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Abstract

We consider a budgeted learning setting, where
the learner can only choose and observe a small
subset of the attributes of each training example.
We develop efficient algorithms for Ridge and
Lasso linear regression, which utilize the geome-
try of the data by a novel distribution-dependent
sampling scheme, and have excess risk bounds
which are better a factor of up toO(

√
d/k) over

the state-of-the-art, whered is the dimension and
k + 1 is the number of observed attributes per
example. Moreover, under reasonable assump-
tions, our algorithms are the first in our setting
which can provably uselessattributes than full-
information algorithms, which is the main con-
cern in budgeted learning. We complement our
theoretical analysis with experiments which sup-
port our claims.

1. Introduction

Consider the problem of medical diagnosis, in which the
learner wishes to determine whether a patient has some dis-
ease based on a series of medical tests. In order to build a
model, the learner has to gather a set of volunteers, per-
form diagnostic tests on them and use the tests results as
features. However, some of the volunteers may be reluc-
tant to undergo a large number of tests, as medical tests
may cause physical discomfort, and will prefer to undergo
only a small number of them. During prediction time, how-
ever, patients are more likely to agree to undergo all tests,
to find a diagnosis to their illness.

This problem is an example of budgeted learning (Madani
et al., 2004) or learning with limited attribute observation
(LAO) (Ben-David & Dichterman, 1993). Formally, we
use the local budget setting presented in (Cesa-Bianchi
et al., 2011): For each training example (composed of a
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d-dimensional attribute vectorx and a target valuey), we
have a budget ofk + 1 attributes, wherek � d, and we are
able to choose whichk+1 attributes we wish to reveal. Our
goal is to find a good predictor that uses all the attributes
despite the partial information at training time.

This problem has been previously studied in (Cesa-Bianchi
et al., 2011; Hazan & Koren, 2012), in the context of lin-
ear predictors and the squared loss, under bothL2 (Ridge)
andL1 (Lasso) norm constraints (see also (Zolghadr et al.,
2013) for a related but different setting, where the cost of
observing attributes is incorporated into the loss function).
Their algorithmic approach is based on online/stochastic
gradient descent, using unbiased gradients estimates of
the loss w.r.t. each example. The gradient estimator re-
quires uniform sampling of attributes (up to the budget con-
straint), eventually leading to algorithms with expected ex-
cess risk bounds over the optimal predictor in the hypoth-

esis class of̃O
(√

(d/k)/m
)

afterm examples, compared

with Õ
(√

1/m
)

for full-information algorithms that can

view all the attributes (Kakade et al., 2009) (see Table1).
Another interpretation of these results is that even though
the algorithms view onlyk +1 out ofd attributes, the algo-
rithms need the same total number of attributes,Õ

(
d/ε2

)
,

to obtain the same accuracyε. Moreover, (Cesa-Bianchi
et al., 2011; Hazan & Koren, 2012) provide a lower bound
establishing that Ridge bound is not improvable in general.

In this paper, despite these seemingly unimprovable results,
we show that they can in fact be improved. We do this by
developing a novel sampling scheme which samples the at-
tributes in adistribution-dependentmanner: We sample at-
tributes with large second moments more than others, thus
gaining a distribution-dependent improvement factor. In
other words, our sampling methods take advantage of the
geometry of the data distribution, and utilize it to extract
more ’information’ out of each sample. Under reasonable
assumptions, our methods needlessattributes to reach the
same accuracy than the online full-information algorithms,
which is beneficial in budgeted learning scenarios. As far
as we know, these are the first methods provably able to do
so in our setting.
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We begin by assuming prior knowledge of the second mo-
ments of the attribute vector, namelyED

[
x2

i

]
for i ∈ [d],

where we useED [∙] to denote the expectation with respect
to the data distribution. Our excess risk bounds are sum-
marized in Table1. To clarify the notation,

∥
∥ED

[
x2
]∥∥

1
2

is defined as
(∑d

i=1

√
ED [x2

i ]
)2

, and
∥
∥ED

[
x2
]∥∥

1
is de-

fined as
∑d

i=1 ED

[
x2

i

]
.

Table 1.Expected excess risk bounds assuming‖x‖2 ≤ 1 in the
Ridge scenario and‖x‖∞ ≤ 1 in the Lasso scenario.

