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Abstract

Recently, hashing based approximate nearest
neighbors search has attracted much attention.
Extensive centralized hashing algorithms have
been proposed and achieved promising perfor-
mance. However, due to the large scale of many
applications, the data is often stored or even col-
lected in a distributed manner. Learning hash
functions by aggregating all the data into a fusion
center is infeasible because of the prohibitively
expensive communication and computation over-
head. In this paper, we develop a novel hashing
model to learn hash functions in a distributed set-
ting. We cast a centralized hashing model as a
set of subproblems with consensus constraints.
We find these subproblems can be analytically
solved in parallel on the distributed compute n-
odes. Since no training data is transmitted across
the nodes in the learning process, the communi-
cation cost of our model is independent to the da-
ta size. Extensive experiments on several large
scale datasets containing up to 100 million sam-
ples demonstrate the efficacy of our method.

1. Introduction

Large scale similarity search is a fundamental building
block in many machine learning applications such as clus-
tering, classification and matching (Strecha et al., 2012;
Cheng et al., 2014). Traditional nearest neighbor search
methods, such as exhaustive search and Kd-tree, become
infeasible when the data is huge in size and high in di-
mensionality. Recently, hashing based approximate near-
est neighbor (ANN) search has attracted much attention.
Hashing methods encode high dimensional data as com-
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pact binary codes so that the distance between two points
can be approximated by Hamming distance between their
codes. This enables large efficiency gains in both storage
and computation speed for similarity search.

Existing hashing approaches can be roughly catego-
rized into data-independent and data-dependent schemes.
Early works, such as locality sensitive hashing (LSH)
(Indyk & Motwani, 1998; Charikar, 2002) and its vari-
ants (Kulis & Grauman, 2009; Datar et al., 2004), con-
struct hash functions based on random projections without
considering the input data. More recent works focus on de-
veloping data-dependent techniques to learn hash functions
by considering the structure of data or side information.
Representative approaches include anchor graph hash-
ing (AGH) (Liu et al., 2011), iterative quantization (ITQ)
(Gong et al., 2013), spherical hashing (SpH) (Heo et al.,
2012), k-means Hashing (KMH) (Heetal., 2013) and
(Liu et al., 2012; Lin et al., 2013; 2014; Leng et al., 2015).

Most existing hashing algorithms are designed for the cen-
tralized setting, or in other words, are single machine ap-
proaches. However, because more and more large scale
datasets have emerged in real-world applications, the da-
ta is often distributed across different locations, such as
distributed databases (Corbett et al., 2013), images/videos
over the networks, etc. Furthermore, in some applications,
the data is inherently distributed. For example, in mobile
surveillance (Greenhill & Venkatesh, 2007) and sensor net-
works (Howard et al., 2002; Liang et al., 2014), the data is
collected at distributed sites. In such contexts, in order to
get unbiased binary codes for the data, the hash functions
should be learned based on the total data. One intuitive way
is gathering all data together at a fusion center before train-
ing. But it is not a feasible option because of the impracti-
cal communication overhead. Besides, directly training on
large scale data is often prohibitively expensive in compu-
tation, both time and space, which makes it further infeasi-
ble for practical applications. As a consequence it has be-
come of central importance to develop hashing algorithms
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which are effective in the distritbuted setting. However, to
our knowledge, this critical and challenging problem was
rarely discussed in the literature.

This paper proposes a novel hashing method for data which
is distributed across different nodes whose communica-
tion is restricted to the edges of an arbitrary network (e.g.
Fig.1). Unlike the conventional centralized methods which
require gathering the distributed data together to learn com-
mon hash functions, our method learns such hash functions
in a distributed manner, where each node implements the
local computation on its local data, and only exchanges
the temporarily learned hash functions with its neighbor-
ing nodes. To this end, we cast a centralized hashing model
as a set of decentralized subproblems with consensus con-
straints and ADMM (Hestenes, 1969; Powell, 1967). We
show how these subproblems can be efficiently solved with
closed-form solutions in parallel. At last, all the nodes ob-
tain consistent hash functions learned from the distributed
data. The main contributions of this paper can be summa-
rized as follows:

* We raise a challenging yet rarely discussed problem in
hashing, i.e., hashing for distributed data. This issue is
essential for the promotion of hashing in real-world large
scale retrieval systems.

