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Abstract

Many applications in machine learning handle
bags of features or histograms rather than sim-
ple vectors. In that context, defining a proper ge-
ometry to compare histograms can be crucial for
many machine learning algorithms. While one
might be tempted to use a default metric such as
the Euclidean metric, empirical evidence shows
this may not be the best choice when dealing with
observations that lie in the probability simplex.
Additionally, it might be desirable to choose a
metric adaptively based on data. We consider in
this paper the problem of learning a Riemannian
metric on the simplex given unlabeled histogram
data. We follow the approach of Lebanon (2006),
who proposed to estimate such a metric within
a parametric family by maximizing the inverse
volume of a given data set of points under that
metric. The metrics we consider on the multino-
mial simplex are pull-back metrics of the Fisher
information parameterized by operations within
the simplex known as Aitchison (1982) transfor-
mations. We propose an algorithmic approach
to maximize inverse volumes using sampling and
contrastive divergences. We provide experimen-
tal evidence that the metric obtained under our
proposal outperforms alternative approaches.

1. Introduction

Learning distances to compare objects is an important topic
in machine learning. Many approaches have been proposed
to tackle this problem, notably by making the most of Ma-
halanobis distances in a supervised setting (Xing et al.,
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2002; Schultz & Joachims, 2003; Goldberger et al., 2004;
Shalev-Shwartz et al., 2004; Globerson & Roweis, 2005;
Weinberger et al., 2006; Davis et al., 2007; Weinberger &
Saul, 2009).

Among such objects of interest, histograms — the normal-
ized representation for bags of features — are popular in
many applications, notably computer vision (Julesz, 1981;
Sivic & Zisserman, 2003; Vedaldi & Zisserman, 2012), nat-
ural language processing (Salton & McGill, 1983; Salton,
1989; Joachims, 2002; Blei et al., 2003; Blei & Lafferty,
2009) and speech processing (Doddington, 2001; Campbell
& Richardson, 2007). Mahalanobis distances can be used
as such on histograms, but are known to perform poorly be-
cause they do not take into account the inherent constraints
that histograms have (non-negativity and normalization).
Cuturi & Avis (2014) and Kedem et al. (2012) proposed
recently two supervised metric learning approaches in the
simplex. Kedem et al.’s contribution is particularly relevant
to this work: they proposed to compare two histograms r
and c by using the x? distance, x?(Lr, Lc) between Lr
and Lc, where L is a linear map from and onto the sim-
plex. This map L is learned by using labeled data and the
Large Margin Nearest Neighbor framework (Weinberger
et al., 2006; Weinberger & Saul, 2009). Our approaches
also build on the idea of learning a map from and onto the
simplex to parameterize a family of distances.

An even stronger influence on this paper lies in the work
of Lebanon (2002; 2006) who proposed to learn a Rieman-
nian metric for histograms using unlabeled data. The fam-
ily of Riemannian metrics considered in these works can
be seen as the standard Fisher information metric (instead
of the xo distance) using a particular family of transfor-
mations in the simplex. Cuturi & Avis (2014, §5.3) no-
ticed that these transformations were defined in earlier ref-
erences by Aitchison (1982; 1986; 2003) who called them
simplicial pertubations.

Our contribution in this paper is two-fold: (1) we ex-
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tend Lebanon (2006)’s original approach to more general
Aitchison transformations in the simplex; (2) we propose a
new approach to solve a key step in Lebanon’s procedure,
namely the maximization of the inverse volume of a Rie-
mannian metric.

This paper is organized as follows: after providing short
reminders of Aitchison’s tools and Riemannian geometry
in Section 2, we proceed with the description of Fisher’s
information metric for histograms and show how all these
elements can be used to form a parameterized family of
Riemannian metrics in the simplex in Section 3. In Sec-
tion 4, we propose a new algorithm to learn such metrics in
an unsupervised way. In Section 5, we propose to use lo-
cally sensitive hashing to approximate k-nearest neighbors
for our metrics to apply for large datasets. We study con-
nections of this work with related approaches in Section 6,
before providing experimental evidence in Section 7, and
concluding this paper in Section 8.

2. Preliminary

We provide in this section a self-contained review of
Aitchison’s geometry as well as elements of Riemannian
geometry that will be useful to define our methods.

