.

Non-Stationary Approximate Modified Policy Iteration

Second we have:

k−1∑
j=0

m−1∑
p=0

Γk−1−j+`p+(`m+1)jb0 =

k−1∑
j=0

m−1∑
p=0

Γk−1+`(p+mj)b0 =

mk−1∑
i=0

Γk−1+`ib0 = zk − Γkd0.

Hence

dk ≤
k∑
i=1

mi−1∑
j=0

Γ`j+i−1xk−i +

k∑
i=1

Γi−1yk−i + zk.

Lemma 4 (shift bound). The shift sk is bounded by:

sk ≤
k−1∑
i=1

∞∑
j=mi

Γ`j+i−1xk−i + wk,

where

wk =

∞∑
j=mk

Γ`j+k−1b0.

Proof. Expanding sk we obtain:

sk = vk − vπk,` − εk
= (Tk,`)

mTkvk−1 − vπk,`
= (Tk,`)

mTkvk−1 − (Tk,`)
∞Tk,`Tkvk−1 {∀f : vπk,` = (Tk,`)

∞f}

= (γ`Pk,`)
m
∞∑
j=0

(γ`Pk,`)
j (Tkvk−1 − Tk,`Tkvk−1)

= Γ`m
∞∑
j=0

Γ`jbk−1

=

∞∑
j=0

Γ`m+`jbk−1.

Plugging the bound on bk of Lemma 2 we get:

sk ≤
∞∑
j=0

Γ`m+`j

(
k−1∑
i=1

Γ(`m+1)(k−1−i)xi + Γ(`m+1)(k−1)b0

)

=

∞∑
j=0

k−1∑
i=1

Γ`m+`j+(`m+1)(k−1−i)xi +

∞∑
j=0

Γ`m+`j+(`m+1)(k−1)b0

=

∞∑
j=0

k−1∑
i=1

Γ`(j+mi)+i−1xk−i +

∞∑
j=0

Γ`(j+mk)+k−1b0

=

k−1∑
i=1

∞∑
j=mi

Γ`j+i−1xk−i +

∞∑
j=mk

Γ`j+k−1b0

=

k−1∑
i=1

∞∑
j=mi

Γ`j+i−1xk−i + wk.

Non-Stationary Approximate Modified Policy Iteration

Lemma 5 (loss bound). The loss lk is bounded by:

lk ≤
k−1∑
i=1

Γi

 ∞∑
j=0

Γ`j(I − Γ`)− I

 εk−i + ηk,

where

ηk = zk + wk =

mk−1∑
i=0

Γk−1+`ib0 + Γkd0 +

∞∑
j=mk

Γ`j+k−1b0 =

∞∑
i=0

Γ`i+k−1b0 + Γkd0.

Proof. Using Lemmas 3 and 4, we have:

lk = sk + dk

≤
k−1∑
i=1

∞∑
j=mi

Γ`j+i−1xk−i +

k−1∑
i=1

mi−1∑
j=0

Γ`j+i−1xk−i +

k∑
i=1

Γi−1yk−i + zk + wk

=

k−1∑
i=1

∞∑
j=0

Γ`j+i−1xk−i +

k∑
i=1

Γi−1yk−i + ηk.

Plugging back the values of xk and yk and using the fact that ε0 = 0 we obtain:

lk ≤
k−1∑
i=1

∞∑
j=0

Γ`j+i−1(I − Γ`)Γεk−i +

k−1∑
i=1

Γi−1(−Γ)εk−i − Γkε0 + ηk

=

k−1∑
i=1

 ∞∑
j=0

Γ`j+i(I − Γ`)εk−i − Γiεk−i

+ ηk

=

k−1∑
i=1

Γi

 ∞∑
j=0

Γ`j(I − Γ`)− I

 εk−i + ηk.

We now provide a bound of ηk in terms of d0:

Lemma 6.

ηk ≤ Γk

(∞∑
i=0

Γi(Γ− I) + I

)
d0.

Proof. First recall that

ηk =

∞∑
i=0

Γ`i+k−1b0 + Γkd0.