* We propose a novel approach to learn hash functions in
the distributed setting. Since there is no exchange of
training data across the nodes in the learning process, the
communication cost of our method is small. Additional-
ly, our method can adapt to arbitrary network topology.

* We present extensive experimental evaluations on sever-
al large scale image datasets containing up to 100 million
samples in a distributed setting. Experimental results ver-
ify the proposed method can advance the state-of-the-art
both in scale and in accuracy.

2. Preliminary

Vector quantization is a widely used technique in ANN
search. A variety of ANN methods, such as iterative quan-
tization (ITQ) (Gong et al.,, 2013), product quantization
(Jegou et al., 2011), Cartesian k-means (Norouzi & Fleet,
2013) can be formulated within a unified framework with
minimizing quantization distortion as objective (Ge et al.,
2014). In vector quantization, a quantizer maps a vector
x € R9 to a codeword ¢ in a finite codebook. The quanti-
zation distortion of a quantizer is defined as:

D Ix— el

where ¢(x) is the codeword appointed to vector x. If no
constraint is imposed on the codebook, minimizing this
distortion leads to the classical k-means clustering. As an-
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Figure 1. A randomly generated network with 10 nodes. Such a
network can be modeled with an undirected and connected graph.

other example, if the codewords are restricted to be tak-
en from the vertexes of a rotating hypercube, minimizing
the distortion leads to the well-known hashing method ITQ
(Gong et al., 2013).

In this work, inspired by (Norouzi & Fleet, 2013), we re-
strict the codeword to be an additive combination of the
columns of a dictionary matrix C' € Raxr, Formally, let
b(x) be the r-bit binary hashing code of x, then the corre-
sponding assigned codeword is C'b(x). In order to make
the optimization tractable, the r columns of dictionary C'
are constrained to be orthonormal, i.e., CTC = I,.. Taken
together with these constraints, minimizing the distortion
leads to the objective

: o 2
gin 3 - Ob(o)]
st. cTc=1, (1

This problem can be efficiently solved via alternative opti-
mization in a centralized setting. It is worthy noting that the
objective (1) is closely related to ITQ (Gong et al., 2013)
but with intrinsic differences. In ITQ, the authors divid-
ed the learning process into two stages: (a) reduce the di-
mension of data using PCA to r dimensions, and (b) find
an optimal rotation for the data in the projected space to
minimize the quantization loss. In contrast, although with
orthonormal columns, the matrix C' is not squared in (1),
which enables us to merge the two stages of ITQ.

3. Distributed Hashing

In this section, we present a distributed hashing model
to learn hash functions in a decentralized scenario. In
our setting, the data is distributed across a set of P n-
odes in a network (e.g. Fig.1). On the i-th node, there
is a local set of n; data points, denoted in matrix form as
X; € R¥™ whose columns are data points. The glob-
al data X = Uil X; is then a concatenation of the local
data matrix, i.e. X = [X1, Xs,..., Xp]. Without loss of
generality, we assume that the data points are centered to
have zero mean. Our goal is to learn binary codes for all
the data points. We use B; € {—1,1}"*" to denote the
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code matrix of data points in the ¢-th node, where r is the
code size. B = [B1, Ba, ..., Bp] denotes the global code
matrix. tr(-) denotes the trace of a matrix. I, is an identity
matrix of size r x r.