2.1. Aitchison Geometry
We consider the n-simplex P,,, defined by

n+1
VZ',X,; Z 0 and in = 1},

i=1

f
p, {x e R

and write intP,, for its interior. Aitchison (1982; 1986;
2003) claims that the information reflected in histograms
lies in the relative values of their coordinates rather than on
their absolute value. Therefore, Aitchison proposes dedi-
cated binary operations to combine two elements x and z
in the interior of the simplex. Given v € R, the pertubation
and powering operations, denoted by & and ®, are respec-
tively defined as

XPz f o [xizi] € intP,,,

def ~y .
YRz = C[zi]1§i§n+1 € intP,,

1<i<n+1

X
n+1
where Clx1,Z, ++ ,Tpy1] = [ 5 XJ}
o s=l -l<isndl .
sure or normalization operator. A definition for the differ-

ence between x and z is naturally defined as:

is the clo-

x0z=x®(-1®z) =C[¥/,] € intP,.

1<i<n+1

Note that the difference of two elements in the simplex with
these operations remains in the simplex, unlike the results
obtained in with the usual Euclidean geometry.

2.2. Riemannian Manifold

A Riemannian metric g on a manifold M is a function
which assigns to each point x € M an inner product gx
on the corresponding tangent space Tx M. Consequently,
we can measure the length of a tangent vector v € T M as
VIl = /9x (v,v). Letc : [a,b] — M be a curve in M.
Its length is defined as L (¢) = fj Ve (€(t),c(t))dt,
where ¢'(t) belongs to Ti;)M. The geodesic distance
d (x,z) between two points x and z in the manifold M
is defined as the length of the shortest curve connecting x
and z.

One way to specify a Riemannian metric on M is by using
pull-back metrics. Let F' : M — N be a diffeomorphism
that maps the manifold M onto the manifold IV, and write
h for a Riemannian metric on N. Let T4 M, T, N be the
tangent spaces on the manifold M and N at x and z re-
spectively. We can define a pull-back metric F*h on M as
follows:

F*hy (u,v) = hp) (Fiu, Fiv),

where F is the push-forward map which transforms a tan-
gent vector v € T, M to a tangent vector Fi.v € Tp(y)N.
Thus, F' is an isometric mapping between the manifold M
and N:

dp«p, (x,2) = dy (F(x), F(2)).

3. Fisher Information Metric for Histograms

In information geometry, the Fisher information metric is a
particular Riemannian metric, defined on the simplex. It is
well-known that the Fisher information metric can be de-
scribed as a pull-back metric from the positive orthant of
the sphere S,

def
st { e rr

n+1
Vi, x; > 0 and Zx? = 1}.

i=1

The diffeomorphism mapping H : P, — S} is defined as
the Hellinger mapping,

H(x) < VX,

where the square root is an element-wise function. The
mapping H pulls-back the Euclidean metric on the positive
sphere S} to the Fisher information metric on the simplex
P,,. Thus, the geodesic distance d (x,z) between two his-
tograms X, z in the simplex P,, under the Fisher informa-
tion metric is equivalent to the length of the shortest curve
on the positive sphere S} between H (x) and H (z),

n+1

d (x,z) = arcos ((H (x), H(z))) = arcos <Z \/ﬁ> ,
i=1

(1)
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where (-,

Let G : intP,, — intP, be a transformation inside the
simplex. The Fisher information metric under the transfor-
mation G on the simplex P,,, denoted as .J, is a pull-back
metric of the Euclidean metric on the positive sphere S,
through a transformation ' = H o (G. The geodesic dis-
tance that results by using J between x,z € P, is thus

dj(x,z) = arcos ((F'(x), F(z))) .

Therefore, we have a family of pull-back metrics J on the
simplex P,,, parameterized by the transformation G inside
the simplex PP,,. In the next section, we will present a way
to learn a suitable pull-back metric J based on a family of
transformations G using only unlabeled data.

-} is the Euclidean inner product.

4. Unsupervised Riemannian Metric
Learning for Histograms

4.1. Aitchison Transformation

We consider a family of transformations G on the simplex
that can be defined using Aitchison elementary perturba-
tion and powering operations presented in Section 2.1. The
transformation we consider is parameterized by a vector o
in the strictly positive orthant Ri“, and by A € intP,,:

G(x) =a®x® X € intP,. (2)

Here, we generalize the powering operation for a histogram

and a vector, so that we can have exponents that can vary

for each coordinate:
def

a®x=C[x

¢ Lgignﬂ € intP,

Consequently, we have

G(x) = C[xAi] |2y € IntPr.