Non-Stationary Approximate Modified Policy Iteration

In order to bound ηk in terms of d0 only, we express b0 in terms of d0:

b0 = T1v0 − (T1)`T1v0

= T1v0 − (T1)2v0 + (T1)2v0 − · · · − (T1)`v0 + (T1)`v0 − (T1)`+1v0

=
∑̀
i=1

(γP1)i(v0 − T1v0)

=
∑̀
i=1

(γP1)i(v0 − v∗ + T∗v∗ − T∗v0 + T∗v0 − T1v0)

≤
∑̀
i=1

(γP1)i(v0 − v∗ + T∗v∗ − T∗v0) {T1v0 ≥ T∗v0 (5)}

=
∑̀
i=1

(γP1)i(γP∗ − I)d0.

Consequently, we have:

ηk ≤
∞∑
i=0

Γ`i+k−1
∑̀
j=1

(γP1)j(γP∗ − I)d0 + Γkd0

=

∞∑
i=0

Γ`i+k
`−1∑
j=0

(γP1)j(γP∗ − I)d0 + Γkd0

= Γk

 ∞∑
i=0

Γ`i
`−1∑
j=0

Γj(Γ− I) + I

 d0

= Γk

(∞∑
i=0

Γi(Γ− I) + I

)
d0.

We now conclude the proof of Theorem 3. Taking the absolute value in Lemma 6 we obtain:

|ηk| ≤ Γk

(∞∑
i=0

Γi(Γ + I) + I

)
|d0| = 2

∞∑
i=k

Γi|d0|

Since lk is non-negative, from Lemma 5 we have:

|lk| ≤
k−1∑
i=1

Γi

 ∞∑
j=0

Γ`j(I + Γ`) + I

 |εk−i|+ |ηk| = 2

k−1∑
i=1

Γi
∞∑
j=0

Γ`j |εk−i|+ 2

∞∑
i=k

Γi|d0|. (8)

Since ‖v‖∞ = max |v|, d0 = v∗ − v0 and lk = v∗ − vπk,` , we can take the maximum in (8) and conclude that:

∥∥v∗ − vπk,`∥∥∞ ≤ 2(γ − γk)

(1− γ)(1− γ`)
2ε+

γk

1− γ
‖v∗ − v0‖∞.

Non-Stationary Approximate Modified Policy Iteration

B. Proof of Theorem 4
We shall prove the following result.

Lemma 7. Consider NS-AMPI with parameters m ≥ 0 and ` ≥ 1 applied on the problem of Figure 1, starting from
v0 = 0 and all initial policies π0, π−1, . . . , π−`+2 equal to π∗. Assume that at each iteration k, the following error terms
are applied, for some ε ≥ 0:

∀i, εk(i) =

 −ε if i = k
ε if i = k + `
0 otherwise

.

Then NS-AMPI can8 generate a sequence of value-policy pairs that is described below.

For all iterations k ≥ 1, the policy πk takes the optimal action in all states but k, that is

∀i ≥ 2, πk(i) =

{
→ if i = k
← otherwise (9)

For all iterations k ≥ 1, the value function vk satisfies the following equations:

• For all i < k:
vk(i) = −γ(k−1)(`m+1)ε (10.a)

• For all i such that k ≤ i ≤ k + ((k − 1)m+ 1)`:

– For i = k + (qm+ p+ 1)` with q ≥ 0 and 0 ≤ p < m (i.e. i = k + n`, n ≥ 1):

vk(i) = γq(`m+1)

γ`(p+1) − γ`(m+1)

1− γ`
rk−q + 1[p=0]ε+

k−q−1∑
j=1

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−q−j + ε

)
(10.b)

– For i = k:
vk(k) = vk(k + `) + rk − 2ε (10.c)

– For i = k + q`+ p with 0 ≤ q ≤ (k − 1)m− 1 and 1 ≤ p < `:

vk(i) = −γ(k−1)(`m+1)ε (10.d)

– Otherwise, i.e. when i = k + (k − 1)m`+ p with 1 ≤ p < `:

vk(i) = 0 (10.e)

• For all i > k + ((k − 1)m+ 1)`
vk(i) = 0 (10.f)

The relative complexity of the different expressions of vk in Lemma 7 is due to the presence of nested periodic patterns in
the shape of the value function along the state space and the horizon. Figures 4 and 5 give the shape of the value function
for different values of ` and m, exhibiting the periodic patterns. The proof of Lemma 7 is done by recurrence on k.

B.1. Base case k = 1

Since v0 = 0, π1 is the optimal policy that takes ← in all states as desired. Hence, (T1,`)
mT1v0 = 0 in all states.

Accounting for the errors ε1 we have v1 = (T1,`)
mT1v0 + ε1 = ε1. As can be seen on Figures 4 and 5, when k = 1 we

only need to consider equations (10.b), (10.c), (10.e) and (10.f) since the others apply to an empty set of states.