When the data is distributed across the P nodes in an arbi-
trary network, the objective in (1) can be rewritten as:

p
i X —CBJ3% = X,; — CB;||?
min [|X — CBF ;II i — CBi|%

st.  CTC =1,,B; € {—1,1}*" )

This can be optimized by alternating between binary cod-
ing of the data, i.e., updating B;’s with C' fixed, and dictio-
nary update to fit the data, i.e., updating C' with B;’s fixed.
In the former, fixing C, with simple mathematical deriva-
tion, one can show that

T
|X; — CBi||% = |CTX; — Bi|% + |IC Xill%

where C* is the orthogonal complement of C. Since the
second term HC’J-TXZ-H%D is irrelevant to B;, it is obvious
that B; = sgn(C7T X;) is the optimal solution of the objec-
tive as well as the resulting hash functions in this model.
Therefore, the code matrices B;’s can be locally updated in
parallel on each node if all the nodes have got the dictionary
C. In other words, if the dictionary C' can also be updated
in the distributed setting, then the whole learning process of
hashing can be achieved in a completely distributed man-
ner. The difficulty is that, when the codes B;’s are fixed,
the dictionary C' is shared across all nodes, which makes
the problem hard to split.

3.1. Split with Consensus Constraints

In order to make the objective separable, we can replace
the global variable C' by a set of local variables C;’s, one
for each node. By enforcing the consensus constraints
C; = Cj fori,j € {1,2,---, P}, we do not introduce
any relaxation into the problem. In particular, with B;’s
fixed, the objective in (2) is completely equivalent to:

p
o PR . . 2
I%m ; | Xi — CiBil| % 3)

i

st.  ClC; =1, C;=Cj, Vi,je{l,2,...,P}

The last constraint implies that all the local variables should
be consistent. In this way, the additive objective in (2)
which does not split is turned into a separable objective.
Because of the transitivity between neighboring nodes in
a connected graph, we are allowed to consider only the
constraints between the neighboring nodes rather than all
the constraints. For example, if the consensus constraints
between all neighboring nodes are satisfied in Fig.1, then

C1 = Cy is automatically satisfied due to the fact that
Cy = Cy = C5 = C4. Based on these observations and
to set aside the non-convex orthogonal constraints for the
moment, objective (3) can be equivalently reformulated as:

p
3 R . 2 .
min ; | X; — CiBi||3 + O(C;) 4)
st.  Ci=Cy, i eN(), Vie{l,2,...,P}

where N (i) represents the neighbors of the i-th node, and
O is defined as an indicator function for whether a matrix
has orthonormal columns, that is, for any Z € RExTif
717 = I, then O(Z) = 0, otherwise, O(Z) = +oo0.

We now consider the non-convex optimization problem
with convex linear constraints. Next we show how the alter-
nating direction method of multipliers (ADMM) (Hestenes,
1969; Powell, 1967) can be efficiently applied to decom-
pose the global problem into several local subproblems and
how these subproblems can be solved with closed-form so-
lutions in a distributed manner.

3.2. Distributed Learning

ADMM is a variant of the augmented Lagrangian scheme
that blends the decomposability of dual ascent with the su-
perior convergence properties of the method of multipliers
(Boyd et al., 2011). For our specific problem, the augment-
ed Lagrangian of (4) is

p
o(Cis Ay ) = (IXi — CiBi|| % + O(Cy)) ®)
i=1

.
+23 Y el

i=1 /GN(’L)

Y

=1 ,EN(’L)
where A, ,/’s are the Lagranglan multipliers corresponding

to the constraints C; = Cy fori € {1,2,...,P} and

i € N(i). p > 0 is the penalty parameter of augment-
ed Lagrangian. ADMM solves a problem of this form by
repeating the following two steps (Liang et al., 2014):

P
Ci(kﬂ) = argminz ([IX; — C;Bi|| % + O(Cy))

Ci =1
+ Z > (AT (C - )
=1 lIEN( )
P ®)
k)2
+§Z D (e erf (6a)
=14 cN(4)
A= AR 4 (et — oY)
Vie{l,...,P},i e N(i) (6b)