Type NewBound OldBound
Full-Information
OnlineBound

Ridge O

(√
‖ED [x2]‖ 1

2
+k

km

)

O

(√
d

km

)

O
(√

1
m

)

Lasso O

(√
(‖ED [x2]‖1+k) log d

km

)

O

(√
d log d

km

)

O

(√
log d
m

)

It can be easily shown that under the relevant data norm
constraints, both

∥
∥ED

[
x2
]∥∥

1
2

and
∥
∥ED

[
x2
]∥∥

1
are at most

d, which proves that our bounds are always as good as the
previous bounds. In fact, the equalities hold only when
all second moments are equal. Otherwise, both values are
strictly smaller thand, making our bounds better. This im-
provement factor is distribution-dependent and may be as

large asO
(√

d/k
)

(i.e. both values can beO(1)) when

the second moments decay sufficiently fast. We note that
similar distributional assumptions about moment decay are
made in other successful algorithmic approaches such as
AdaGrad (Duchi et al., 2011). When the attribute budget

satisfiesk = Ω
(∥
∥ED

[
x2
]∥∥

1
2

)
(or k = Ω

(∥∥ED

[
x2
]∥∥

1

)

in the Lasso scenario) our bounds also coincide with the
online full-information scenario.

When no such prior knowledge is available, we split our
algorithms into two phases: In the first phase, we estimate
a certain upper bound on the second moments of the at-
tributes. In the second phase, we use the same sampling
scheme but with smoothed probabilities, to compensate for
the stochastic error in the estimation phase. We prove that
the excess risk bound of this method is always as good as
those of (Hazan & Koren, 2012), and given sufficient train-
ing examples, achieves the same bounds as our algorithms
which assume prior knowledge of the moments (up to con-
stant factors).

2. Preliminaries

2.1. Notation

We indicate scalars by a small letter,a, and vectors by a
bold font, a. We usea2 to indicate the vector for which
a2 [i] = a [i]2, anda + b to indicate the vector for which
(a + b) [i] = a [i] + b. We denote thei-th vector of the

standard basis byei. We indicate the set of indices1, .., n
by [n]. We use‖a‖p to indicate thep-norm of the vector,
(∑d

i=1 |ai|
p
) 1

p

. We apply this notation also for the case

wherep = 1
2 i.e. ‖a‖ 1

2
= (

∑d
i=1

√
|ai|)2, even though

this is not a proper norm. We also use‖a‖∞ to indicate
the infinity norm,maxi |ai|. We denote the expectation
with respect to the randomness of the algorithm (attribute
sampling) byEA [∙], the expectation with respect to the data
distribution byED [∙] and the expectation with respect to
both byED,A [∙]. For the two-phased algorithms, we use
ED,Ai

[∙] wherei ∈ {1, 2} to denote the expectation with
respect to the data distributions and the randomness of the
algorithm during thei-th phase. We denote the loss induced
by thet-th example in the training set as`t (w).

2.2. Linear Regression

Following the standard framework for statistical learning,
we assume the training set,

{
(xt, yt) ∈ Rd × R

}m

t=1
, was

sampled i.i.d. from some joint distributionD. Eachxt is
a data point, represented by a vector of attributes, andyt is
the desired target value. The goal of the learner is to find a
weight vectorw, such that̂yt = 〈w,xt〉 is a good estimator
of yt, in the sense that it minimizes the expected loss, or the
risk, LD (w) = E(x,y)∼D

[
`
(
wT x, y

)]
. Here we focus on

the squared loss i.e.` (ŷ, y) = 1
2 (ŷ − y)2.

To prevent overfitting, it is common practice to constrain
the norm ofw. We designate the 2-norm case, where we
want to find a good predictor inF = {w| ‖w‖2 ≤ B}, as
the Ridge regression scenario, and the 1-norm case, where
we consider{w| ‖w‖1 ≤ B}, as the Lasso regression sce-
nario. We will assume w.l.o.g. that‖x‖2 ≤ 1 in the Ridge
scenario, and‖x‖∞ ≤ 1 in the Lasso scenario, and that
|yt| ≤ B in both cases.

In the full-information scenario, the learner has access to
all the attributes ofxt, whereas in the attribute efficient
scenario, the learner can choosek + 1 attributes out ofd
from each vectorxt in the training set.

3. Attribute Efficient Ridge Regression

In this section we present our algorithms for Ridge regres-
sion where the 2-norm is bounded,‖w‖2 ≤ B. The generic
approach to the Ridge attribute efficient scenario, which
we call the General Attribute Efficient Ridge Regression
(GAERR) algorithm and is presented in Algorithm1, was
developed in (Cesa-Bianchi et al., 2011; Hazan & Koren,
2012) and is based on the Online Gradient Descent (OGD)
algorithm with gradient estimates.

The OGD algorithm goes over the training set, and for each
example builds an unbiased estimator of the gradient. Af-
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terwards, the algorithm updates the current weight vector,
wt, by performing a step of sizeη in the opposite direction
to the gradient estimator. The result is projected over the
L2 ball of sizeB, yieldingwt+1. At the end, the algorithm
outputs the average of allwt.

