Non-Stationary Approximate Modified Policy Iteration

Supplementary Material for
Non-Stationary Approximate Modified Policy Iteration

A. Proof of Theorem 3

For clarity, we here provide a detailed and complete proof. Throughout this proof we will write Py (resp. Py) for the
transition kernel Py, (resp. P, ) induced by the stationary policy 7y (resp. m.). We will write T}, (resp. T) for the
associated Bellman operator. Similarly, we will write Py , for the transition kernel associated with the non-stationary
policy 7, ¢ and T}, ¢ for its associated Bellman operator.

For k > 0 we define the following quantities:

o by = Tp11vx — Tkt1,0Tk+1vk. This quantity which we will call the residual may be viewed as a non-stationary
analogue of the Bellman residual vy, — Ty vy.

® Sk =V — Ur, , — €. We will call it shiff, as it measures the shift between the value v, , and the estimate vy, before
incurring the error.

o d;, = v, — vy + €. This quantity, called distance thereafter, provides the distance between the k™ value function
(before the error is added) and the optimal value function.

® lj = Vi — Vg, ,. This is the loss of the policy vy, ,. The loss is always non-negative since no policy can have a value
greater than or equal to v,.

The proof is outlined as follows. We first provide a bound on by, which will be used to express both the bounds on s and
dy.. Then, observing that [}, = s, + dj, will allow to express the bound of ||/, ||, stated by Theorem 3. Our arguments
extend those made by Scherrer et al. (2012) in the specific case ¢ = 1.

We will repeatedly use the fact that since policy 71 is greedy with respect to vy, we have
V!, Thy1vg > Trovg. (5
For a non-stationary policy 7, ¢, the induced ¢-step transition kernel is
Pio=PyPr_1- Pr_yq1.
As a consequence, for any function f : S — R, the operator T}, , may be expressed as:
Teof =76 +YPearho1 + V2 Peatho+ -+ Poy17h_oi1 + 7 Pesf

then, for any function g : S — R, we have

Tiof = Theg =7 Pro(f — 9) (6)

and
Tro(f+9) = Trof +7 Pri(g) (7

The following notation will be useful.

Definition 1 (Scherrer et al. (2012)). For a positive integer n, we define P, as the set of discounted transition kernels that
are defined as follows:

1. for any set of n policies {m1,...,mn}, (YPry)(¥Pry) -+ (vPr,,) € Py,
2. foranya € (0,1) and P, P, € P, aP1 + (1 —a)P, € P,

With some abuse of notation, we write I'™ for denoting any element of P,,.
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Example 1 (I'" notation). If we write a transition kernel P as P = a1 + aoITF = T + oI 1F, it should be read
as: “There exists Pi € Py, P, € P;,P3 € P, and Py € Pj1y, such that P = a1 Py + aa PoP3s = o1 Py + an Py

We first provide three lemmas bounding the residual, the shift and the distance, respectively.

Lemma 2 (residual bound). The residual by, satisfies the following bound:
k
b < Z F(£m+1)(k7i)xi + F(Zm+1)kb0
i=1

where

zp = (I = T9Tey.
Proof. We have:
b = Tt 10k — Thy1,eT it 10k

< Tpr1vk — Thg1,0Th—0+ 10k {Ths1ve > T )}

= Tht1Vk — Th1 Tk ovk

= YPit1 (Ti, o) " Tivi—1 + €k — Do (Th,0) " Thvi—1 + €x))

= YPis1 ((Tre) " Tivi—1 — (Th,e) " Tyv—1 + (I — ¥ Pro)er) {(D}
=vPi1 ((VePk,e)m (Tkvi—1 — Tg e Trvi—1) + (I — '}/Pk,é)fk) {©)}
= Pei1 (V' Pro)™bo—1 + (I =7 Pro)er) -

Which can be written as

b <T(Tbp_y + (I —Te) = T by 4 2y,

Then, by induction:

k—1 k
b < Z F(€m+1)ixk7i + P(@m-‘rl)kbo _ Z I\(f’m-‘rl)(k—i)xi =+ F(@m-‘rl)k}bo.
1=0 i=1