First, we have
v1(1 + `) = ε1(1 + `) = ε

8We write here “can” since at each iteration, several policies will be greedy with respect to the current value.

Non-Stationary Approximate Modified Policy Iteration

(10.f)

(10.d) (10.d) (10.d) (10.d) (10.d) (10.d) (10.d) (10.d) (10.d) (10.d)

(10.a)

(10.e)

(10.e)

(10.e)

(10.e)

(10.b)
(10.c)

(10.b)
(10.b)

(10.b)
(10.b)

(10.b)
(10.b)

(10.b)
(10.b)

(10.b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

1

2

3

4

5

6

7

8

9

10

i (state)
k

(i
te

ra
tio

n)

Figure 4. Shape of the value function with ` = 2 and m = 3.

(10.f)

(10.d) (10.d) (10.d) (10.d) (10.d) (10.d) (10.d)

(10.a)

(10.e)

(10.e)

(10.e)

(10.e)

(10.b)
(10.c)

(10.b)
(10.b)

(10.b)
(10.b)

(10.b)
(10.b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

1

2

3

4

5

6

7

8

9

10

i (state)

k
(i

te
ra

tio
n)

Figure 5. Shape of the value function with ` = 3 and m = 2.

Non-Stationary Approximate Modified Policy Iteration

which is (10.b) when q = (k − 1) = 0 and p = 0.

Second, we have
v1(1) = ε1(1) = −ε = ε+ 0− 2ε = v1(1 + `) + r1 − 2ε

which corresponds to (10.c).

Third, for 1 ≤ p < ` we have
v1(1 + p) = ε1(1 + p) = 0

corresponding to (10.e).

Finally, for all the remaining states i > 1 + `, we have

v1(i) = ε1(i) = 0

corresponding to (10.f).

The base case is now proved.

B.2. Induction Step

We assume that Lemma 7 holds for some fixed k ≥ 1, we now show that it also holds for k + 1.

B.2.1. THE POLICY πk+1

We begin by showing that the policy πk+1 is greedy with respect to vk. Since there is no choice in state 1 is→, we turn
our attention to the other states. There are many cases to consider, each one of them corresponding to one or more states.
These cases, labelled from A through F, are summarized as follows, depending on the state i:

(A) 1 < i < k + 1

(B) i = k + 1

(C) i = k + 1 + q`+ p with 1 ≤ p < ` and 0 ≤ q ≤ (k − 1)m

(D) i = k + 1 + (qm+ p+ 1)` with 0 ≤ p < m and 0 ≤ q < k − 1

(E) i = k + 1 + ((k − 1)m+ 1)`

(F) i > k + 1 + ((k − 1)m+ 1)`

Figure 6 depicts how those cases cover the whole state space.

A · · · A B

k

k + 1

C · · · C D

k + 1 + `

C · · · C D

k + 1 + 2`

· · · C · · · C D

k + 1 + (k − 1)m`

C · · · C E

k + 1 + ((k − 1)m+ 1)`

F F · · ·

k `− 1 `− 1 `− 1 `− 1

Figure 6. Policy cases, each state is represented by a letter corresponding to a case of the policy πk+1. Starting from 1, state number
increase from left to right.

For all states i > 1 in each of the above cases, we consider the action-value functions q→k+1(i) (resp. q←k+1(i)) of action→
(resp. ←) defined as:

q→k+1(i) = ri + γvk(i− 1) and q←k+1(i) = γvk(i+ `− 1).

In case i = k + 1 (B) we will show that q→k+1(i) = q←k+1(i) meaning that a policy πk+1 greedy for vk may be either
πk+1(k + 1) =→ or πk+1(k + 1) =←. In all other cases we show that q→k+1(i) < q←k+1(i) which implies that for those
i 6= k + 1, πk+1(i) =←, as required by Lemma 7.

Non-Stationary Approximate Modified Policy Iteration

A: In states 1 < i < k + 1 We have q→k+1(i) = ri + γvk(i+ `− 1) and q←k+1(i) = γvk(i− 1), depending on the value
of i+ `− 1, which is reached by taking the→ action, we need to consider two cases:

• Case 1: i+ `− 1 6= k. In this case vk(i+ `− 1) is described by either (10.a) or (10.d) when i+ `− 1 is less than, or
greater than k, respectively. In either case we have vk(i+ `− 1) = −γ(k−1)(`m+1)ε = vk(i− 1) and hence:

q→k+1(i) = ri + γvk(i+ `− 1) = ri + γvk(i− 1) < γvk(i− 1) = q←k+1(i)

which gives πk+1(i) =← as desired.