The gradient of the squared loss is∇` (w;xt, yt) =
(〈w,xt〉 − yt) ∙ xt, and the key idea of the GAERR al-
gorithm is how to use the budgeted sampling to construct
an unbiased estimator for the gradient. It does so by sam-
pling k + 1 attributes out of thed attributes of the sample
wherek > 0 is the a budget parameter1: First, it samples
k attributes with probabilitiesqi with replacement, and by
weighting them correctly, builds an unbiased estimator for
the data point,̃xt. Afterwards, it samples an additional at-
tribute with probabilitypjt

= w2
t,jt

/ ‖wt‖
2
2 and by a sim-

ple calculation obtains an unbiased estimator of the inner
product. Subtracting the label,yt, yields the unbiased esti-
mator,φ̃t. Finally, the algorithms multiplies the two parts,
thus building an unbiased estimator of the gradient for the
point, g̃t.

Algorithm 1 GAERR
Parameters:B, η > 0 andqi for i ∈ [d]

Input: training setS = {(xt, yt)}t∈[m] andk > 0
Output: regressor̄w with ‖w̄‖2 ≤ B
1: Initialize w1 6= 0, ‖w1‖2 ≤ B arbitrarily
2: for t = 1 to m do
3: for r = 1 to k do
4: Pick it,r ∈ [d] with probabilityqit,r

and observe
xt [it,r]

5: x̃t,r ← 1
qit,r

xt [it,r] eit,r

6: end for
7: x̃t ← 1

k

∑k
r=1 x̃t,r

8: Choosejt ∈ [d] with probability pjt =
w2

t,jt

‖wt‖2
2

and

observext [jt]
9: φ̃t ←

wt,j

pjt
xt [jt]− yt

10: g̃t ← φ̃t ∙ x̃t

11: vt ← wt − ηg̃t

12: wt+1 ← vt ∙ B

max{‖vt‖2,B}
13: end for
14: w̄← 1

m

∑m
t=1 wt

The expected excess risk bound of the GAERR algorithm
is presented in the next theorem which is a slightly more
general version of Theorem 3.1 in (Hazan & Koren, 2012).

Theorem 3.1. Assume the distributionD is such that
‖x‖2 ≤ 1 and |y| ≤ B with probability 1. Letw̄ be
the output of GAERR when run with step sizeη and let

1As in the AERR algorithm, we assume we have a budget of
at least2 attributes per training sample.

maxt ED,A

[
‖g̃t‖

2
2

]
≤ G2. Then for anyw∗ ∈ Rd with

‖w∗‖2 ≤ B,

ED,A [LD (w̄)] ≤ LD (w∗) +
2B2

ηm
+

η

2
G2.

The intuition is that it OGD requires merely unbiased gra-
dient estimates, as long as their second moments,G, are
bounded. The full proof can be found in AppendixC.1.

The AERR algorithm is one variant of the GAERR algo-
rithm. It was presented in (Hazan & Koren, 2012) and uses
uniform sampling to estimatext. In our GAERR notation
it usesqi = 1

d ∀i ∈ [d] . The authors prove (Lemma 3.3
in (Hazan & Koren, 2012)) that for the AERR algorithm,
G2 ≤ 8B2d/k, which together with Theorem3.1 and us-
ing η = 2B/G

√
m yields an expected excess risk bound of

4B2
√

2d/km. They also prove that their algorithm is op-
timal up to constant factors (in the worst-case over all data
distributions), by showing a corresponding lower bound.

This, however, is not the end of the story. By analyzing the
bound, we show that we can improve it in a distribution-
dependent manner. Theorem3.1shows us that the expected
excess risk bound is proportional toG, therefore we wish
to develop a sampling method that allows us to minimize

ED,A

[
‖g̃t‖

2
2

]
, as stated in the next lemma.

Lemma 3.2. The GAERR algorithm gen-
erates gradient estimates that for all t,

ED,A

[
‖g̃t‖

2
2

]
≤ 4B2

(
1
kED,A

[
‖x̃t,r‖

2
2

]
+ 1
)

.

The proof can be found in AppendixC.2.

Since

ED,A

[
‖x̃t,r‖

2
2

]
= ED,A

[
x̃t,r [it,r]

2
]

=
d∑

i=1

1
qi
ED

[
x2

i

]
,

(1)
we can minimize this bound as a function of theqi-s, under
the constraints of

∑d
i=1 qi = 1 and qi ≥ 0 for all i ∈

[d]. This optimization problem can easily be solved using
Lagrange multipliers to yield the solution

qi =

√
ED [x2

i ]
∑d

j=1

√
ED

[
x2

j

] . (2)

We could have followed a similar optimization strategy for
finding the optimal sampling distribution for estimating the
inner product. This strategy would have yielded that the

optimal probabilities arepjt =

√
w2

t,jt
ED[x2

jt
]

∑d
l=1

√
w2

t,lED[x2
l ]

. How-

ever, this does not materially improve the analysis, and is
therefore not included.
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3.1. Known Second Moment Scenario

If we assume prior knowledge of the second moment of
each attribute, namelyED

[
x2

i

]
for all i ∈ [d], we can use

equation (2) to calculate the optimal values of theqi-s. This
is the idea behind our DDAERR (Distribution-Dependent
Attribute Efficient Ridge Regression) algorithm. Its ex-
pected excess risk bound is formulated in the next theorem.