Lemma 3 (distance bound). The distance dy, satisfies the following bound:

mi—1 k
dy, < Z PO g+ Z D'y + 2,
i=1 j=0 i=1
where
yr = —Leg
and
mk—1

a=»  TFHhp + Ty,
1=0
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Proof. First expand dy:

d = vy —vg + €
— (Th0)" Thvg—1
= 0. — Thvp—1 + Thvi—1 — T o Thvi—1 + Tr o Thvi—1 — (Tho)* Thv—1

+ (Tho0)*Tivi—1 — - — (Thot) ™ Thvi—1 + (Theo) ™ Thvi—1 — (The,o) " Tivr—1
m—1
=y — Thvp—1 + Z (Tr0) Trvi—1 — (Ti o) Thv—1
i=0
m—1
=T, — Tpvp—1 + Z (Y Pio)' (Trvg—1 — Th e Thvg—1) {©6)}
i=0
m—1
< Ty, —Tovp_1 + Z (’yzpkj)zbk_l {Tkvk—l > Tyvp—1 (5)}
i=0
m—1
=P, (v —vp—1) + Y (Y Pre) i1 {©)}
i=0
m—1
_ ¢ i _
= yPidp—1 — yPiep—1 + Z (V" Pr,e) br—1 {dr = vs — vk + €}
i=0
m—1
=D+ yu-1+ Y T,
i=0

Then, by induction
k—1 m—1
dp <Y T <yj + ) F‘P@) + T dj.
=0 p=0

Using the bound on by, from Lemma 2 we get:

k—1 m—1
dy < Fk 1—j5 <yj + Z Fép (ZF (m+1)(5— 7')1‘ +F(Zm+1)jb >> +de0
7=0 p=0 i=1
k—1m-—1 j k—1m—1 k
_ Zl—\k—l—j—i-ép—&-(ém—i-l)(j—i)xi I Z Z Ph= 1=+ (Em+1)ig 4 hg, 4 Zri_lyk—
j=0 p=0 i=1 j=0 p=0 i=1

First we have:

k—1m—-1 7 k—1k—1m-—1
§ § Fk717j+2p+(5m+1)(jfz)zi — § 2 § Fk71+5(p+m])72(5m+1)z1
=0 p=0 i=1 i=1 j=i p=0

k—1m(k—i)—1
_ Z Z Fk71+€(]+m1)71(5m+1)xi
i=1 =0

k—1m(k—i)—1

:Z Z plith—i=1,.

i=1 ;=0
k—1mi—1

= Z Z Fej—H_ll‘k_i.

i=1 j=0
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Second we have:

k—1m—1 k—1m—1 mk—1
Z Z Fk—l—j+€p+(£m+1)jb0 _ Z Z Fk—1+€(p+mj)b0 _ Z =14ty — o — TFd,.
=0 p=0 =0 p=0 i=0
Hence
k mi—1 k
dy < Z Z T 1e , + Zri_lyk—i + 2.
i=1 j=0 i=1

Lemma 4 (shift bound). The shift sy, is bounded by:

oo

k-1
s <D D T e b,

i=1 j=mi

where
e .
wy= 3 Ty,
j=mk
Proof. Expanding s;, we obtain:
Sk = Vg — ’Uﬂ'k-j — €k
= (Th,0)" Trvr—1 — Vry
= (Th,0)" Tivi—1 — (Th,0) T e TV —1 Vf: vn, = (The)* f}
= (Y'Peo)™ (VPrs) (Thvg—1 — ThoTrvr—1)
=0
_ Fﬁm Z ]_—\Zjbk71

