Supplementary Material for Differentially Private Bayesian Optimization

Matt J. Kusner Jacob R. Gardner Roman Garnett Kilian Q. Weinberger MKUSNER@WUSTL.EDU GARDNER.JAKE@WUSTL.EDU GARNETT@WUSTL.EDU KILIAN@WUSTL.EDU

Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO 63130

Here we give the omitted proofs of intermediate results left out of the main paper.

With observation noise

Proof of Corollary 1. Let V, V' be neighboring datasets. Let E denote the event that the global sensitivity bound of Theorem 1 holds. Thus, $\Pr[E] \geq 1 - \delta$. If E holds, drawing $\tilde{\lambda}$ with probability proportional to $\exp(\epsilon \mu_T(\lambda)/(4\sqrt{\beta_{T+1}} + 2c))$ is ϵ -differentially private by the privacy guarantee of the exponential mechanism (McSherry & Talwar, 2007). Specifically, the inequality holds: $\Pr[\mathcal{A}(V) = \tilde{\lambda}^{(T)}|E] \leq e^{\epsilon}\Pr[\mathcal{A}(V') = \tilde{\lambda}|E]$. We demonstrate this implies (ϵ, δ) -differential privacy,

$$\begin{aligned} &\Pr[\mathcal{A}(\mathcal{V}) = \tilde{\lambda}] \\ &\leq \Pr[\mathcal{A}(\mathcal{V}) = \tilde{\lambda}|E] \Pr[E] + \left(1 - \Pr[E]\right) \\ &\leq e^{\epsilon} \Pr[\mathcal{A}(\mathcal{V}') = \tilde{\lambda}|E] \Pr[E] + \delta \\ &\leq e^{\epsilon} \Pr[\mathcal{A}(\mathcal{V}') = \tilde{\lambda}, E] + \delta \\ &\leq e^{\epsilon} \Pr[\mathcal{A}(\mathcal{V}') = \tilde{\lambda}] + \delta. \end{aligned}$$

Proof of Corollary 2. Let V, V' be neighboring datasets. Again let E denote the event that the global sensitivity of Theorem 3 holds (and thus $\Pr[E] \geq 1 - \delta$). If E holds, adding Laplacian noise as as described in Algorithm 1 to $\max_{t \leq T} v_t$ makes \tilde{v} ϵ -differential private, by the guarantee of the Laplace mechanism. Specifically, the inequality holds: $\Pr[\mathcal{A}(V) = \tilde{v}|E] \leq e^{\epsilon} \Pr[\mathcal{A}(V') = \tilde{v}|E]$. Using the same technique as the proof of Corollary 1 it is straightforward to show that \tilde{v} is (ϵ, δ) -differentially private.

Without observation noise

Proof of Theorem 5. Note that at time T the regret is $f(\lambda^*) - f(\lambda_T) \leq \Omega \triangleq Ae^{-\frac{T\tau}{(\log T)^{d/4}}}$ (de Freitas

et al., 2012) with probability at least $1 - \frac{\delta}{2}$. Observe the similarity of the above expression to eq. (6) (with $\max_{t \leq T} f(\lambda_t)$ replaced with $f(\lambda_T)$). In fact, the remainder of this proof follows in nearly the same way as the proof of Theorem 3. The only differences are (a) we use $f(\lambda_T)$ instead of the max term, (b) we use the regret bound of de Freitas et al. (2012) and, (c) we need not bound the maximum v as there is no noise.

Proof of Corollary 3. Given the sensitivity bound of Theorem 5, the proof follows in the same way as the proof of Corollary 2, where E is the event that Theorem 5 holds.

Proof of Theorem 6. For a random variable $Z \sim Lap(b)$, recall that $\Pr[|Z| \leq ab] = 1 - e^{-a}$. Therefore, as defined in Algorithm 2, $|\tilde{f} - f(\lambda_T)| \leq ab$ for $b = \left(\frac{\Omega}{\epsilon} + \frac{c}{\epsilon}\right)$ with probability $1 - e^{-a}$. Note that, similar to eq. (7), we have for the noise-free setting,

$$ab \ge f(\lambda_T) - \tilde{f} \ge (f(\lambda^*) - \Omega) - \tilde{f}$$

where the second inequality follows from the regret bound of de Freitas et al. (2012) and holds w.p. at least $1-\delta$. This implies that $f(\lambda^*) - \tilde{f} \leq \Omega + ab$. We can use a similar analysis to eq. (8) to show that $f(\lambda^*) - \tilde{f} \geq -\Omega - ab$. Therefore $|\tilde{f} - f(\lambda^*)| \leq \Omega + ab$ w.p. greater than $1 - (\delta + e^{-a})$.

Without the GP assumption

Proof of Corollary 4. Given the total global sensitivity bound implied by Theorem 7, the proof is nearly identical to the proof of Corollary 2, where E is the event that the total global sensitivity holds.

References

de Freitas, Nando, Smola, Alex, and Zoghi, Masrour. Exponential regret bounds for gaussian process bandits with deterministic observations. In ICML, 2012.

- Dwork, Cynthia, McSherry, Frank, Nissim, Kobbi, and Smith, Adam. Calibrating noise to sensitivity in private data analysis. In *Theory of Cryptography*, pp. 265–284. Springer, 2006.
- McSherry, Frank and Talwar, Kunal. Mechanism design via differential privacy. In FOCS, pp. 94–103. IEEE, 2007.
- Srinivas, Niranjan, Krause, Andreas, Kakade, Sham M, and Seeger, Matthias. Gaussian process optimization in the bandit setting: No regret and experimental design. In *ICML*, 2010.