Theorem 3.3. Assume the distributionD is such that
‖x‖2 ≤ 1 and |y| ≤ B with probability 12 andED

[
x2

i

]

are known fori ∈ [d]. Let w̄ be the output of DDAERR,
when run withη = 1√

m

(
1
k ‖ED [x2]‖ 1

2
+1

) . Then for any

w∗ ∈ Rd with ‖w∗‖2 ≤ B,

ED,A [LD (w̄)] ≤ LD (w∗) + 4
B2

√
m

√
1
k
‖ED [x2]‖ 1

2
+ 1.

The proof can be found in AppendixC.3.

Recalling that with probability 1 we have‖x‖2 ≤ 1, it is
easy to see that

∥
∥ED

[
x2
]∥∥

1
2
≤ d, therefore the DDAERR

bound is at least as good as the AERR bound3. However,∥
∥ED

[
x2
]∥∥

1
2

may also be much smaller thand, in cases

where the second moments vary between attributes or the
ED

[
x2
]

is approximately sparse. In these cases, we may
gain a significant improvement.

3.2. Unknown Second Moment Scenario

The solution presented in the previous section requires ex-
act knowledge ofED

[
x2

i

]
for all i. Such prior knowledge

may not be available, thus we turn to consider the case
where the moments are initially unknown. The problem in
this scenario is that without prior knowledge of the second
moments of the attributes, the learner cannot calculate the
optimalqi-s via equation (2). To address this issue we split
the learning into two phases: In the first phase we run on
the firstm1 training examples and estimate the second mo-
ments by sampling the attributes uniformly at random. In
the second phase we run on the nextm2 training examples,
and perform the regular DDAERR algorithm, with a slight
modification - in the calculation of theqi-s, we use an upper
confidence interval instead of the second moments them-

selves, namelyqi =
√

A[i]+ 13
6 ε

∑d
j=1

√
A[j]+ 13

6 ε
whereA [i] is the

average of the square of thei-th attribute as calculated dur-
ing the first phase,ε = d log (2d/δ)

(k+1)m1
andδ is the probability

2Actually, in all the relevant locations, it is enough to assume
only ED

[
y2
]

is bounded, but we prefer to remain within the
framework of previous works.

3If
∥
∥ED

[
x2
]∥∥

1
2

= d we have thatED [xi] = 1
d

for all i ∈ [d].

In this case, all theqi-s are equal to1
d

and the DDAERR and
AERR algorithms coincide.

parameter. This approach is the basis for our Two-Phased
DDAERR algorithm (Algorithm2 in AppendixA.1).

In practice, one can run the AERR algorithm during the
first phase, in order to obtain a better starting point for the
second phase. However, We ignore this improvement in our
analysis, but incorporate it in the experiments presented in
section5.

The expected excess risk bound of the algorithm is formu-
lated in the following theorem.

Theorem 3.4. Assume the distributionD is such that
‖x‖2 ≤ 1 and |y| ≤ B with probability 1. Let
w̄ be the output of Two-Phased DDAERR when run

with η = max (η1, η2) where η1 =
√

k
6dm2

and

η2 =
√√
√
√

k/m2

2‖2A+ 10
3 ε‖ 1

2
+2

√
5d3‖2A+ 10

3 ε‖ 1
2

log 2d
δ

3(k+1)m1
+k

.

Then for allm1 and for anyw∗ ∈ Rd with ‖w∗‖2 ≤ B,
with probability1 over the first phase, we have

ED,A2 [LD (w̄)]− LD (w∗) ≤
4B2

√
m2

√
6d

k
.

Also, with probability≥ 1− δ over the first phase, we have

ED,A2 [LD (w̄)]− LD (w∗) ≤

16B2

√
m2

√√
√
√
√1

k




√
‖ED [x2]‖ 1

2
+ d

√
2d log 2d

δ

(k + 1) m1





2

+ 1.

The proof can be found in AppendixC.4.

If we examine the bound we can see that with
probability 1 over the first phase, regardless of the
value of m1, the expected excess risk bound is at

most O
(

B2
√

km2

√
d
)

, which is the same bound as the

AERR algorithm. Asm1 increases, the bound turns

to O



 B2
√

km2

√(√
‖ED [x2]‖ 1

2
+ d
√

d log 2d
δ

(k+1)m1

)2

+ k



.

Therefore, ifm1 �
d2 log 2d

δ

k+1 , we achieve an improvement

over the AERR algorithm. Ifm1 ≥
d3 log 2d

δ

(k+1)‖ED [x2]‖ 1
2

, the

bound becomesO

(
B2

√
km2

√
‖ED [x2]‖ 1

2
+ k

)

, which is

the same bound as in the regular DDAERR algorithm with
prior knowledge of the second moment of the attributes.