J=0
o0
= T,
3=0

Plugging the bound on by of Lemma 2 we get:

oo k—1
sp < ZFEmHj (Z P(ém-i—l)(k—l—i)l,i + F(@m-i—l)(k—l)bo)

j=0 =1
oo k—1 o
— Z Z Flm+fj+(lm+1)(k—1—i)xi + Z F27n+fj+(fm+1)(k—l)b0
j=0i=1 j=0
oo k—1 9]
_ Z Z Fé(j+mi)+iflxk_i + Z Fe(j+mk)+k71b0
§j=0 i=1 §j=0
k—1 oo 00
— Z Z Féj-H_lS(}k,i + Z I—\Zj+k—1b0
i=1 j=msi j=mk
k—1 oo
= Z Fej+i71xk_i + wg.
I=m
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Lemma 5 (loss bound). The loss lj, is bounded by:

k—1
ST [T =T~ 1 | e+,

where
mk—1 00
Me =2k +wp =y TF1H0, £ TRy + Z D=1y =y T 1py 4 Thdy.
=0 j=mk =0

Proof. Using Lemmas 3 and 4, we have:

ly = s +dy,
k—1 oo k—1mi—1 k
< Z Z L9 e + Z Z i+i=te, .+ Zri_lykﬂ' + 2 + wi
i=1 j=m1 =1 j5=0 i=1
k—1 oo

—ZZF@H Yag ri'zrl YWk—i + .

=1 j=0
Plugging back the values of x; and y;, and using the fact that ¢y = 0 we obtain:

o0

D9+ =4I —TTe_ Z+Zrz Y—T)ep—i — TFeg + i
0

k—1
lk<z

=1 j=
k—1 o)
= S TYUTI =T epmi — Dy | +mi
i=1 \j=0
k—

= ZI‘ZJI Y — 1| enei + .

We now provide a bound of 7, in terms of dy:

Lemma 6.

me <TF <Z ' —1)+ I) do.

=0

Proof. First recall that

I Z F2i+k71bo + deo
i=0
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In order to bound 7, in terms of dy only, we express by in terms of dj:

by = Trvo — (T1) Thvg
= Tlvo — (T1)2’U0 + (Tl)QUO — e — (Tl)Z'UO + (Tl)lvo — (T1)£+1UO

4
= Z(7P1)i(vo — Thvo)
=1
2 .
= Z(’Ypl)l(vo — Uy + T*U* - T*UO + T*UO - Tl'UO)
=1
e .
<> (vP1)(vo — ve + Tuvs — Thvo) {Tyvo > Tovg (5)}
=1

¢
= Z(Vpl)i(’yp* — I)do.

Consequently, we have:

oo 4
N < ZF&—HC ! Z(’Vpl) (YP, — I)do +T"dy

i=0 j=1
e3¢} —1
= Z plitk Z Py (vP, — I)dy + T*dy
. o
0o -1
=TF (Y Ty VI —1)+1 | do
i=0 =0
<Z ' —1)+ 1) do
1=0
O
We now conclude the proof of Theorem 3. Taking the absolute value in Lemma 6 we obtain:
k| <T* (Z YT+ 1)+ I) |dol =2 " T"|d|
i=0 i=k
Since [, is non-negative, from Lemma 5 we have:
[e%s) k—1 s} e’}
] < Zrz S TOI AT 4T fer—il + el =2 T T +2) Tldy|. (8)
j=0 i=1 7=0 i=k

Since [|v||,, = max —vp and Iy = v, — vr, ,, We can take the maximum in (8) and conclude that:

2(y =" 7
(R R

[0 = O[] o < lox = voll
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B. Proof of Theorem 4

We shall prove the following result.

Lemma 7. Consider NS-AMPI with parameters m > 0 and { > 1 applied on the problem of Figure 1, starting from
vy = 0 and all initial policies mg, T_1,...,T_¢42 equal to T.. Assume that at each iteration k, the following error terms
are applied, for some € > 0:
—€ ifi=k
Vi, ex(i) =4 € ifi=k+/¢
0  otherwise

Then NS-AMPI can® generate a sequence of value-policy pairs that is described below.