We note that a @ (x ® A) = (a ® x) ® (a ® A). So,
for the transformation G(x), we can interpret that vector A
under operator ¢ may be considered as a translation, and
vector o under operator ® has a role as a linear mapping
for a histogram x in the simplex.

Additionally, we can express the transformation F'(x) as
the element-wise square root for G(x):

S

1<i<n+1

Hence, we have a closed form for the geodesic distance
under Riemannian metric J — the pull-back metric of the
Euclidean metric on the positive sphere S, through a trans-
formation F' = H o G,

n+1 Q1A a,)\
dj(x,z) = arcos . .
J( ) <i_ \/ZnJrl aJA Zn+1 ?L])\l >
3)

4.2. Criterion

Let D = {x;,1 <i < m} be a dataset of unlabeled his-
tograms in the interior of the simplex. We will learn a Rie-
mannian metric from a family of pull-back metrics .J on the
simplex as described in Section 3. Since J is parameterized
by Aitchison transformation GG, defined in Equation (2), we
equivalently learn an Aitchison transformation on the sim-
plex.

The volume element of the Riemanian metric J at point x
is defined as:

dvolJ(x ) detg(x),

where G(x) is the Gram matrix, whose components [G],; =
J(0;,0;), where {0;},-,~,, is a basis of a tangent space
T4 P, of the simplex P, at point x. Intuitively, the volume
element dvolJ(x) summaries the size of metric J at x in a
scalar. Paths over areas with smaller volume will tend to be
shorter than similar paths over areas with higher volume.
Lebanon (2002; 2006) propose to maximize inverse vol-
ume to obtain shorter curves across densely populated re-
gions of the simplex P,,. Therefore, the geodesic distances
will also tend to pass densely populated regions. It matches
with an intuition about distance which should be measured
on the lower dimensional data submanifold to capture in-
trinsic geometrical structure of data. We note that volume
element dvolJ(x) is a homogeneous function, normaliza-
tion for inverse volume is necessary to bound its quantity
in optimization.

Following these intuitions, we consider a metric learning
problem:

i dvolJ~ ( ) 1 2

}: B
max J T, dvoll L(x)dx 2 og ex];
s.t. e 1nt]P’m a e R 4)

where log a is an element-wise function and 1 > 0 is a
regularization parameter. We apply the logarithm function
to the normalized inverse volume element in the criterion
to simplify our learning procedure. We regularize this ob-
jective by the ¢3-norm of the element-wise logarithm o,
that tends to avoid O values for our exponents. We do not
regularize A since A € intlP,, (or ||[A]; = 1).

4.3. Volume Element

We recall that the volume element of the Riemannian met-
ric J at a point x is defined as dvol.J(x) = y/detG(x), and

[G];; = J(0i,0;) where {0;},,;,, is a basis of a tangent
space of the simplex Ty P,,, described as rows of the matrix
1 - 0 -1
U= e R+,
0 -~ 1 -1
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Algorithm 1 Gradient Ascent using Contrastive Diver-
gence

Input: data (x;)1<;<m, gradient step size t§ and £}, ini-

tial vectors g, Ag and a tolerance e.

Sett « 1.

Set oy < ap.

Set Ay < Ao-

repeat
Use Metropolis-Hasting sampling algorithm where its
proposal distribution is logistic normal distribution to
transform training data (x;)1<;<m, into data drawn
from p(x).
Compute gradient of the objective function with re-
spect to a, A using Proposition 3.

Update ag41 H(at + t OF).

N
ty OF
Update Ay 1 < C'| A\ @ exp Jiox )|
Sett + t+1.
until (¢ > tmax)  or  (Jlag —ag—1]| <€) or

(e = Ae—1ll <e).
Output: vectors oy and A.

The Gram matrix G is provided by Proposition 1 while its
determinant is studied in Proposition 2. The proofs for
these two propositions are given in the Supplementary.