4. Attribute Efficient Lasso Regression

In this section we present our algorithms for Lasso regres-
sion, where the loss is again the squared loss, but this time
the 1-norm is bounded, i.e.‖w‖1 ≤ B.
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The generic approach to the Lasso attribute efficient sce-
nario, which we call the General Attribute Efficient Lasso
Regression (GAELR) algorithm, is similar to the Ridge
scenario but with two main differences: First, it is based
on a variant of the Exponentiated Gradient (EG) algo-
rithm using unbiased gradient estimates (Kivinen & War-
muth, 1997; Hazan & Koren, 2012), instead of the OGD
algorithm. Second, when estimating the inner prod-
uct, instead of sampling one attribute with probability
pjt

= w2
t,jt

/ ‖wt‖
2
2, it samples it with probabilitypjt

=
|wt,jt

| / ‖wt‖1, as the Lasso scenario has a bound on the
1-norm of the predictor. The rest of the estimation process
is the same. More details can be found in AppendixA.2.

The expected excess risk bound of the GAELR algorithm
is presented in the next theorem which is a slightly more
general version of Theorem 3.4 in (Hazan & Koren, 2012).

Theorem 4.1. Assume the distributionD is such that
‖x‖∞ ≤ 1 and |y| ≤ B with probability 1. Letw̄ be the
output of GAELR, when run with step sizeη ≤ 1

2G where

maxt

∥
∥
∥ED,A

[
g̃t

2
]∥∥
∥
∞
≤ G2. Then for anyw∗ ∈ Rd with

‖w∗‖1 ≤ B,

ED,A [LD (w̄)] ≤ LD (w∗) + B

(
log 2d

ηm
+ 5ηG2

)

.

The general idea of the proof is thatg̃t is an unbiased es-
timator of the gradient, therefore we can use the standard
analysis of the EG algorithm. The full proof can be found
in AppendixC.10.

The AELR algorithm is one variant of the GAELR algo-
rithm. It was presented in (Hazan & Koren, 2012) and uses
uniform sampling to estimatext. In our GAELR notation
it usesqi = 1

d ∀i ∈ [d] . The authors prove (Lemma 3.8
in (Hazan & Koren, 2012)) that for the AELR algorithm,
G2 ≤ 8B2d/k, which together with Theorem4.1 and us-
ing η = 2B

G
√

m
yields an expected excess risk bound of

4B2
√

10d log 2d
km .

Similarly to the Ridge scenario, by analyzing the bound,
we show that we can improve the bound in a distribution-
dependent manner: Theorem4.1 tells us that the expected
excess risk bound is proportional toG, therefore we wish
to develop a sampling method that minimizes the infinity
norm of the gradient estimator.

Lemma 4.2. The GAELR algorithm gen-
erates gradient estimates that for all t,∥
∥
∥ED,A

[
g̃t

2
]∥∥
∥
∞
≤ 4B2

(
1
k

∥
∥ED,A

[
x̃2

t,r

]∥∥
∞

+ 1
)

.

The proof can be found in AppendixC.11.

Since

ED,A

[
x̃2

t,r [i]
]

=
1
qi
ED

[
x2

i

]
, (3)

we can minimize this bound as a function of theqi-s, under
the constraints of

∑d
i=1 qi = 1 andqi ≥ 0 for all i ∈ [d].

Lemma 4.3. The solution to the optimization problem de-

fined isqi =
ED[x2

i ]
∑d

j=1 ED[x2
j ]

.

The proof can be found in AppendixC.12.

As in the Ridge scenario, we could have tried to optimize
the sampling probabilities of the inner product estimation.

However, sinceED,A

[
φ̃t

2
]

is calculated using the same

method as in the Ridge scenario, the optimal sampling

probabilities remainpjt
=

√
w2

t,jt
ED[x2

jt
]

∑d
l=1

√
w2

t,lED[x2
l ]

, but we will

still not include this improvement in our analysis.

4.1. Known Second Moment Scenario

If we assume we have prior knowledge of the second mo-
ment of each attribute, we can use Lemma4.3 to calcu-
late the optimal values of theqi-s. This is the idea be-
hind our DDAELR (Distribution-Dependent Attribute Ef-
ficient Lasso Regression) algorithm. Its expected excess
risk bound is formulated in the next theorem.

Theorem 4.4. Assume the distributionD is such that
‖x‖∞ ≤ 1 and |y| ≤ B with probability 1 andED

[
x2

i

]

are known fori ∈ [d]. Let w̄ be the output of DDAELR,

when run withη = 1
2B

√
log 2d

5m( 1
k ‖ED [x2]‖1+1) . If m ≥ log 2d

then for anyw∗ ∈ Rd with ‖w∗‖1 ≤ B,

ED,A [LD (w̄)]− LD (w∗) ≤

4B2

√
5 log 2d (‖ED [x2]‖1 + k)

km
.