For all iterations k > 1, the policy my, takes the optimal action in all states but k, that is

— ifi=k

Vi 2, m(i) = { < otherwise ®)
For all iterations k > 1, the value function vy, satisfies the following equations:
e Foralli < k:
v (i) = —yF—DEm+D (10.2)
e Forallisuchthatk <i<k+ ((k—1)m+1)¢:
- Fori=k+ (gm+p+1)lwithq>0and0<p<m(ie.i=k+nln>1):
L(p+1) _ ~f(m+1) k—g-1 0 b(m+1)
v () = 'yq(e +1) 11—t Tk—q T Lp=oj€ + gZ:; ’y](e +1) ( 1—~¢ Tk—q—j + 6)
(10.b)
- Fori=k:
vg(k) = vi(k+€) + 1 — 2¢ (10.c)
—Fori=k+@+pwith0<qg<(k—1)m—1landl <p<¥:
v (i) = —AFmDEm+D (10.d)
— Otherwise, i.e. wheni=k+ (k—1)ml+pwithl < p < {:
ve(i) =0 (10.e)
o Foralli >k+ ((k—1)m+1)¢
vp(1) =0 (10.1)

The relative complexity of the different expressions of vy in Lemma 7 is due to the presence of nested periodic patterns in
the shape of the value function along the state space and the horizon. Figures 4 and 5 give the shape of the value function
for different values of ¢ and m, exhibiting the periodic patterns. The proof of Lemma 7 is done by recurrence on k.

B.1.Basecase k =1

Since vg = 0, m; is the optimal policy that takes < in all states as desired. Hence, (T} ;)" Tivo = 0 in all states.
Accounting for the errors €; we have v1 = (11 ¢)"T v + €1 = €1. As can be seen on Figures 4 and 5, when k = 1 we
only need to consider equations (10.b), (10.c), (10.e) and (10.f) since the others apply to an empty set of states.

First, we have
1)1(1 +€) = 61(1 +€) = €

8We write here “can” since at each iteration, several policies will be greedy with respect to the current value.
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Figure 4. Shape of the value function with = 2 and m = 3.
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Figure 5. Shape of the value function with £ = 3 and m = 2.
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which is (10.b) when ¢ = (k — 1) = 0 and p = 0.

Second, we have
v(l)=e(1)=—e=€e4+0—-2e=v1(1+€)+r; — 2

which corresponds to (10.c).

Third, for 1 < p < ¢ we have
vi(l+p)=e(l+p)=0
corresponding to (10.e).

Finally, for all the remaining states ¢ > 1 + ¢, we have

corresponding to (10.f).

The base case is now proved.

B.2. Induction Step

We assume that Lemma 7 holds for some fixed k > 1, we now show that it also holds for k£ + 1.

B.2.1. THE POLICY T4

We begin by showing that the policy 741 is greedy with respect to vg. Since there is no choice in state 1 is —, we turn
our attention to the other states. There are many cases to consider, each one of them corresponding to one or more states.
These cases, labelled from A through F, are summarized as follows, depending on the state ::

A 1<i<k+1

B)i=k+1

O i=k+14+gl+pwithl<p<land0<g<(k—1)m
D)i=k+1+(gn+p+1)fwith0<p<mand0<g< k-1
(B) i=k+1+((k—1)m+1)¢

(F) i >k+ 14 ((k—1m+1)¢

Figure 6 depicts how those cases cover the whole state space.

E+1 E4+1+((k—1)ym+1)¢
ko E+1+¢ k41420 k+1+(k—1)me i
k (-1 (-1 (-1 (-1

Figure 6. Policy cases, each state is represented by a letter corresponding to a case of the policy mi1. Starting from 1, state number
increase from left to right.

For all states 7 > 1 in each of the above cases, we consider the action-value functions q;’ (i) (resp. g; ,(4)) of action —
(resp. <—) defined as:

G (i) =ri+yoe(i—1)  and g, (i) = yur(i +£—1).
In case i = k + 1 (B) we will show that ¢;7, (i) = ¢ ,(i) meaning that a policy 71 greedy for vj, may be either
Tk41(k +1) = — or m1(k + 1) = <. In all other cases we show that ¢, , (¢) < gj7(¢) which implies that for those
i #k+1, mpy1(i) = <, as required by Lemma 7.
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A:Instates1 <i <k+1 Wehave g7 (i) =7 +yop(i + £ — 1) and g7, (i) = yvx(i — 1), depending on the value
of i + ¢ — 1, which is reached by taking the — action, we need to consider two cases:

e Case I: i + ¢ — 1 # k. In this case vg (i + £ — 1) is described by either (10.a) or (10.d) when ¢ + ¢ — 1 is less than, or
greater than k, respectively. In either case we have vy, (i + £ — 1) = —y*=DEm+1D ¢ — 4 ( — 1) and hence:

Qo1 () =1 +yvp(i + 0= 1) =i +yor(i — 1) <y (i — 1) = g5 (9)
which gives myy1(i) = « as desired.

e Case2:i+{¢—1=k.