• Case 2: i+ `− 1 = k.

q→k+1(i) = ri + γvk(k) = ri + γ (vk(k + `) + rk − 2ε) {(10.c)}

= γ

k−1∑
j=0

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−j + ε

)
+ rk − 2ε

 {(10.b)}

≤ γ

k−1∑
j=0

γj(`m+1)ε+ rk − 2ε

 {rk−j ≤ 0}

= γ

k−1∑
j=1

(
γj(`m+1)ε− 2γjε

)
− ε

 {rk = −2

k−1∑
j=1

γjε}

< −γε {γj(`m+1)ε− 2γjε < 0}
< γvk(i− 1) {vk(i− 1) = −γ(k−1)(`m+1)ε (10.a)}
= q←k+1(i)

giving πk+1(i) =← as desired.

B: In state k + 1 Looking at the action value function q←k+1 in state k + 1, we observe that:

q←k+1(k + 1) = γvk(k) = γ (rk − 2ε+ vk(k + `)) {(10.c)}
= γrk − 2γε+ γvk(k + `)

= rk+1 + γvk(k + `) {ri+1 = γri − 2γε}
= q→k+1(k + 1)

This means that the algorithm can take πk+1(k + 1) =→ so as to satisfy Lemma 7.

C: In states i = k + 1 + q`+ p We restrict ourselves to the cases when 1 ≤ p < ` and 0 ≤ q ≤ (k − 1)m. Three cases
for the value of q need to be considered:

• Case 1: 0 ≤ q < (k − 1)m− 1. We have:

q→k+1(i) = ri + γvk(k + (q + 1)`+ p)

= ri + γvk(k + q`+ p) {(10.d) independent of q}
< γvk(k + q`+ p) {ri < 0}
= q←k+1(i).

Non-Stationary Approximate Modified Policy Iteration

• Case 2: q = (k − 1)m− 1

q→k+1(i) = ri + γvk(k + (q + 1)`+ p)

= ri + γ0 {(10.e)}

= −2ε
γ − γk+1+q`+p

1− γ

= −2ε

(
γ − γk+q`+p

1− γ
+ γk+q`+p

)
< −γk+q`+pε
= −γk+(k−1)`m−`+pε {q = (k − 1)m− 1}
< −γk+(k−1)`mε = −γ(k−1)(`m+1)+1ε {p− ` < 0}
= γvk(k + q`+ p) {(10.d)}
= q←k+1(i).

• Case 3: q = (k − 1)m

q→k+1(i) = ri + γvk(k + ((k − 1)m+ 1)`+ p)

= ri + γ0 {(10.f)}
= ri + γvk(k + ((k − 1)m)`+ p) {(10.e)}
= ri + γvk(i− 1)

< q←k+1(i). {ri < 0}

D: In states i = k + 1 + (qm+ p+ 1)` In these states, we have:

q←k+1(i) = γvk(k + (qm+ p+ 1)`)

q→k+1(i) = ri + γvk(k + 1 + (qm+ p+ 1)`+ `− 1)

= ri + γvk(k + (qm+ p+ 2)`). (11)

As for the right-hand side of (11) we need to consider two cases:

• Case 1: p+ 1 < m:

In the following, define

xk,q =

k−q−1∑
j=1

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−q−j + ε

)
.

Then,

q→k+1(i) = ri + γvk(k + (qm+ (p+ 1) + 1)`)

= ri + γγq(`m+1)

γ`(p+2) − γ`(m+1)

1− γ`
rk−q +

k−q−1∑
j=1

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−q−j + ε

) {(10.b)}

= ri + γq(`m+1)+1

((
γ`(p+1) − γ`(m+1)

1− γ`
− γ`(p+1)

)
rk−q + xk,q

)
= ri − γ(qm+p+1)`+q+1rk−q + γq(`m+1)+1

(
γ`(p+1) − γ`(m+1)

1− γ`
rk−q + xk,q

)
= ri − γi−k+qrk−q + γvk(k + (qm+ p+ 1)`)− 1[p=0]γ

q(`m+1)+1ε {(10.b)}
≤ ri − γi−k+qrk−q + γvk(k + (qm+ p+ 1)`)

= ri − γi−k+qrk−q + q←k+1(i). (12)

Non-Stationary Approximate Modified Policy Iteration

Now, observe that

γi−k+qrk−q = −2γi−k+q
γ − γk−q

1− γ
ε

= −2
γi−k+q+1 − γi

1− γ
ε

= −2
γ − γ + γi−k+q+1 − γi

1− γ
ε

= −2
γ − γi

1− γ
ε− 2

−γ + γi−k+q+1

1− γ
ε

= ri − ri−k+q+1.