Despite the algorithm’s elegance in form, the subproblems
in (6a) can be difficult to solve.
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3.2.1. SIMPLIFICATION OF LAGRANGE MULTIPLIERS

In the above update rule, assuming each node has ¢ neigh-
boring nodes in average in the network, about Pt La-
grange multipliers have been introduced into the optimiza-
tion. Such a large number of multipliers enlarge the com-
putation load of algorithm remarkably. However, due to
the symmetry of an undirected graph, it is clear that if
i € N(i) theni € N(i'). Thatis to say, every avail-
able constraint in the objective (4) has been considered at
least twice, i.e., C; = C; and C;; = C;. This implies that
we can simplify the Lagrange multipliers. First of all, it is
easy to find that the following update rule of multipliers is
implicitly contained in (6b):

AT = A 4

p(CEFD _ oty

Vi e{l,...,P},ice N(@) (7)

For any two adjacent nodes, with (6b) and (7), we have:

AFFD A — (AR ARy oo
In addition, owing to the symmetric characteristics of the
undirected graph, we can rewrite the second term of (5) in

another form as:

P
S 3 w(T (G- )

=14 eN(3)
P P

= > > w0 (A, Cyr)
=1 eN(4) l =1 eN(4)
P P

= > (AT, Ci) =) (Al C)
=14 eN (i) =14 eN(4) 7
P

= Ztr( Z (A _Ai/,i)TCi) )

=1 " eN (i)
Therefore, by defining P new Lagrange Multipliers A;’s as

Ai: Z (Ai7i/ 7Ai',i)7Vi€{1727"' 7P}a
i’ €N (4)
the update of ADMM in (6a) and (6b) can be simplified as:
P
Ci(kﬂ) = argminz (11X — CiB;||% + 0(Cy))
i =1
P
+ Ztr (AT cy) gz 3 o - Pz
=1 1=1 GN()
(10a)
A(k+1) A(k) +2p Z k+1) Ci(,k+1))
i €N (4)
Vie{l,...,P},i € N(i) (10b)

¥y @®)

In summary, with the derivations in (7)-(9), the original La-
grange multipliers A, ;» fori € {1,...,P},i € N(i) are
reduced to A; fori € {1 P} The main benefit of
this simplification is reducmg the computational effort of
ADMM. Obviously, the updates of local variables C;’s in
(10a) can be separated into P subproblems, and thus can be
carried out independently in parallel across the nodes. Al-
though the resulting subproblems are complicated and non-
convex, we find that closed-form optimal solutions can be
derived analytically for them.

3.2.2. SOLUTION TO SUBPROBLEMS

Formally, the ¢-th subproblem can be rewritten in a form of
constrained optimization as:
; _C.Bl2 NT ey o P -
min | X; - C.B[} +u((A) )+ 5 30 e
i EN(3)
st. CJCi=1, (11)

erllFs

By expanding the quadratic form || X; —C; B;||%, collecting
terms, and neglecting those terms that do not depend on C;,
the subproblem (11) can be rewritten as:

+p Z k
i EN(3)
s.t. cre, =1, (12)

min  —tr((2B; X7 — (AT

C;

For simplicity we define an X d matrix S; as:

Si=2B,XT — (AT +p > ()T (3)
i EN(4)

Thus the problem becomes:

mch tl‘(SZ‘Ci> S.t. CzTCZ =1, (14)

Note that the orthogonal constraint in (14) is a non-linear
equality constraint, thus (14) is a non-convex optimization
problem. It cannot be solved with the conventional gradi-
ent based methods. Besides, the variable C; is not squared,
which makes the optimization more challenging. Never-
theless, we notice problem (14) can be solved analytically
with closed-form solution via singular value decomposition
(SVD). In specific, we write out the SVD of S; as:

S; = G2 HY (15)

where G; € R™", H; € RY" and ¥; = diag(o,...,0,)
is a diagonal matrix. The columns of both G; and H; are
orthonormal, i.e., GTG; = I,, HI H; = I,.. Since the
cyclic permutation leaves the trace unchanged, we have

tr(S;C;) = (G S H Cy) = w(Z HE C;Gy) - (16)

Denoting T; = HiT C;G;, the problem turns into maxi-
mizing tr(X2;7T;). Before going on, we give the following
proposition:
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Lemma 1. For any matrix T of the form T = HTCG
where H € R¥™>" C € R¥>*" .G € R™*" (d > r), if the
columns of H,C, R are orthonormal, then any element of
the matrix T is not larger than 1.