Qo1 (1) = i +yo(k) = ri + 7 (vi(k +£) + 11, — 2¢) {(10.0)}

k-1 ¢ _ . e(m+1)

= ZVJ(ZmH) (7 1 1 ; Tp—j + e) + 71— 2 {(10.b)}
§=0
k=1

<~ Zvj(gmﬂ)e + 71 — 2€ {re—; <0}
§=0
k=1 ‘ k=1

= Z (,yg(eerl)6 — 27%) —€ {ri=—2 Z,ygg}
j=1 j=1

< —ve {71Um+De _ 9~47¢ < 0}

< (i —1) {op(i — 1) = —4F=DEmFD ¢ (10.2)}

= iy (1)

giving mx41(7) = < as desired.

B: In state k + 1 Looking at the action value function ¢;_ , in state k£ + 1, we observe that:

Gip1(k+1) = yop(k) = v (1 — 26 + v (k + £)) {(10.0)}
= yrg — 2ve + yug(k + )
=11+ yvr(k +£) {riv1 = yri — 2ve}

= qp(k+1)

This means that the algorithm can take 7,1 (k + 1) = — so as to satisfy Lemma 7.

C:Instates: = k+ 1+ gl +p We restrict ourselves to the cases when 1 < p < £and 0 < g < (k — 1)m. Three cases
for the value of ¢ need to be considered:

e Case 1: 0 < g < (k—1)m — 1. We have:

Qi1 (i) = ri +yvr(k + (¢ + 1)+ p)
=r; +yup(k+ ¢l +p) {(10.d) independent of ¢}
< ~ug(k+ql+p) {r; <0}

= Gt (1)



Non-Stationary Approximate Modified Policy Iteration

e Case2: q=(k—1)m—1
Qg1 (1) =i +yoe(k + (¢ + 1) + p)
Y=
€
L=y
k+qt+
_—y (M“’ ﬂmqeﬂ)

1—n
< _,yk-l-qf-&-p6

k+1+ql+p
=-2

_,Yk+(k71)mel+p€

< _,yk:—i-(k—l)ém6 — _,y(k—l)(E'rn—i-l)—i-l6

= yur(k + gl +p)

= qjop1 (4).

e Case3:qg=(k—1)m
o1 (1) = ri +yvi(k+ (k= 1)m + 1) + p)
=r;i+90
=ri+yve(k + ((k — 1)m){ + p)
=7 +’71}k(i — 1)
< Gy (8)-
D: Instatesi = k+ 1+ (gm + p+ 1)¢ In these states, we have:

QGey1 (1) = yor(k + (gm +p + 1)0)

{(10.¢)}

{g=(k—-1)m—1}
{p—¥ <0}
{(10.d)}

{(10.0}
{(100)}

{7‘2‘ < 0}

Qo1 (1) = ri +yop(k+ 14 (gm+p+ 1)+ £ —1)

=r; +yup(k+ (gm + p + 2)¢).

As for the right-hand side of (11) we need to consider two cases:
e Case l: p+1 < m:

In the following, define
,Yj(éerl) <’YZ - ’Ye(mﬂ)

1—~f

k—q—1
Th,q =

J=1
Then,
Qo1 (1) =i +yvp(k + (gm+ (p+ 1) + 1)¢)

,-yf(erQ) — fyg(m“l’l)
1—~f

q(fm+1)

=71, +7v
j=1

L(p+1) _ Al(m+1)
ol £ B 7z<p+1>> re_o + xm)
L(p+1) _ 7€(m+1)

1—~f

=+ ,yq(€m+1)+1 <<

=y — AlamtptDitatl,, | a(tmt )1 (7

1—x

< = TR+ o (k + (gm+p + 1)0)
q

=r; — ’Yi_Hqufq + g1 (7).

k—q-1 0 0(m+1)
gt 3 e (V“Y7

Th—q—j T+ e) .