Proposition 1 Let T be an x (n + 1) matrix whose rows
are {F*ai}lggn, I is an identity matrix in R x(n+1),

D is a diagonal matrix in RHDX(+D) where D], =

&gy

xiT [e TRVS AL

= , B and m are column vectors in R ywhere
24/ > x?e)\z
=1

B; = xM N and g, = —2X—— forall 1 <i <

o
g E xzf)\g
=1

(n+1). We have T = U (I —Bn") D, and the Gram matrix
is given by

G =TTT = U(I - By")D*(I ~ Bn")"U”
Proposition 2 The determinant of the Gram matrix G is
n+1 2 n+1
(£2) (i)
i=1 ' i=1

n+1 n+1
} : (e 77
i=1

4.4. Gradient Ascent using Contrastive Divergences

detG

The main obstacle of our optimization problem is the nor-
malization term of the inverse volume element since it is
not known in closed form. However, we can bypass this
factor to compute a partial derivative of the objective func-
tion F with respect to ac and A as given in Proposition 3.
Its proof is given in the Supplementary.

Proposition 3 Let FE(-)x denote the expectation of - given
the data distribution X, and a distribution,

dvolJ~1(x)

- Jp, dvolJ =1(z)dz’ ©)

p(x)

The partial derivative of the objective function F with re-
spect to a, X in the optimization problem are:

oF 1 i dlog dvolJ~1(x;)
m

Ja P oo
-1 n+1
(8log dvolJ (x)) log o
-E T —p Y ==
o p(x) = %
where
dlog dvolJ~*(x) n+1

o =— [x57 X log x;]
2 Z X?i)\i
i=1

1<j<n+1

1 Xj 1
T o? D) log %5]1 < j<ps1
1<j<n+1

X4 j

J

and
oF 1 f: dlog dvolJ~*(x;)
oOX  m e oA
B <8logdvolJ_1(X)>
OA p(x)
where
dlogdvolJ~'(x)  n+1 o
O\ T n+1 [Xj ]1Sj§n+1
2 Z X?Ll)\z

=1

We propose to approximate the expectation FE(-),(x)
that appears in Proposition 3 by drawing samples from
the distribution p(x).  Since the partition function
fan dvolJ~!(z)dz is not known in closed form, we can not
draw samples directly from p(x). However, we can use
Markov Chain Monte Carlo (MCMC) sampling methods
to draw such samples. Because we only need to compute
the ratio of two probabilities, p(x)/ p(z) an approximation
for the partition function itself is not required. Moreover,
Hinton (2002) suggests that only a few cycles of MCMC
can provide in certain settings a useful approximation. The
intuition is that the data have moved from the target distri-
bution — training data — towards the proposed distribution
p(x) after a few iterations.

We propose to use a Metropolis-Hasting sampling method
with a logistic normal distribution (Aitchison & Shen,
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1980) proposal. We note that the logistic normal distri-
bution is also a by-product of Aitchison’s simplicial geom-
etry. We apply contrastive divergences (Hinton, 2002) to
compute approximations of the partial derivative of F as
shown in the proof of the Proposition 3.

‘We propose to use a gradient ascent to optimize for the met-
ric learning problem following the results in the Proposi-
tion 3. At iteration ¢, we can update «, A using preset step

.t ty .
size — and N respectively, as follow

Qg1 = H<Olt + 0(9.7-') ;
o

A

Mey1 =C {At . exp(ygg];ﬂ ,
where II(x) is the projection of x on the positive orthant
offset by a small minimum threshold £ = 10~2%, namely
the set of all vectors whose coordinates are larger or equal
to 10720, and e is the Schur product between vectors or ma-
trices, and the exp operator is here applied element-wise.
Since we have a constraint A € intlP,, in the optimization
problem (4), we use an exponentiated gradient update for
A (Kivinen & Warmuth, 1997).

We recall that computing an approximation of the nor-
malization term for a specific transformation in (Lebanon,
2002; 2006) takes O(n?logn) by careful dynamic pro-
gramming. So, our proposal is more efficient and general
than Lebanon’s approach. A pseudo-code for the projected
gradient ascent algorithm is summarized in Algorithm 1.

We also note that the optimization problem (4) can be
interpreted as maximizing log-likelihood for the proba-
bilistic model on the simplex (Equation (5) and Proposi-
tion 2) which assigns probabilities propositional to the in-
verse Riemannian volume element, with a regularization.

5. Locally Sensitive Hashing to Approximate
k-Nearest Neighbors Search

We recall that our proposed family of distances (Equation
(3) in Section 4.1) is the pull-back metric of the Euclidean
metric on the positive sphere through a composition trans-
formation of Hellinger mapping and Aitchison transforma-
tion. Equivalently, it can be considered as measuring the
angle between two mapped vectors from the composition
transformation. So, we can apply the Locally Sensitive
Hashing family proposed by Charikar (2002) to approxi-
mate k-nearest neighbors search.