Proof. Since G is squared, it can be viewed as an rota-
tion matrix. Denoting K = CG, it is easy to find that the
columns of K are still orthonormal, i.e., KT K = I,.. For
any element of T', we have T}, ,, = H(m)TK(n), where a
subscript () means the j-th column of a matrix. According
to Cauchy inequality, it is obvious that

Hy " Ky < | Hn 1K )| = 1,

which completes the proof. O

Based on Lemma 1, we have

tr(ZlTl) = Zo—jtjj S ZO’j (17)
j=1 j=1

where ;; is the j-th diagonal element of 7. The trace in
(17) is maximized if and only if the diagonal elements of T}
are equal to 1. Hence, there is an obvious optimal solution
C; if it satisfies T; = HZ-TC'q;Gi = I, and C’iTC’Zv =1. It
can be easily seen that

C; = H;GT (18)

is such a solution.

Algorithm and Convergence:

We describe the whole flowchart of the proposed method
which we name Distributed Hashing (DisH) in Algorithm
1. It is worth emphasizing that the update of local C;’s
(lines 3-5), A;’s (line 6) and B;’s (line 8) can be conducted
in parallel on each node, which is the key factor for our
method being able to work in a distributed setting.

Since a block coordinate descent algorithm is used to op-
timize the objective function, and the theoretical conver-
gence property of the ADMM update rule is still an open
question (Boyd et al., 2011; Bertsekas & Tsitsiklis, 1989),
we cannot guarantee that Algorithm 1 reaches the global
optimum. Nevertheless, we empirically find that our algo-
rithm is able to fast converge to a reasonable local minima
most of the time. To illustrate this, we measure the objec-
tive value of (3) at each iteration and see if it decreases or
not. We test on two relatively small datasets: CIFAR-10
and GIST-1M, with 32 bits codes. The empirical result-
s are reported in Fig.2. It can be observed that, on both
datasets, the objective values decrease as the iterations go
on, and converges within less than 10 iterations. These re-
sults imply that the convergence of our algorithm is fast in
practice. In the experiments section, we will demonstrate
that our algorithm has good convergence properties from
another point of view.

Algorithm 1 Distributed Hashing
Input: Initialize the same dictionaries C;’s, Lagrangian
multipliers A;’s, penalty parameter p and number of
ADMM iterations K for all nodes. Set the code matrix
as B; = sgn(CI X;) for all nodes.
repeat
fork=1,... K
Computing .S; with (13) for all nodes;
(G, X4, H;] = SVD(S});
Updating C; with (18) for all nodes;
Updating A; with (10b) for all nodes;
end for
Updating B; with B; = sgn(C7 X;) for all nodes;
until convergence

PRI DIUN RN
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Figure 2. The objective values on (a) CIFAR-10 and (b) GIST-1M

decrease as iterations of our algorithm continue. The algorithm
converges within 10 iterations on both datasets.

4. Complexity Analysis

Here we analyze the communication and computation com-
plexity of the proposed distributed hashing model. Recall
that d denotes the dimension of data, r denotes the length
of hashing code, and n; is the size of data in the ¢-th node.