Th—q—j T 6)

Tk—q t xkﬂ)

=1 — My (kA (gmt p 4 1)E) — Tpe gy @D

{(10.b)}

{(10.0)}

Y

(12)
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Now, observe that

) ) — ~yk—a
szmqu_q _ 72717k+q7 : j c
~
_ _2,}11—k+q+1 _ ,71,6
I—x
P ke B ke Al
= - €
I—v
i _ i—k4q+1
_ _2’}/ Y c—9 v+ ¢
I—x L—n
=Ti = Ti—k+q+1-
Plugging this back into (12), we get:
Qi1 (1) <75 — 1 4 Tibgqr1 + Qg (0)
< Gy (9)- {ri—ktqr1 <0}
o Case2: p+ 1 =mu
Using the fact that p + 1 = m implies % = 7™ we have:
Qo1 (1) = ri +yop(k + ((¢ + 1)m + 1))
0 b(m—+1) k—q—-2 0 b(m+1)
m Y i j(bm Y Y
=7r; + ’Y')/(q-i_l)( +1) er—q—l + e+ ; ryj( +1) (]__,y@’rk_q_j_l =+ 6) {(IOb)}
k—q-2 ¢ £(m+1
— 1; 4 yylatD(Emt1) ~Ieme+1) L()rk_ o i+e
. 1 _ ,yf q—7
7=0
k—g-1 ‘ £(m+1)
— (¢m+1) j(em+1) (70 .
£(p+1) _ ~f(m+1) k—g—1 ¢ f(m+1)
o (em+1) gl Y Y j(em+1) (=7 .
=r;i+777 ( T 'ym)rkq-i- JZ:; A ( T Th—q—j T €
=y — lEmADFL by 4y (vk(k +(gm+p+1)¢) — 11[1,:0]7‘1“””1)6) {(10.b)}
<1 =y T g + ok + (gm+ p+1)0)

< q;c_-‘,-l (Z)a
where we concluded by observing that this is the same result as (12).
E:Instatei =k + (E—1)m+ 1) +1

G (1) = yor(i = 1) = yue(k + ((k = )m + 1))

,yl _ ,yf(m+1)
= yk=D(Em+1)+1 <1"T1 + e) {(10.b) with ¢ = k — 1 and p = 0}
— A1
— (kD) mt )1 {r = 0}
> {r: <0}
=1 +yv(i+0-1) {op(i+£+1) =0 (10.6)}

= C,Ik_jrl(i)-
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F:Instates: > k+ ((k — 1)m + 1) +1 Following (10.f) we have v (i — 1) = vi (i + £ — 1) = 0 and hence
G (1) = 0> 73 = gy (0).

B.2.2. THE VALUE FUNCTION g1

In the following we will show that the value function vy satisfies Lemma 7. To that end we consider the value of
((Th+1,0)"Trk+1vk)(s0) by analysing the trajectories obtained by first following m times 7 ¢ then 741 from various
starting states sg.

Given a starting state sp and a non stationary policy 71, we will represent the trajectories as a sequence of triples
(Si,ai,7(S4i5@i))i=o0,....em arranged in a “trajectory matrix” of £ columns and m rows. Each column corresponds to one of
the policies Tjq1, Tk, . . ., Tht2—¢. In a column labeled by policy 7; the entries are of the form (s;,7;(s;), (s, m;(8:))s
this layout makes clear which stationary policy is used to select the action in any particular step in the trajectory. Indeed,
in column 7;, we have (s;, —, ;) if and only if s; = j, otherwise each entry is of the form (s;, +—,0). Such a matrix
accounts for the first m applications of the operator 7% 11 ¢. One addional row of only one triple (s;, T 41(8:), Ty, (53))
represents the final application of T 1. After this triple comes the end state of the trajectory Sg.,+1.

{ = 3 steps
T4 7;3 T
(10,-,0) (9,+,0) (8,+,0)
) (7,+-,0) (6,<,0) (5,+,0)
m=AUmes) ) (6,4,0)  (5,4,0)
(4,—,74) (6,<-,0) (5,+,0)
(4,—,74)  [6]

Figure 7. The trajectory matrix of policy 74 ¢ starting from state 10 with m = 4 and ¢ = 3.