The proof can be found in AppendixC.13.

Recalling that with probability 1 we have‖x‖∞ ≤ 1, it is
easy to see that

∥
∥ED

[
x2
]∥∥

1
≤ d, therefore the DDAELR

bound is at least as good as the AELR bound4. However,∥
∥ED

[
x2
]∥∥

1
may also be much smaller thand, in cases

where the second moments vary between attributes or the
vector is sparse. In these cases, we may gain a significant
improvement.

4.2. Unknown Second Moment Scenario

In a case we lack prior knowledge ofED

[
x2

i

]
for all i,

we take a similar approach to the Two-Phased DDAERR
algorithm: in the first phase, we estimate the second
moments by uniform sampling, exactly as in the Two-
Phased DDAERR algorithm. In the second phase, we

4If
∥
∥ED

[
x2
]∥∥

1
= d we have thatED [xi] = 1 for all i ∈ [d].

In this case, all theqi-s are equal to1
d

and the DDAELR and
AELR algorithms coincide.
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run the DAELR with modifiedqi-s, but this time with

qi = A[i]+ 13
6 ε

∑d
j=1(A[j]+ 13

6 ε) which are more suitable for the Lasso

scenario. This approach is the basis for our Two-Phased
DDAELR algorithm (Algorithm4 in AppendixA.3).

As in the Two-Phased DDAERR algorithm, during the first
phase one can actually run the AELR algorithm in order to
obtain a better starting point for the second phase, but again
we will ignore this improvement in our analysis.

The expected excess risk bound of the algorithm is formu-
lated in the following theorem.

Theorem 4.5. Assume the distributionD is such
that ‖x‖∞ ≤ 1 and |y| ≤ B with probabil-
ity 1. Let w̄ be the output of DDAELR, when

run with η =
√

k log 2d

20B2m2

(
8‖A‖1+20d min

(
d log 2d

δ
(k+1)m1

,1

)
+k

) .

If m2 ≥ log 2d then for anym1 and for anyw∗ ∈ Rd

with ‖w∗‖1 ≤ B, with probability 1 over the first phase we
have

ED,A2 [LD (w̄)]− LD (w∗) ≤ 61B2

√
d log 2d

km2
.

Also, with probability1− δ over the first phase we have

ED,A2 [LD (w̄)]− LD (w∗) ≤ 4B2 ×
√√
√
√5

(
16 ‖ED [x2]‖1 + 88d

3 min( d log 2d
δ

(k+1)m1
, 1) + k

)
log 2d

km2
.

The proof can be found in AppendixC.14.

With probability 1 over the first phase, regard-
less of the value ofm1, the expected excess risk

bound is at mostO
(

B2
√

km2

√
d log d

)
, which is the

same bound of the AELR algorithm. Asm1 in-
creases, the expected excess risk bound becomes

O

(
B2

√
km2

√(
‖ED [x2]‖1 + d2 log 2d

δ

(k+1)m1
+ k
)

log d

)

. There-

fore, if m1 �
d log 2d

δ

k+1 , we achieve an improvement over the

AELR algorithm. If m1 ≥
d2 log 2d

δ

(k+1)‖ED [x2]‖1
, the expected

excess risk bound turns toO
(

B2
√

km2

√
‖ED [x2]‖1 + k

)
,

which is the same bound as in the regular DDAELR
algorithm with prior knowledge of the second moment of
the attributes.

Interestingly, here the first phase generally requires less
samples than the two-phased DDAERR algorithm. This
is essentially due toED

[
x2

i

]
being easier to estimate than√

ED [x2
i ], because the square root is not a Lipschitz func-

tion.

5. Experiments

We now turn to describe some experiments illustrating the
behavior of our algorithms. We conducted two sets of
experiments: One on artificial data, which allows us to
easily control data properties such as

∥
∥ED

[
x2
]∥∥

1
2

and
∥
∥ED

[
x2
]∥∥

1
; And the other on a subset of the popular

MNIST (LeCun et al., 1998) data set, similar to (Cesa-
Bianchi et al., 2011; Hazan & Koren, 2012). An addi-
tional experiment on a different data set is described in Ap-
pendixB.

In the Ridge regression scenario we tested 5 algorithms:

1. Our DDAERR algorithm that has prior knowledge of
the second moment of the attributes.

2. Our Two-Phased DDAERR algorithm that does not
have prior knowledge of the second moments of the
attributes, and tries to estimate them.

3. The AERR algorithm that does not require any prior
knowledge.

4. Online Ridge regression that performs online gradient
descent and has access to all the attributes.

5. Offline Ridge regression that minimizes the empirical
risk, which also has access to all attributes, and uses
each training example more than once.

For the Lasso scenario we used the corresponding algo-
rithms. In all cases our algorithms used the improved in-
ner product estimation as well as the improved data point
estimation.