¢ Communication Complexity:

In our algorithm, in order to compute .S; in (13) and update
A; in (10b), each node needs to share the local dictionary
C; with its neighboring nodes. Supposing the i-th node has
t; neighbors, the communication complexity of this step is
O(t;dr). Interestingly, the local dictionary is the only vari-
able that needs to be communicated during the execution.
As a result, the overall communication complexity of each
node is O(t;dr), which is independent to the data size n;.

e Computation Complexity:

For the ¢-th node, the time complexity to compute S; in (13)
is O(n;dr). The following SVD for S; requires O(dr?)
time. The complexity of updating the local variable C;
with (18) is O(dr?). Thus, the overall time complexity of
updating the dictionary is O(Kn;dr + Kdr?), where K is
the number of iterations in ADMM. The update of hashing
code on each node takes up O(n;dr) in time. To summa-
rize, the time complexity of computation on each node is
linear in both size n; and dimension d of the data.
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Table 1. Comparisons of mean average precision (MAP) with different code sizes on CIFAR-10 and GIST-1M. The compared state-of-
the-arts are all centralized methods. DisH* denotes distributed hashing with the first search strategy, while DisH? denotes that with the
second search strategy. The standard deviations of DisH? are reported in the last line.

CIFAR-10 GIST-IM
Methods ||~ 8bits | T6-bits | 24-bits | 32-bits | 64-bits || 8-bits | 16-bits | 24-bits | 32-bits | 64-bits
AGH || 0.1661 | 0.1654 | 0.1613 | 0.1585 | 0.1490 || 0.0807 | 0.1224 | 0.1461 | 0.1572 | 0.1805
KMH || 0.1493 | 0.1577 | 0.1632 | 0.1636 | 0.1624 || 0.1015 | 0.1362 | 0.1497 | 0.1560 | 0.1565
SpH || 0.1306 | 0.1435 | 0.1507 | 0.1528 | 0.1632 || 0.0832 | 0.1213 | 0.1489 | 0.1544 | 0.2137
ITQ || 0.1534 | 0.1690 | 0.1710 | 0.1734 | 0.1781 | 0.1008 | 0.1406 | 0.1704 | 0.1878 | 0.2188
DisH' || 0.1543 | 0.1649 | 0.1698 | 0.1724 | 0.1780 || 0.1013 | 0.1401 | 0.1656 | 0.1842 | 0.2118
Dig? || 01557 | 01636 [ 0.1700 | 0.1708 | 0.1778 || 0.1020 | 0.1478 | 0.1690 | 0.1834 | 0.2166
' +£.0003 | £.0003 | £.0001 | £.0003 | £.0002 || £.0002 | +.0004 | +.0002 | +.0005 | =+ .0006

5. Experiments

In order to evaluate the performance of the proposed dis-
tributed hashing (DisH), we conduct a series of experi-
ments on different datasets for retrieval. In all experiments,
we assume the data is distributed across different nodes in a
network. In specific, we randomly construct a network with
10 nodes, as shown in Fig.1. Each node has a 2.50GHz In-
tel Xeon CPU. The implementation of our distributed sys-
tem is based on the Distributed Computing Engine of MAT-
LAB in Linux.

5.1. Experimental Setting

Ideally, the resulting local dictionaries C;’s among the n-
odes will be consistent because they are learned with the
consensus constraints. However, since the solution ob-
tained by ADMM is not theoretically guaranteed to be the
global optimum (Boyd et al., 2011), the consistency of the
local dictionaries needs to be verified. To this end, we test
two search strategies for the proposed distributed hashing.
In the first strategy, when a query q arrives, it will be broad-
casted to all the nodes. The query will be embedded to bi-
nary code with the corresponding local dictionary on each
node, i.e., b; = sgn(C¥q). Subsequently, the Hamming
distances between b; and samples on each node will be cal-
culated. In the second strategy, we assign one of the local
dictionaries as the final dictionary C, then both the queries
and database will be hashed with this common dictionary.
In the following comparisons, we denote the first search s-
trategy of our method as DisH!, while the second strategy
as DisH?. The experiments with DisH? are conducted 10
times, where the i-th dictionary C; is assigned as the final
dictionary in the ¢-th execution. We report the average re-
sults and their standard deviations of DisH?. Obviously,
if the local dictionaries are consistent, the standard devia-
tions of DisH? will be very small and the results derived by
DisH! and DisH? will be very close.