For two histogram vectors x,z € intPP,, , we have the cor-
responding mapped vector X = F(x),z = F(z) € S, via
the composition transformation F'. Charikar (2002) defines
a hash function

he(X) = sign(r’'x),

where r is a random unit-length vector in R®*!. The hash
function can be considered as a randomly chosen hyper-
plane to partition the space into two half-spaces. The prob-
ability of collision is as follow

dy(x,2z) '

Pr (%) = he(2)] = 1 = =22

For a random vector r, we have a hash-bit h,.(-) for each
histogram x in a database. We use b random vectors for
a total b hash functions to obtain hash keys (b hash bits)
for each histogram. For a query histogram z, we apply the
same b hash functions, and then use the approximated sim-
ilarity search method in (Charikar, 2002) which requires to
search O(m!'/(1+2)) histograms for k = 1 approximated
nearest neighbor.

6. Related Work

Lebanon’s use of Aitchison’s perturbation operator pro-
vided the main inspiration for the metric learning approach
advocated in this work (2002; 2006). We propose to ex-
tend this idea to other operations in the simplex. We also
propose to adapt the contrastive divergence method for the
purpose of computing a gradient to maximize inverse vol-
umes, whereas Lebanon uses an approximation for the par-
tition function which only applies to the pertubation trans-
formation. We also show in the experimental section that
our approach can also be used in Lebanon’s original setting.

Recently, Le & Cuturi (2014) proposed generalized Aitchi-
son embeddings to learn metrics for histograms. Rather
than using Aitchison transformations, the authors focus on
a different family of tools, Aitchison maps, that can map
points in the simplex onto a Euclidean space R?. Le & Cu-
turi (2014) propose to learn simultaneously the parameters
of such maps and the metric (a Mahalanobis metric) on R?
that will be used on such representations. This is related,
although very different, from the approach we propose here
that learns in an unsupervised way a map from and onto the
simplex, to be used with Fisher’s information metric.

7. Experiments
7.1. Clustering application with K-Medoids
7.1.1. DATASETS AND EXPERIMENTAL SETTING

We use the K-medoids clustering algorithm seeded with
different metrics and compute their clusters. We set the
number of clusters K equal to the number of classes in cor-
responding datasets. To evaluate the adequacy of a met-
ric for given data, we check that these clusters agree with
a class typology provided for these points'. We test our

'In this setting for clustering application, we process with un-
labelled data (for both learning the distance and applying to K-
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Table 1. Properties of datasets and their corresponding experimental parameters.

Dataset #Samples  #Class  Feature Rep #Dim  #Run
MIT Scene 1600 8 SIFT BoF 200 100
UIUC Scene 3000 15 SIFT BoF 200 100
OXFORD Flower 1360 17 SIFT BoF 200 100
CALTECH-101 3060 102 SIFT BoF 200 100
20 News Group 10000 20 BoW LDA 200 100
Reuters 2500 10 BoW LDA 200 100
MNIST-60K 60000 10 Normalized Intensity 784 4

CIFAR-10 60000 10 BoW SIFT 200 4

method on 6 benchmark datasets. Table 1 displays their
properties and parameters. These datasets include differ-
ent kinds of data such as scene images in MIT Scene’ and
UIUC Scene® datasets, flower images in Oxford Flower*
dataset, object images in CALTECH-1017 dataset and texts
in Reuters® and 20 News Group’ datasets.

7.1.2. IMPLEMENTATION NOTES

For image datasets, we compute dense SIFT features by
operating a SIFT descriptor of 16 x 16 patches computed
over each pixel of an image. We also convert images into
gray scale ones before computing dense SIFT to improve
robustness. We use the LabelMe toolbox® for computing
dense SIFT features. Then, we use bag-of-features (BoF)
to represent for each image as a histogram, the size of dic-
tionary for visual words is set 200.

For text datasets, we calculate bag of words (BoW) for each
document, and then compute topic modelling to reduce the
dimension of histograms using the gensim toolbox’. Each
document can be thus described as a histogram of topics
(Blei et al., 2003; Blei & Lafferty, 2009).