Plugging this back into (12), we get:

q→k+1(i) ≤ ri − ri + ri−k+q+1 + q←k+1(i)

< q←k+1(i). {ri−k+q+1 < 0}

• Case 2: p+ 1 = m:

Using the fact that p+ 1 = m implies γ`(p+1)−γ`(m+1)

1−γ` = γ`m we have:

q→k+1(i) = ri + γvk(k + ((q + 1)m+ 1)`)

= ri + γγ(q+1)(`m+1)

γ` − γ`(m+1)

1− γ`
rk−q−1 + ε+

k−q−2∑
j=1

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−q−j−1 + ε

) {(10.b)}

= ri + γγ(q+1)(`m+1)

k−q−2∑
j=0

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−q−j−1 + ε

)
= ri + γγq(`m+1)

k−q−1∑
j=1

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−q−j + ε

)
= ri + γγq(`m+1)

(γ`(p+1) − γ`(m+1)

1− γ`
− γ`m

)
rk−q +

k−q−1∑
j=1

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−q−j + ε

)
= ri − γq(`m+1)+1γ`mrk−q + γ

(
vk(k + (qm+ p+ 1)`)− 1[p=0]γ

q(`m+1)ε
)

{(10.b)}

≤ ri − γi−k+qrk−q + γvk(k + (qm+ p+ 1)`)

< q←k+1(i),

where we concluded by observing that this is the same result as (12).

E: In state i = k + ((k − 1)m+ 1)`+ 1

q←k+1(i) = γvk(i− 1) = γvk(k + ((k − 1)m+ 1)`)

= γ(k−1)(`m+1)+1

(
γ` − γ`(m+1)

1− γ`
r1 + ε

)
{(10.b) with q = k − 1 and p = 0}

= γ(k−1)(`m+1)+1ε {r1 = 0}
> ri {ri < 0}
= ri + γvk(i+ `− 1) {vk(i+ `+ 1) = 0 (10.f)}
= q→k+1(i).

Non-Stationary Approximate Modified Policy Iteration

F: In states i > k + ((k − 1)m+ 1)`+ 1 Following (10.f) we have vk(i− 1) = vk(i+ `− 1) = 0 and hence

q←k+1(i) = 0 > ri = q→k+1(i).

B.2.2. THE VALUE FUNCTION vk+1

In the following we will show that the value function vk+1 satisfies Lemma 7. To that end we consider the value of
((Tk+1,`)

mTk+1vk)(s0) by analysing the trajectories obtained by first following m times πk,` then πk+1 from various
starting states s0.

Given a starting state s0 and a non stationary policy πk+1,`, we will represent the trajectories as a sequence of triples
(si, ai, r(si, ai))i=0,...,`m arranged in a “trajectory matrix” of ` columns and m rows. Each column corresponds to one of
the policies πk+1, πk, . . . , πk+2−`. In a column labeled by policy πj the entries are of the form (si, πj(si), r(si, πj(si));
this layout makes clear which stationary policy is used to select the action in any particular step in the trajectory. Indeed,
in column πj , we have (si,→, rj) if and only if si = j, otherwise each entry is of the form (si,←, 0). Such a matrix
accounts for the first m applications of the operator Tk+1,`. One addional row of only one triple (si, πk+1(si), rπk+1

(si))
represents the final application of Tk+1. After this triple comes the end state of the trajectory s`m+1.

π4 π3 π2

(10,←, 0) (9,←, 0) (8,←, 0)

(7,←, 0) (6,←, 0) (5,←, 0)

(4,→, r4) (6,←, 0) (5,←, 0)

(4,→, r4) (6,←, 0) (5,←, 0)

(4,→, r4) 6

m = 4 times

` = 3 steps

Figure 7. The trajectory matrix of policy π4,` starting from state 10 with m = 4 and ` = 3.

