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Abstract

We consider a budgeted learning setting, where
the learner can only choose and observe a small
subset of the attributes of each training example.
We develop efficient algorithms for Ridge and
Lasso linear regression, which utilize the geome-
try of the data by a novel distribution-dependent
sampling scheme, and have excess risk bounds
which are better a factor of up 19(,/d/k) over

the state-of-the-art, wher&is the dimension and

k + 1 is the number of observed attributes per
example. Moreover, under reasonable assump-
tions, our algorithms are the first in our setting
which can provably uskessattributes than full-
information algorithms, which is the main con-
cern in budgeted learning. We complement our
theoretical analysis with experiments which sup-

d-dimensional attribute vector and a target valug), we
have a budget of + 1 attributes, wheré < d, and we are
able to choose which+1 attributes we wish to reveal. Our
goal is to find a good predictor that uses all the attributes
despite the partial information at training time.

This problem has been previously studied@eéa-Bianchi

et al, 2011 Hazan & Koren 2012, in the context of lin-
ear predictors and the squared loss, under bgtfRidge)
andL; (Lasso) norm constraints (see al@mlghadr et al.
2013 for a related but different setting, where the cost of
observing attributes is incorporated into the loss function).
Their algorithmic approach is based on online/stochastic
gradient descent, using unbiased gradients estimates of
the loss w.r.t. each example. The gradient estimator re-
quires uniform sampling of attributes (up to the budget con-
straint), eventually leading to algorithms with expected ex-
cess risk bounds over the optimal predictor in the hypoth-

port our claims. esis class 00 ( (d/k)/m) afterm examples, compared

with O (\/1/m) for full-information algorithms that can

view all the attributesKakade et al.2009 (see Tablel).
Another interpretation of these results is that even though
Consider the problem of medical diagnosis, in which thethe algorithms view only: + 1 out ofd attributes, the algo-
learner wishes to determine whether a patient has some difithms need the same total number of attribut@g/?),
ease based on a series of medical tests. In order to buildtg obtain the same accuraey Moreover, Cesa-Bianchi
model, the learner has to gather a set of volunteers, pegt al, 2011, Hazan & Koren 2012 provide a lower bound

form diagnostic tests on them and use the tests results a@sstablishing that Ridge bound is not improvable in general.
features. However, some of the volunteers may be reluc- h ite th inal ) | |
tant to undergo a large number of tests, as medical test& thiS paper, despite these seemingly unimprovable results,

may cause physical discomfort, and will prefer to undergo’V® Show that they can in fact be improved. We do this by
only a small number of them. During prediction time, how- developing a novel sampling scheme which samples the at-

ever, patients are more likely to agree to undergo all testd!Putes in adistribution-dependenanner: We sample at-
to find a diagnosis to their illness. tributes with large second moments more than others, thus

gaining a distribution-dependent improvement factor. In
other words, our sampling methods take advantage of the
geometry of the data distribution, and utilize it to extract
(LAO) (Ben-David & Dichterman1993. Formally, we  more ‘information’ out of each sample. Under reasonable
use the local budget setting presented @ega-Bianchi assumptions, our methods needsattributes to reach the

et al, 2011): For each training example (composed of asame accuracy than the online full-information algorithms,
which is beneficial in budgeted learning scenarios. As far
as we know, these are the first methods provably able to do
S0 in our setting.

1. Introduction

This problem is an example of budgeted learniktadani
et al, 2009 or learning with limited attribute observation
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We begin by assuming prior knowledge of the second mostandard basis by;. We indicate the set of indicds .., n
ments of the attribute vector, namély, [z?] fori € [d], by [n]. We usef|a||,, to indicate thep-norm of the vector,
where we usép, [-] to denote the expectation with respect ,__, N\ P . _

to the data distribution. Our excess risk bounds are SUf’ﬂ(Zi:l |ail ) - We apply this notation also for the case

marized in Tablel. To clarify the notation,|Ep [x?]||, wherep = Lie. |lall. = d a;])?, even though

is defined d T 2 dlIE H 2 | . }!2 this isI;]ot a2pr0pe”r |r|1(§)rm. (V%éélmnw to indicatge

IS define a5<2i:1 v =D [xiD »an H D [x ]H1 S the infinity norm, max; |a;|. We denote the expectation

fined asy.*_, Ep [22]. with respect to the randomness of the algorithm (attribute
sampling) byE 4 [-], the expectation with respect to the data
distribution byEp, [-] and the expectation with respect to

Table 1.Expected excess risk bounds assunijjrg, < linthe  photh by R, 4 [-]. For the two-phased algorithms, we use