We use the PMTK3 toolbox!® implementation of the K-
medoids algorithm. For each metric, we performs K-
medoids algorithm 100 times with different random initial-
izations, resulting in box-plots for our error statistics.

We may use ag = [1,1,---,1] and Ao = Clap] for
initialization since our proposed distance (Equation (3)

medoids clustering method). Labels are only used to evaluate the
clustering results. We use K-medoids clustering algorithm in-
stead of a traditional K-means since it is not trivial to compute
a mean with respect to a specific distance (i.e our proposed dis-
tance).
“http://people.csail.mit.edu/torralba/code/spatialenve-lope/
3http://www.cs.illinois.edu/homes/slazebni/research/
*http://www.robots.ox.ac.uk/~vgg/data/flowers/17/
Shttp://www.vision.caltech.edu/Image_Datasets/Cal-tech101/
Shttp://archive.ics.uci.edu/ml/datasets/Reuters—21578+Text
+Categorization+Collection
"http://qwone.com/~jason/20Newsgroups/
8http://mew-labelme.csail. mit.edu/Release3.0/
“http://radimrehurek.com/gensim/
"%https://github.com/probml/pmtk3

in Section 4.1) is equivalent to the Fisher Information
Metric (Equation (1) in Section 3) at these values for
and A\. We also propose to use an internal criterion -
Davies-Bouldin index (Davies & Bouldin, 1979) to se-
lect parameters via applying K-medoids clustering algo-
rithm. We choose gradient step size t§ and ¢ from
the sets 2 {0.001, 0.005,0.01,0.05,0.1,0.5}

1
%(ao,Ao)HQ

and W{o.om,o.oos,om,0.05,0.1,0.5} re-
ox o),

bY (o,

spectively and p from {0.1,1,10}. We set maximum it-
erations ¢,,,4, = 10000 and a tolerance e = 10~°. We also
set 5 cycles for Metropolis-Hasting sampling algorithm to
transform training data into data drawn from p(x). The
logistic normal distribution is used as the proposal distri-
bution for Metropolis-Hasting algorithm where its mean is
training data point, and its covariance is set 0.011 where I
is an identity matrix.

7.1.3. METRICS AND METRIC LEARNING BASELINE
METHOD

‘We use usual metrics on the simplex such as the Euclidean,
the total variation, X2 and Hellinger distances. We recall
that the Hellinger distance between two histograms x and z

n+1
in the simplex Py, is dyeliinger (X,2) = > (‘/xi - \/z7)2
i=1

We also consider the cosine similarity as suggested in
(Lebanon, 2002; 2006) and the most popular of Aitchi-
son mappings, known as isometric log-ratio (ilr) (Egozcue
et al., 2003; Le & Cuturi, 2014). Additionally, we com-
pare our proposal with the work of (Lebanon, 2002; 2006)
implemented using our algorithm to maximize inverse vol-
umes, denoted as pF IM.

7.1.4. F g MEASURE

We use the F'g measure to compare results of K-medoids
clustering with different metrics (Manning et al., 2008).
The intuition is that a pair of histograms is assigned to the
same cluster if and only if they are in the same class and
otherwise'!. So, a true positive (TP) decision assigns a pair

"'We note that the class label y; corresponding for a histogram
x;i, for all 1 < 4 < m, is only used for evaluation. In training
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Figure 1. F g measure for K-medoids clustering on MIT Scene, UIUC Scene, Oxford Flower, 20 News Group, Reuters, and CALTECH
101 datasets where we denote CHI2 for )(2 distance, HEL for Hellinger distance, L1 for total variation distance, COSINE for cosine
similarity, L2 for Euclidean distance, ILR for isometric log-ratio mapping - the most popular Aitchison mapping and pFIM for Fisher
information metric pameterized by a pertubation transformation (Lebanon, 2002; 2006).

of histograms in the same class to the same cluster while
a true negative (TN) one assigns a pair of histograms in
the different classes to the different clusters. We have two
types of errors. A false positive (FP) decision assigns a pair
of histograms of different classes to the same cluster, and a
false negative (FN) one assigns a pair of histograms of the
same class to different clusters. Therefore, we can mea-
sure the precision P = 7725 and recall R = 7720
Since we have more pairs of histograms in different classes
than in the same class, we need to penalize false nega-
tive more strongly than false positives. Fg measure can
take into account of that idea through a scalar § > 1 as
2+1)P
Fsg= (iz;JZRR
that F penalizes false negative 3% times more than false
positives. So, let D and S be sets of pairs of histograms in
different and same classes of a dataset respectively, we can

set 8 = % where | - | denotes a cardinality of a set.