Example 2. Figure 7 depicts the trajectory matrix of policy 74 ¢ = mymsma with m = 4 and { = 3. The trajectory starts
from state so = 10 and ends in state Sy, +1 = 6. The < action is always taken with reward 0 except when in state 4 under
the policy m4. From this matrix we can deduce that, for any value function v:

((Ty,0)™Ty0)(10) = vOra + v'rs + 7214 +v"30(6)

— ’}/%7”4 T 73ZT4 +’}/4£’I"4 + ’}/4£+1U(6)

20 (m+1)e
" Y m+1
= ()

With this in hand, we are going to prove each case of Lemma 7 for vy 1.

In states i < k + 1 Following m times 71, and then 7 starting from these states consists in taking the < action
¢m + 1 times to eventually finish either in state 1 if 7 < ¢m + 2 with value

U1 () = 7 0 (1) + s (i) = —y Iy ETDERT e = _k(EmED e
or otherwise in state ¢ — ¢m — 1 < k with value
U1 (1) = 7 o (i — 0m — 1) + g1 (3) = —y Ty DERTD e — _ k(EmrD e
This matches Equation (10.a) in both cases.

In states i = k+ 1+ (¢gm + p+ 1)¢ Consider the states i = k+ 1+ (gm +p+ 1) withg > 0and 0 < p < m.
Following m times 71 . and then 7, starting from state ¢ gives the following trajectories:
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e wheng=0,G(e i=k+1+ (p+1)0):

{ steps
Tk+1 Tk ) Tk—£+2
(k+1+@(@+1l+,0) (k+(p+1)4,+,0) ... (k4 pl +2,4,0)
(k4+1+pl,+,0) (k+pl,«<,0) ... (k+(p—-1)0+2,+,0)
p+ 1 times {
(k+1+.€,e,0) (k+€‘,e,0) (k+2.,e,0)
(k+1,—=,7%11) (k+¢,<,0) (k+2,+,0)
m — p — 1 times { : : : :
(k+1,—,7k41) (k+4£,<,0) (k+2,<,0)

(k+1vﬁ>7rk+l)

Using (10.b) with ¢ = p = 0 as our induction hypothesis, this gives

(Ter1,0)" Trprv) () = Y ¥ Irepn + 9" ok + 0)

Jj=p+1
m _ 0 f(m+1) k-1 0 f(m+1)
= > AT b ek Yy (711@7%—]‘ + 6)
i=pH1 7 j=1 7
£(p+1) _ Al(m+1) k £ _ l(m4+1)
_ 7 8l j(em+1) (7 ‘
- T +;7j " ( 11 Tk—y+€)

Accounting for the error term and the fact thatt =k + 14+ ¢ <= p = q = 0, we get

Uk1(8) = (Tha1,0) " Thrvk) (1) + Lpmpg140€

£(p+1) _ Af(m+1) ko 0 b(mA+1)
= 1-— ::E P+ Lpmoje 377 (7 1 176 —Tk—j + 6)

Jj=1

which is (10.b) for £ 4+ 1 and ¢ = 0 as desired.
e whenl < g < k:

In this case we have ¢ — (ém + 1) > k + 1, meaning that k& + 1, the first state where the — action would be available
is unreachable (in the sense that the tractory could end in k& + 1, but no action will be taken there). Consequently the <
action is taken m + 1 times and the system ends in state i — fm — 1 = k + ((¢ — 1)m + p + 1)¢. Therefore, using (10.b)
as induction hypothesis and the fact that i ¢ {k + 1,k + £+ 1} = e€,41(i) = 0, we have:

k1 (1) = "ok + (g — )m + p + 1)0) + €x11(0)

0(p+1) _ Ab(m—+1) k—q ¢ 0(m+1)
= Ha(tm+1) ( T Tr+1—q + Lpp=o)€ + Z,y (em+1) <1—’y€rk+1qk + 6>> ,
i=1

which statisfies (10.b) for k + 1.
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In state k +-1 Following m times 711 ¢ and then 7, starting from k + 1 gives the following trajectory:

{ steps
Thk+1 Tk i S Tk—0+42
(k+1,—=,7m41) (BK+£,<,0) ... (kE+2,,0)
m times : : : :
(k+1,—,7m41) (K+£,<-,0) ... (k+2,,0)

(k+1,—,741)

As a consequence, with (10.c) as induction hypothesis we have:

1 — A4+ tmt1
(Tht1,0) " Thervr) (k+1) = 1_77(7’]@+1 + 4T ok (k 4+ £)
0 0(m+1) £ 0(m—+1) k-1 £ _ o 0(m—+1)
_ Y tmt1 [V T i(em+1) (V7 )
S ez G R e v LRSS DU (s e A
0 0(m+1) k £ _ A f(mA+1)
_ T j(em+1) (VY — 7 ,
=Tg41 + 1= ’75 Te+1 + E o < - ’ye Tk—jt+1 + 6)

j=1
=71 FOpp1(E+L+1) —€

Hence,

Vg1 (B +1) = (Ths1,0) " Thor1vr) (K + 1) + €1 (E+ 1)
= ’Uk+1(k + 0+ 1) + Tk41 — 26,

which matches (10.c).

Instates¢ =k +1+¢gl+p Forstatesi =k + 14+ gl +pwith0 < ¢ < km —1and1 < p < ¢, the policy mpy1,¢
always takes the <— action with either one of the following trajectories

e when g > m:

¢ steps
Tk4+1 Tk Tk—0+42
(k+1+ql+p,<+,0) (k+ql+p,+,0) ... (k+(q—1f+p+2,+,0)

m times : : : :
k+1+(@—m+Dl+p,«,0) (k+gl+p,«,0) ... (k+(qg—m)l+p+2,+,0)
(k+14(g—m)+p,<,0) [k+(g—m)+p]

As a consequence, with (10.d) as induction hypothesis we have:
Uk1(8) = (Tip1,0) " Trrvw) (i) = 7" o (k + (g = m)E+ p) = =y HIEDEmTD e = b+l

which satisfies (10.d) in this case.

e when g < m:
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Assuming that negative states correspond to state 1, where the action is irrelevant, we have the following trajectory:

{ steps
Tk+1 Tk—0+42
(k+1+gl+p,+,0) oo (k+(@=1Dl+p+2,+,0)
q times < : : :
(k+1+£0+p,+,0) (k+p+2,+,0)
(k+1+p,+,0) (k—C+p+2,<,0)
(k+1—4¢+p,<,0) (k—20+p+2,<,0)
m — q times <
(k+1—(m—-—qgq—1)l+p,«<,0) ... (k—(m—q)l+p+2,+<,0)

(k+1— (m — )t +p,+,0) b+ (g —m)l +p]

In the above trajectory, one can see that only the < action is taken (ignoring state 1). Indeed, since we follow the policies
Tk+1Tks - - - » Tk—¢+2 the — action may only be taken in states k + 1, k, ...,k — £ + 2. When state k + 1 is reached, the
selected action is 7y _p1(k + 1) which is < since p > 1. The same reasonning applies in the next states &, ...,k —{+1,
where p > 1 prevents to use a policy that would select the — action in those states.

Since p — ¢ < 0 the trajectory always terminates in a state j < k with value vy (j) = —~(k=D)(Em=1)¢ a5 for the ¢ > m
case, which allows to conclude that (10.d) also holds in this case.

In states i = k 4+ 1+ kml + p Observe that following m times 71 ¢ and then 7;; once amounts to always take <—
actions. Thus, one eventually finishes in state k + (k — 1)mf 4+ p > k + 1, which, since ¢ (i) = 0, gives

Ok1() = (Tos1,0) " Thgrvr) (i) = 7" o (k + (k — Dyml + p) = —"" 10 =0,

satisfiying (10.e).

In states i > k+ 1+ (km + 1)¢ In these states, the action < is taken m + 1 times ending up in state j > k + ((k —
1)m + 1)¢, with value v (j) = 0, from which vg1(¢) = 0 follows as required by (10.f).