To perform fair evaluation, we adopt the Hamming rank-
ing strategy which is commonly used in the literature

(Wang et al., 2012; Liuetal.,, 2011). All points in the
database are ranked according to their Hamming distance
to the query and the top ranked samples will be returned.
Throughout the experiments, we empirically set the penalty
parameter p as p = 100 and the number of ADMM itera-
tions K as K = 5.

5.2. Compare with Centralized Methods

In this simple experiment, we aim to verify that hashing
in a distributed setting won’t loss much quality compared
with that in a centralized setting. We compare our dis-
tributed method against state-of-the-art centralized hashing
methods including AGH (Liu et al., 2011), KMH (He et al.,
2013), SpH (Heo et al., 2012) and ITQ (Gong et al., 2013).

We choose two relatively small benchmarks: CIFAR-10'
and GIST-1M? for this experiment. CIFAR-10 consists of
60K 32 x 32 color images in 10 classes, with 6,000 images
per class. We extract 512 dimensional GIST descriptor
(Oliva & Torralba, 2001) to represent each image. GIST-
IM contains one million 960 dimensional GIST descrip-
tors extracted from random images. For both datasets, we
randomly select 1,000 data points as queries and use the
rest as database and training set. For CIFAR-10 dataset, s-
ince every image is assigned a class label, the ground truth
is defined as semantic neighbors based on label agreemen-
t. For GIST-1M dataset, top 2 percentile nearest neighbors
in Euclidean space are taken as ground truth. The data is
evenly divided into 10 splits and distributed across the n-
odes. For all compared centralized methods, because the
datasets are small, it allows us to assemble all the training
data at a single node and learn hash functions on it.

Table 1 shows the Hamming ranking performance mea-
sured by Mean Average Precision (MAP) with differen-
t code sizes on two datasets. From these results we can
find that, on both datasets, our method outperforms most of

"http://www.cs.toronto.edu/~kriz/
http://corpus-texmex.irisa.fr/
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Figure 3. The precision-recall curves with 32 bits on two datasets
(a) CIFAR-10 and (b) GIST-1M. Best viewed in color.

the centralized baselines. The two versions of our method
DisH' and DisH? achieve nearly the same accuracy. Be-
sides, the standard deviations of DisH? are typically negli-
gible (less than 0.001 in all cases). This implies the consis-
tency of the learned local dictionaries, which also implies
the ADMM converges well in our algorithm. It can be ob-
served that the performance of our algorithm is very close
to that of ITQ which in most cases is the best competitor
in the centralized methods. As we have explained above,
the hashing model represented by objective (1) is closely
related to ITQ, and our method essentially optimizes (1) in
a distributed manner. The comparisons with ITQ suggest
that learning hash functions in a distributed setting does
not loss much quality compared to the centralized setting.
Moreover, our method and ITQ outperform other state-of-
the-art baselines for most code sizes, which indicates that
minimizing quantization distortion is effective for binary
codes learning.

Fig.3 shows the complete precision-recall curves on two
datasets with 32 bits code. These detailed results are con-
sistent with the trends discovered in Table 1. The curves of
our methods and ITQ almost overlap, and outperform other
competitors with a large margin.