. By replacing P and R into F 3, we note

7.1.5. RESULTS

Figure 1 illustrates F'g measure for K-medoids cluster-
ing on 6 benchmark datasets. It shows that the Euclidean

procedure, only histograms (without labels) are available.

distance, which fails to incorporate the geometrical con-
straints in the simplex, does not work well for histogram
data. Some popular distances for histograms such as to-
tal variation distance, X2 distance and Hellinger distance
as well as the Aitchison mapping - ilr give better results
than the simple Euclidean distance. Cosine similarity (or
angular distance) has a better or comparative performance
to these popular distances for histograms, except on MIT
Scene and UIUC Scene datasets. The performances of Rie-
mannian metric learning using Aitchison transformations
is significantly better, notably on the UIUC Scene, Oxford
Flower, 20 News Group and Reuters datasets.

7.2. k-Nearest Neighbors Classification with Locally
Sensitive Hashing

We also carry out k-nearest neighbors classification with
locally sensitive hashing. We use 2 large datasets MNIST-
60K'? and CIFAR-10"3. Each dataset consists of 60000
images, we randomly choose 50000 images as a database
and use the rest 10000 images for queries. Table 1 displays
their properties and parameters.

http://yann.lecun.com/exdb/mnist/
Bhttp://www.cs.toronto.edu/~kriz/cifar.html
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Figure 2. Performances of k-Nearest neighbors with locally sensitive hashing on CIFAR-10 and MNIST-60K datasets, averaged over 4
repetitions where we denote L2 for Euclidean distance, HELLINGER for Hellinger distance, LMNN for Mahalanobis distance learned
by Large Margin Nearest Neighbor Weinberger et al. (2006); Weinberger & Saul (2009) algorithm, HELLINGER-LMNN for LMNN
learned from data mapped by Hellinger transformation and pFIM for Fisher information metric pameterized by a pertubation transfor-
mation (Lebanon, 2002; 2006). For figure Accuracy vs Number of bits - b, we set €=0.5. For figure Accuracy vs e-value, we set b=200.
All figures are reported with k=7, since in our experiments, the relative performance of these classifiers does not vary with k.

To handle large datasets, we propose a variance of Algo-
rithm 1 by using a mini-batch stochastic gradient (Bengio,
2007). Instead of using the whole samples at each iteration
to compute gradients, we randomly choose a small subset
of the order of 10 samples as suggested in (Bengio, 2007)
to speed up the learning procedure.

As baselines, we consider the Euclidean, a Mahalanobis
distance learned by using Large Margin Nearest Neigh-
bors (LMNN) Weinberger et al. (2006); Weinberger & Saul
(2009) algorithm. We also consider Hellinger distance and
Hellinger mapping with a Mahalanobis distance learned by
using LMNN, denoted as HELLINGER—-LMNN, as well as
the approach of (Lebanon, 2002; 2006) as mentioned in
Section 7.1.3.

Figure 2 illustrates our results on MNIST-60K and CIFAR-
10 datasets. Our approach outperforms other alternative
distances except HELLINGER-LMNN which should be ex-
pected, given that it is a state of the art supervised met-
ric learning approach for histograms. Figure 2 also shows
that Euclidean distance and a straightforward application
of LMNN do not work well for histogram data. We in-

sist that HELLINGER-LMNN uses labels to learn a Maha-
lanobis matrix while our approach do not consider them.

8. Conclusion

We propose a new unsupervised metric learning approach
for histograms that leverages Aitchison transformations
for histograms in the simplex. These transformations are
learned with the maximum inverse volume framework of
Lebanon (2006). We provide a new algorithm to carry out
such a maximization using contrastive divergences which
solves the key obstacle - the partition function for a gen-
eral case. We show empirically that our proposal can learn
effectively histogram metrics for unlabeled data. It out-
performs alternative popular metrics for histograms such
as Xz’ Hellinger, total variation, Euclidean distance, cosine
similarity and an Aitchison map (ilr) in clustering prob-
lem on many benchmark datasets. Additionally, it also im-
proves the performances of k-nearest neighbors classifica-
tion with locally sensitive hashing for large datasets.
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