Example 2. Figure 7 depicts the trajectory matrix of policy π4,` = π4π3π2 with m = 4 and ` = 3. The trajectory starts
from state s0 = 10 and ends in state s`m+1 = 6. The← action is always taken with reward 0 except when in state 4 under
the policy π4. From this matrix we can deduce that, for any value function v:

((T4,`)
mT4v)(10) = γ6r4 + γ9r4 + γ12r4 + γ13v(6)

= γ2`r4 + γ3`r4 + γ4`r4 + γ4`+1v(6)

=
γ2` − γ(m+1)`

1− γ`
r4 + γ`m+1v(6).

With this in hand, we are going to prove each case of Lemma 7 for vk+1.

In states i < k + 1 Following m times πk+1,` and then πk+1 starting from these states consists in taking the← action
`m+ 1 times to eventually finish either in state 1 if i ≤ `m+ 2 with value

vk+1(i) = γ`m+1vk(1) + εk+1(i) = −γ`m+1γ(k−1)(`m+1)ε = −γk(`m+1)ε

or otherwise in state i− `m− 1 < k with value

vk+1(i) = γ`m+1vk(i− `m− 1) + εk+1(i) = −γ`m+1γ(k−1)(`m+1)ε = −γk(`m+1)ε

This matches Equation (10.a) in both cases.

In states i = k + 1 + (qm + p + 1)` Consider the states i = k + 1 + (qm + p + 1)` with q ≥ 0 and 0 ≤ p < m.
Following m times πk+1,` and then πk+1 starting from state i gives the following trajectories:

Non-Stationary Approximate Modified Policy Iteration

• when q = 0, (i.e. i = k + 1 + (p+ 1)`):

πk+1 πk . . . πk−`+2

(k + 1 + (p+ 1)`,←, 0) (k + (p+ 1)`,←, 0) . . . (k + p`+ 2,←, 0)

(k + 1 + p`,←, 0) (k + p`,←, 0) . . . (k + (p− 1)`+ 2,←, 0)

...
...

...
...

(k + 1 + `,←, 0) (k + `,←, 0) . . . (k + 2,←, 0)

(k + 1,→, rk+1) (k + `,←, 0) . . . (k + 2,←, 0)

...
...

...
...

(k + 1,→, rk+1) (k + `,←, 0) . . . (k + 2,←, 0)

(k + 1,→, rk+1) k + `

p+ 1 times

m− p− 1 times

` steps

Using (10.b) with q = p = 0 as our induction hypothesis, this gives

((Tk+1,`)
mTk+1vk) (i) =

m∑
j=p+1

γ`jrk+1 + γ`m+1vk(k + `)

=

m∑
j=p+1

γ`jrk+1 + γ`m+1

γ` − γ`(m+1)

1− γ`
rk + ε+

k−1∑
j=1

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−j + ε

)
=
γ`(p+1) − γ`(m+1)

1− γ`
rk+1 +

k∑
j=1

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−j + ε

)

Accounting for the error term and the fact that i = k + 1 + ` ⇐⇒ p = q = 0, we get

vk+1(i) = ((Tk+1,`)
mTk+1vk) (i) + 1[i=k+1+`]ε

=
γ`(p+1) − γ`(m+1)

1− γ`
rk+1 + 1[p=0]ε+

k∑
j=1

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−j + ε

)

which is (10.b) for k + 1 and q = 0 as desired.

• when 1 ≤ q ≤ k:

In this case we have i − (`m + 1) ≥ k + 1, meaning that k + 1, the first state where the → action would be available
is unreachable (in the sense that the tractory could end in k + 1, but no action will be taken there). Consequently the←
action is taken `m+ 1 times and the system ends in state i− `m− 1 = k + ((q − 1)m+ p+ 1)`. Therefore, using (10.b)
as induction hypothesis and the fact that i 6∈ {k + 1, k + `+ 1} =⇒ εk+1(i) = 0, we have:

vk+1(i) = γ`m+1vk(k + ((q − 1)m+ p+ 1)`) + εk+1(i)

= γq(`m+1)

(
γ`(p+1) − γ`(m+1)

1− γ`
rk+1−q + 1[p=0]ε+

k−q∑
i=1

γi(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk+1−q−k + ε

))
,

which statisfies (10.b) for k + 1.

Non-Stationary Approximate Modified Policy Iteration

In state k + 1 Following m times πk+1,` and then πk+1 starting from k + 1 gives the following trajectory:

πk+1 πk . . . πk−`+2

(k + 1,→, rk+1) (k + `,←, 0) . . . (k + 2,←, 0)

...
...