Ridge scenario anfix||,, < 1in the Lasso sceganri?.f _ Ep. 4, [-] wherei € {1,2} to denote the expectation with
Type NewBound OldBound | " glmormaton respect to the data distributions and the randomness of the
_ \/HED[XZ]H%H, - . algorithm during the’_—th phasg. .We denote the loss induced
Ridge | O\ —F*— 0 (\/?) 0 ( *) by thet-th example in the training set ds(w).

|Ep[x2]||, +k) log d dlogd log d
Lasso O< %) O< s ) O<,/%> . .
\/ g r 2.2. Linear Regression

It can be easily shown that under the relevant data norniollowing the standard framework for statistical learning,

constraints, bothEp [x?]||, and||Ep [x?] |, are atmost W€ assume the training seft(x, y:) € R* x R},” , was
2

d, which proves that our bounds are always as good as thseampled 1.d. from some joint distributidR. Eachx; is

previous bounds. In fact, the equalities hold only when2 data point, represented by a vector of attributesyqusl

all second moments are equal. Otherwise, both values artge desired target value. The goal of the learner is to find a

strictly smaller thani, making our bounds better. This im- We'gh.t vectorw, such thayt. - <.w’ x;) is a good estimator
L of y¢, in the sense that it minimizes the expected loss, or the
provement factor is distribution-dependent and may be as

_ fisk, Lp (W) = E(xy)~p [¢ (W''x,y)]. Here we focus on
large asO (N/d/k) (i.e. both values can b® (1)) when the squared loss 1.6.(g,y) = & (j — )2

the second moments decay sufficiently fast. We note that S ) )

similar distributional assumptions about moment decay ard© Prevent overfitting, it is common practice to constrain

made in other successful algorithmic approaches such 48€ norm ofw. We designate the 2-norm case, where we

AdaGrad Duchi et al, 2017). When the attribute budget Want to find a good predictor if” = {w/||lw||, < B}, as

satisfiesk — O (HED [X2] Hi) ok = Q (HED [X2] Hl) the Ridge regression scenario, and the 1-norm case, where
2

we conside{w| ||w||; < B}, as the Lasso regression sce-

in the Lasso scenario) our bounds also coincide with the - .+ \ve will assume w.l.o g. thdk|, < 1in the Ridge
. J.0.g. 9

online full-information scenario. scenario, andx|| . < 1 in the Lasso scenario, and that

When no such prior knowledge is available, we split ourl|y:| < B in both cases.

algorithms into two phases: In the first phase, we estimalg, e fyil-information scenario, the learner has access to
a certain upper bound on the second moments of the aty the attributes ofx,, whereas in the attribute efficient

tributes. In the second phase, we use the same Samp”'&enario, the learner can chodse- 1 attributes out ofl
scheme but with smoothed probabilities, to compensate o, each vectok, in the training set.

the stochastic error in the estimation phase. We prove that

the excess risk bound of this method is always as good as ) . . .
those of Hazan & Koren2012, and given sufficient train- - Attribute Efficient Ridge Regression

ing examples, achieves the same bounds as our algorithmjg s section we present our algorithms for Ridge regres-
which assume prior knowledge of the moments (up to cong;yn where the 2-normis boundéuy |, < B. The generic

stant factors). approach to the Ridge attribute efficient scenario, which
we call the General Attribute Efficient Ridge Regression
2. Preliminaries (GAERR) algorithm and is presented in Algorithimwas
, developed in Cesa-Bianchi et 312011 Hazan & Koren
2.1. Notation 2012 and is based on the Online Gradient Descent (OGD)

We indicate scalars by a small letter, and vectors by a algorithm with gradient estimates.

bold font,a. We usea® to indicate the vector for which  The oGD algorithm goes over the training set, and for each

a’[i] = al[i], anda + b to indicate the vector for which  eyample builds an unbiased estimator of the gradient. Af-
(a+0b)[i] = ali] +b. We denote the-th vector of the
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terwards, the algorithm updates the current weight vectonyax, Ep.a Hgtug < G?. Then for anyw* € R¢ with
wy, by performing a step of sizein the opposite direction iw*||, < B

to the gradient estimator. The result is projected over thé 2=

L, ball of sizeB, yieldingw,;. At the end, the algorithm 2B2

outputs the average of ait,. Ep.a[Lp (W)] < Lp (W*) + — + 2G>

The gradient of the squared loss V8¢ (w;x¢,y:) =

((W,x:) —u:) - x¢, and the key idea of the GAERR al- The intuition is that it OGD requires merely unbiased gra-
gorithm is how to use the budgeted sampling to construcgjient estimates, as long as their second momefitsare

an unbiased estimator for the gradlgnt. It does so by samsounded. The full proof can be found in AppendixL

pling k + 1 attributes out of thel attributes of the sample ) ) )