5.3. Evaluation on Large Scale Datasets

In the second experiment, we measure the accuracy of our
method on two large scale datasets: MNIST-8M? and SIFT-
10M*. MINST-8M consists of 8 million 784-dimensional
samples associated with handwritten digits from ‘0’ to ‘9’.
SIFT-10M consists of 10 million local SIFT descriptors ex-
tracted from random images. We sample 2,000 data points
to be query set and employ the rest as database and training
set. For the MNIST-8M dataset, the ground truth is de-
fined as semantic neighbors. For SIFT-10M, top 2%o near-
est neighbors in Euclidean space are taken as ground truth.
The data is evenly distributed across 10 nodes.

http://www.csie.ntu.edu.tw/~cjlin/
4http: //corpus-texmex.irisa.fr/

To our knowledge, this work could be the first attempt to
learn hash functions in a distributed setting, therefore we
cannot find closely related work to compare with in this
setting. It is also infeasible to transmit the data across the
nodes for such large datasets. In fact, the only existing hash
method which can work in such a distributed setting may be
the data-independent LSH (Charikar, 2002), in which the
hash functions are not learned but randomly selected from
a locality-sensitive function family. Thus, we compare the
performance of our method with LSH in this experiment.
Since computing MAP is very slow on large scale datasets,
we report the mean precision of top 50-1000 ranked neigh-
bors in Hamming space.

Fig.4 shows the precision on MNIST-8M. Our method at-
tains high accuracy, and yields to better accuracy as the
code size increases. As shown in Fig.4(d), the precision
of top-50 reaches 95.4% with 64 bits. The improvement
over LSH is significant. For example, the gain in precision
of top-1000 of our method ranges from 16% to 87% over
LSH with different code sizes. This is because the learned
hash functions can capture more information about the da-
ta structure than the randomly generated hash functions in
LSH. Note that both the performance of DisH! (black line)
and DisH? (red line) are reported, but the two lines almost
completely overlap on this dataset. The standard deriva-
tions of DisH? are also reported as error bars on the red
line, which are also negligible as in Table 1. These phe-
nomenons again verify the consistency of the local dictio-
naries. Fig.5 shows the precision on SIFT-10M. Similar
trends can be found as in Fig.4. Again, it can be clearly
observed that both DisH* and DisH? outperform LSH with
a large margin. For example, as shown in Fig.5(b), our
method accomplishes about 2 times higher precision than
LSH with 24 bits code. All these results indicate that the
proposed method is very effective to learn hash functions
in a distributed setting, and it offers another better choice
for real-world distributed retrieval systems beyond LSH.

5.4. Evaluation of Efficiency

In order to evaluate the time efficiency of our method,
we conduct experiments on a larger dataset SIFT-100M>,
which consists of 100 million SIFT descriptors extracted
from random images. We test on multiple subsets of differ-
ent sizes extracted from SIFT-100M, to verify whether the
time consumption grows linear with respect to the number
of data points. We also vary the number of nodes to see the
how training time can be shorten with more nodes being
used. When the same number of nodes are employed, the
training time might be related to the topology of the net-
work. For convenience, we restrict the network to be a star
topology in this experiment.

Shttp://corpus-texmex.irisa.fr/
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Figure 6. Training time with different data sizes when different
number of side nodes involved.

Fig.6 presents the training time under different settings.
Roughly speaking, the larger the data size, the higher the
running time. Meanwhile, the more nodes involved to com-
putation, the shorter the running time. This phenomenon is
natural and easy to understand, which also agrees with our
previous analysis on computation complexity in Section 4.
As we have analyzed, the time complexity of computation
on each node is linear to the number of data on it. In Fig.6,
we can find that the training time increases linearly as the
data size increases. With more nodes involved to the com-
putation, the size of data distributed to each node will be

smaller, thus the corresponding training time will be less.
It is worth noting that the training time on the dataset of
100 million samples is about 391 seconds when 10 nodes
are employed. This time cost is very small and really ac-
ceptable given the large scale of the dataset. These results
demonstrate that the proposed distributed hashing is scal-
able to massive data in real-world applications.

6. Conclusion

In this paper, we proposed a distributed hashing model to
learn binary codes for distributed data. We casted a central-
ized hashing model into a set of decentralized subproblems
with consensus constraints and showed how these subprob-
lems can be solved in parallel in a distributed manner. Our
method could adapt to arbitrary network topologies with
small communication and computation cost. Extensive ex-
periments on several large scale datasets fully verified the
efficacy of the proposed method.
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