...
...

(k + 1,→, rk+1) (k + `,←, 0) . . . (k + 2,←, 0)

(k + 1,→, rk+1) k + `

m times

` steps

As a consequence, with (10.c) as induction hypothesis we have:

((Tk+1,`)
mTk+1vk) (k + 1) =

1− γ`(m+1)

1− γ`
rk+1 + γ`m+1vk(k + `)

= rk+1 +
γ` − γ`(m+1)

1− γ`
rk+1 + γ`m+1

γ` − γ`(m+1)

1− γ`
rk + ε+

k−1∑
j=1

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−j + ε

)
= rk+1 +

γ` − γ`(m+1)

1− γ`
rk+1 +

k∑
j=1

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−j+1 + ε

)
= rk+1 + vk+1(k + `+ 1)− ε

Hence,

vk+1(k + 1) = ((Tk+1,`)
mTk+1vk) (k + 1) + εk+1(k + 1)

= vk+1(k + `+ 1) + rk+1 − 2ε,

which matches (10.c).

In states i = k + 1 + q` + p For states i = k + 1 + q` + p with 0 ≤ q ≤ km − 1 and 1 ≤ p < `, the policy πk+1,`

always takes the← action with either one of the following trajectories

• when q ≥ m:

πk+1 πk . . . πk−`+2

(k + 1 + q`+ p,←, 0) (k + q`+ p,←, 0) . . . (k + (q − 1)`+ p+ 2,←, 0)

...
...

...
...

(k + 1 + (q −m+ 1)`+ p,←, 0) (k + q`+ p,←, 0) . . . (k + (q −m)`+ p+ 2,←, 0)

(k + 1 + (q −m)`+ p,←, 0) k + (q −m)`+ p

m times

` steps

As a consequence, with (10.d) as induction hypothesis we have:

vk+1(i) = ((Tk+1,`)
mTk+1vk) (i) = γ`m+1vk(k + (q −m)`+ p) = −γ`m+1γ(k−1)(`m+1)ε = −γk(`m+1)ε

which satisfies (10.d) in this case.

• when q < m:

Non-Stationary Approximate Modified Policy Iteration

Assuming that negative states correspond to state 1, where the action is irrelevant, we have the following trajectory:

πk+1 . . . πk−`+2

(k + 1 + q`+ p,←, 0) . . . (k + (q − 1)`+ p+ 2,←, 0)

...
...

...
(k + 1 + `+ p,←, 0) . . . (k + p+ 2,←, 0)

(k + 1 + p,←, 0) . . . (k − `+ p+ 2,←, 0)

(k + 1− `+ p,←, 0) . . . (k − 2`+ p+ 2,←, 0)

...
...

...
(k + 1− (m− q − 1)`+ p,←, 0) . . . (k − (m− q)`+ p+ 2,←, 0)

(k + 1− (m− q)`+ p,←, 0) k + (q −m)`+ p

q times

m− q times

` steps

In the above trajectory, one can see that only the← action is taken (ignoring state 1). Indeed, since we follow the policies
πk+1πk, . . . , πk−`+2 the→ action may only be taken in states k + 1, k, . . . , k − ` + 2. When state k + 1 is reached, the
selected action is πk−p+1(k+ 1) which is← since p ≥ 1. The same reasonning applies in the next states k, . . . , k− `+ 1,
where p ≥ 1 prevents to use a policy that would select the→ action in those states.

Since p − ` < 0 the trajectory always terminates in a state j < k with value vk(j) = −γ(k−1)(`m−1)ε as for the q ≥ m
case, which allows to conclude that (10.d) also holds in this case.

In states i = k + 1 + km` + p Observe that following m times πk+1,` and then πk+1 once amounts to always take←
actions. Thus, one eventually finishes in state k + (k − 1)m`+ p ≥ k + 1, which, since εk(i) = 0, gives

vk+1(i) = ((Tk+1,`)
mTk+1vk) (i) = γ`m+1vk(k + (k − 1)m`+ p) = −γ`m+10 = 0,

satisfiying (10.e).

In states i > k + 1 + (km + 1)` In these states, the action← is taken `m + 1 times ending up in state j > k + ((k −
1)m+ 1)`, with value vk(j) = 0, from which vk+1(i) = 0 follows as required by (10.f).