For a fair comparison between the attribute efficient algo-
rithms and the full-information algorithms, we use the X-
axis in our figures to represent the number ofattributes
each algorithm sees, rather than the number of examples,
since the comparison should be in terms of the total at-
tribute budget used.

To quantify the theoretical improvement of the DDAERR
algorithm, we compare

∥
∥ED

[
x2
]∥∥

1
2

and
∥
∥ED

[
x2
]∥∥

1
to d,

as this is the potential improvement according to our anal-
ysis. To avoid scaling issues, we normalize by the2-norm
or the∞-norm of the data and define our ’Improvement
Ratios’ by

ρRidge =

∥
∥ED

[
x2
]∥∥

1
2

dED

[
‖x‖22

] , ρLasso=

∥
∥ED

[
x2
]∥∥

1

d ‖ED [x2]‖∞
.

Similar to (Cesa-Bianchi et al., 2011; Hazan & Koren,
2012), we used 10-fold cross validation to optimize the pa-
rameters for each phase. We measured the performance of
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(a)α = 0, ρRidge = 1. (b) α = −0.5, ρRidge = 0.91.

(c) α = −1, ρRidge = 0.55. (d) α = −2, ρRidge = 0.05.

Figure 1.Test error for the algorithms withk+1 = 5 in the Ridge
scenario over simulated data withd = 500.

each algorithm by the average loss over the testing set, di-
vided by the loss of the zero predictor, and defined the error
bars as one standard deviation over100 repeats of each ex-
periment. For the two-phased algorithms, we setm1 = m

10 ,
m2 = 9m

10 , and run the AERR/AELR algorithm during the
first phase, using its result as a starting point for the second
phase. Unlike the theoretical analysis, we setε to 0, since
the theoretical upper confidence bound is conservative, and
split the attribute budget evenly between the data point es-
timation and the inner product estimation as we found that
these improve the empirical results.

5.1. Simulated Data

We begin by studying a synthetic linear data set which al-
lows us to control the improvement ratio in both scenarios
and to demonstrate the dependence of the algorithms on
them. We first defined a vectoru ∈ Rd (whered = 500)
with exponentially decaying coefficients:ui = iα for
someα ≤ 0 and projected it on theL2 (L∞) ball of ra-
dius 1 for the Ridge (Lasso) scenario, to produce the ex-
pected values of each attribute. To generate one training
example, we generated independent binary variables with
the corresponding expectations, and joined them into ad-
dimensional vector. To generate the entire training set, we
repeated the example generation process independentlym
times. In all these experiments, we usedk + 1 = 5.

In the Ridge scenario, the target values were generated us-
ing a scalar product with a random weight vector from
{−1, 1}d, w∗

Ridge, which itself was generated i.i.d. with
P (w∗

Ridge,i = 1) = P (w∗
Ridge,i = −1) = 0.5. In

(a)α = 0, ρLasso= 1. (b) α = −0.5, ρLasso= 0.086.

(c) α = −1, ρLasso= 0.014. (d) α = −2, ρLasso= 0.0033.

Figure 2.Test error for the algorithms withk+1 = 5 in the Lasso
scenario over simulated data withd = 500.

the Lasso scenario, the target values were generated us-
ing a scalar product with a random sparse weight vec-
tor from {−1, 0, 1}d, w∗

Lasso, which was generated i.i.d.
with P (w∗

Lasso,i = 1) = P (w∗
Lasso,i = −1) = 0.15 and

P (w∗
Lasso,i = 0) = 0.7.

The Ridge results appear in figure1: In the first experiment,
all the attributes have the same distribution,ρRidge = 1, and
the DDAERR and AERR algorithms are equivalent5. As
ρRidge decreases, the algorithms drift apart, and we see a
significant improvement in our methods.

The Lasso results that appear in figure2 are similar, this
time with respect to

∥
∥ED

[
x2
]∥∥

1
instead of

∥
∥ED

[
x2
]∥∥

1
2
.

5.2. MNIST Data Set

In our next set of experiments, we choose to repeat the ex-
periments in (Cesa-Bianchi et al., 2011; Hazan & Koren,
2012) and use the MNIST data set. Each training example
is a labeled28 × 28 grayscale image of one hand-written
digit. As in the original experiments, we focused on the
classification problem of distinguishing between the ”3”
digits (which we labeled -1) and the ”5” digits (which we
labeled +1) and addressed it by regressing the labels. As in
(Hazan & Koren, 2012), we usedk + 1 = 57 attributes for
each training example in the Ridge scenario andk + 1 = 5
attributes in the Lasso scenario. For this data set we have
d = 784, ρRidge = 0.45 andρLasso= 0.2.

5The small difference between the algorithms is caused by the
different methods of calculatingη.
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Figure 3.Test error for the algorithms withk + 1 = 57 in the
Ridge scenario over the classification task ”3” vs. ”5” in the
MNIST data set.

