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Here we give the omitted proofs of intermediate results
left out of the main paper.

With observation noise

Proof of Corollary 1. Let V,V' be neighboring
datasets. Let E denote the event that the global sensi-
tivity bound of Theorem 1 holds. Thus, Pr[E] > 1—4.
If E holds, drawing A with probability proportional to
exp(epr(N)/(4/Pr+1 + 2¢)) is e-differentially private
by the privacy guarantee of the exponential mechanism
(McSherry & Talwar, 2007). Specifically, the inequal-
ity holds: Pr[A(V) = AD|E] < ePr[A(V') = )\ E].
We demonstrate this implies (e, §)-differential privacy,

Pr[A(V) = )]

< Pr[A(V) = \|E]Pt[E] + (1 — Pr1[E))
< e“Pr[A(V') = A|E]Pr[E] + &

< ePrlAV) =\, E] +4

< ePrlA(V) = N\ +4.

Proof of Corollary 2. Let V,)’ be neighboring
datasets. Again let E denote the event that the global
sensitivity of Theorem 3 holds (and thus Pr[E] > 1 —
9). If E holds, adding Laplacian noise as as described
in Algorithm 1 to max;<7v; makes ¥ e-differential
private, by the guarantee of the Laplace mechanism.
Specifically, the inequality holds: Pr[A(V) = 0|E] <
e“Pr[A(V') = §|E]. Using the same technique as the
proof of Corollary 1 it is straightforward to show that
¥ is (e, 0)-differentially private. |

Without observation noise

Proof of Theorem 5. Note that at time T the re-
. Tr
gret is f(A\*) — f(A7) < Q & Ae esD?* (de Freitas

et al., 2012) with probability at least 1 — g. Observe
the similarity of the above expression to eq. (6) (with
maxi<7 f(Ar) replaced with f(Ar)). In fact, the re-
mainder of this proof follows in nearly the same way
as the proof of Theorem 3. The only differences are
(a) we use f(Ar) instead of the max term, (b) we use
the regret bound of de Freitas et al. (2012) and, (c) we
need not bound the maximum v as there is no noise.
|

Proof of Corollary 3. Given the sensitivity bound of
Theorem 5, the proof follows in the same way as the
proof of Corollary 2, where E is the event that Theo-
rem 5 holds. ]

Proof of Theorem 6. For a random variable Z ~
Lap(b), recall that Pr[|Z] < ab] = 1 —e™®. There-
fore, as defined in Algorithm 2, |f — f(Ar)| < ab for
b= (2 +¢) with probability 1 — e~*. Note that,
similar to eq. (7), we have for the noise-free setting,
ab> f(Ar) = f > (F) Q) — f

where the second inequality follows from the regret
bound of de Freitas et al. (2012) and holds w.p. at
least 1—¢. This implies that f(A\*) — f < Q + ab.
We can use a similar analysis to eq. (8) to show that
fO*) = f > —Q — ab. Therefore |f — f(A*)|<Q + ab
w.p. greater than 1 — (0 + e~ %). |

Without the GP assumption

Proof of Corollary 4. Given the total global sensitiv-
ity bound implied by Theorem 7, the proof is nearly
identical to the proof of Corollary 2, where E is the
event that the total global sensitivity holds. |
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