The Ridge results appear in figure3: Our DDAERR al-
gorithm performs considerably better than the AERR al-
gorithm, for all the training set sizes checked, in corre-
spondence with the theory. Also, the DDAERR algo-
rithm performs similarly to the online Ridge algorithm,
and even better for a small total number of examined at-
tributes. This suggests that at least for a small number of
total attributes, our attribute efficient method is better than
the full-information method. The offline Ridge algorithm
is the best algorithm, because it can utilize all attributes
from each example, as well as use each example more than
once, unlike the attribute efficient algorithms. The perfor-
mance of the Two-Phased DDAERR is between those of
the AERR algorithm and the DDAERR algorithm, and con-
verges towards the DDAERR algorithm as the number of
observed attributes grows, as expected.

The Lasso results, which appear in figure4, are similar:
The DDAELR algorithm performs considerably better than
the AELR algorithm, and comparable with the online Lasso
algorithm, if not slightly better. It is interesting to note that
the variance in the performance of the DDAELR algorithm
is smaller than that of other algorithms. Also, this time it is
much clearer that the Two-Phased DDAELR algorithm per-
forms similarly to the AELR algorithm for a small amount
of examined attributes, and converges to DDAELR as the
number of examined attributes increases, as expected.

6. Summary and Extensions

In this paper we studied the attribute efficient local bud-
get setting and developed efficient linear regression algo-
rithms for the Ridge and Lasso regression scenarios. Our
algorithms utilize the geometry of the data distribution, and

Figure 4.Test error for the algorithms withk+1 = 5 in the Lasso
scenario over the classification task ”3” vs. ”5” in the MNIST data
set.

are able to achieve distribution-dependent improvements
factors for the excess risk bound over the state-of-the-art,
which can be as large asO(

√
d/k). Moreover, under rea-

sonable assumptions, our algorithms are the first to prov-
ably use less attributes than full-information algorithms,
which is the main concern in budgeted learning.

Interestingly, our partial information algorithms can also be
used to speed up learning in the full-information case: To
learn a linear (Ridge) predictor in the full information case,
one can use OGD, obtain a convergence rate ofO(1/

√
m)

with a cost of processingd attributes per example. How-
ever, one may also use our DDAERR algorithm by setting
k =

∥
∥ED

[
x2
]∥∥

1
2
. This will result in the same convergence

rate, but at the cost of processing onlyk + 1 attributes per
example, which can be much faster.

There are several possible directions for future work. For
example, our work focuses on learning from i.i.d. data, and
it would be interesting to extend it to a non-stochastic on-
line learning environment, where the data is possibly gen-
erated by an adversary. Another direction is to replace the
dependence on the second moments of the data by a more
refined notion, which also depends on the geometry of the
optimal linear predictor (e.g. if it is sparse, then perhaps
one can learn while sampling fewer ‘irrelevant’ features).
Also, it would be interesting to generalize the results be-
yond the Ridge and Lasso scenarios to a joint framework
with general norms and loss functions. Finally, proving
distribution-dependent lower bounds may complement our
results, or show additional room for improvements.

Acknowledgements: This research was partially sup-
ported by an Israel Science Foundation Grant (425/13) and
an FP7 Marie Curie CIG grant.



Attribute Efficient Linear Regression with Distribution-Dependent Sampling

References

Ben-David, Shai and Dichterman, Eli. Learning with re-
stricted focus of attention. InProceedings of the sixth an-
nual conference on Computational learning theory, pp.
287–296. ACM, 1993.

Blackard, Jock A and Dean, Denis J. Comparative accura-
cies of artificial neural networks and discriminant anal-
ysis in predicting forest cover types from cartographic
variables.Computers and electronics in agriculture, 24
(3):131–151, 1999.

Cesa-Bianchi, Nicolo, Shalev-Shwartz, Shai, and Shamir,
Ohad. Efficient learning with partially observed at-
tributes. The Journal of Machine Learning Research,
12:2857–2878, 2011.

Clarkson, Kenneth L, Hazan, Elad, and Woodruff, David P.
Sublinear optimization for machine learning.Journal of
the ACM (JACM), 59(5):23, 2012.

Duchi, John, Hazan, Elad, and Singer, Yoram. Adaptive
subgradient methods for online learning and stochastic
optimization. The Journal of Machine Learning Re-
search, 12:2121–2159, 2011.

Hazan, Elad and Koren, Tomer. Linear regression with
limited observation. InProceedings of the 29th Inter-
national Conference on Machine Learning (ICML-12),
pp. 807–814, 2012.

Kakade, Sham M, Sridharan, Karthik, and Tewari, Ambuj.
On the complexity of linear prediction: Risk bounds,
margin bounds, and regularization. InAdvances in neu-
ral information processing systems, pp. 793–800, 2009.

Kivinen, Jyrki and Warmuth, Manfred K. Exponentiated
gradient versus gradient descent for linear predictors.In-
formation and Computation, 132(1):1–63, 1997.
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