wherek > 0 is the a budget parameterFirst, it samples The AERR algorithm is one variant of the GAERR algo-
k attributes with probabilities; with replacement, and by fithm. It was presented irHazan & Koren2012 and uses
weighting them correctly, builds an unbiased estimator fordniform Samlp"ng to estimate;. In our GAERR notation
the data pointx,. Afterwards, it samples an additional at- 1t US€s¢; = 5 Vi € [d]. The authors prove (Lemma 3.3
tribute with probabilityp;, = wf.jf/ ||Wt||§ and by a sim- |n2(Hazar12& Koreg 2012) that fo_r the AERR algorithm,
ple calculation obtains an unbiased estimator of the innef~ < 8B~d/k, which together with Theorer@.1and us-
product. Subtracting the label, yields the unbiased esti- |ng277 = 2B/G+/myields an expected excess risk bound of
mator, ;. Finally, the algorithms multiplies the two parts, AB®\/2d/km. They also prove that their algorithm is op-

thus building an unbiased estimator of the gradient for thdiMal Up to constant factors (in the worst-case over all data
distributions), by showing a corresponding lower bound.

point, g;.
This, however, is not the end of the story. By analyzing the
Algorithm 1 GAERR bound, we show that we can improve it in a distribution-
ParametersB, 7 > 0 andg; for i € [d] dependent manner. Theor&@m shows us that the expected
Input:  training setS = {(x, y:) },c(,,y andk > 0 excess risk bound i§ proportional € therefore we \./vi.sh.
Output: regressow with ||w||, < B to developza sampling method that allows us to minimize
1: Initialize wy # 0, ||w1||, < B arbitrarily Ep,a {ng‘,HQ}! as stated in the next lemma.

2: fort =1tomdo

3 forr—1tokdo Lemma 3.2, The GAERR algorithm gen-

erates gradient estimates that for all ¢,

4 Pick i, € [d] with probability ¢;, , and observe s SO
% [ins] | Ep.a |[&]3] < 4B° ($Ep.a |I%erl3] +1).

5: ;(t,r — %Xt [itﬂ"} €iy ., ;

6 end for The proof can be found in Append&.2

7oX e YR %, Since

w?
8. Choosej; € [d] with probabilityp;, = —% and d
T w3 IR SO 1 )
observex;, [j:] Ep,a {melb} =Ep,a |:Xt,'r [it,r] } => ;ED 7],

9 P :Z;; Xt [Je] =y =1 (1)
100 g+ ¢ Xt we can minimize this bound as a function of fhes, under
110 vy — wy — gy the constraints ogle ¢ = landg; > Oforalli: €
120 Wipp < vy m [d]. This optimization problem can easily be solved using

tllas T . .
13: end for Lagrange multipliers to yield the solution
MW R Ep [o7]
D |44
¢ = ——F/— (2)
: . ¢ \/Ep [27]

The expected excess risk bound of the GAERR algorithm J=1 D1

is presented in the next theorem which is a slightly more

general version of Theorem 3.1 iH&zan & Koren2012. We _could have_ followed a}simi_lar_opt?mization strategy for
finding the optimal sampling distribution for estimating the

Theorem 3.1. Assume the distributiorD is such that  inner product. This strategy would have yielded that the
x|, < 1and|y| < B with probability 1. Letw be

the output of GAERR when run with step sigand let  optimal probabilities arg;, =

wg,jt]ED [I?t]
_ ) _27:1 w? Ep [xZQ] ) .
1As in the AERR algorithm, we assume we have a budget ofeVer, this does not materially improve the analysis, and is
at least2 attributes per training sample. therefore not included.

. How-
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3.1. Known Second Moment Scenario parameter. This approach is the basis for our Two-Phased

If we assume prior knowledge of the second moment oPDAERR algorithm (Algorithm2 in AppendixA.1).

each attribute, namel§i, [+?] for all i € [d], we can use In practice, one can run the AERR algorithm during the

equation P) to calculate the optimal values of thes. This  first phase, in order to obtain a better starting point for the
is the idea behind our DDAERR (Distribution-Dependentsecond phase. However, We ignore this improvement in our
Attribute Efficient Ridge Regression) algorithm. Its ex- analysis, but incorporate it in the experiments presented in
pected excess risk bound is formulated in the next theorensection5.

Theorem 3.3. Assume the distributiorD is such that  The expected excess risk bound of the algorithm is formu-

[x[l, < 1 and|y| < B with probability # andEp [z?]  |ated in the following theorem.

are known fori € [d]. Letw be the output of DDAERR, - theqrem 3.4, Assume the distributiorD is such that

when run withy = — - Thenforany . < 1and|y| < B with probabilty 1. Let
\/m<f”ED[x iy +1 w be the output of Two-Phased DDAERR when run

w* € R% with [w*||, < B, with n = max(n,n2) where n; = Gdlfnz and
) . B2 1 Ny = k/mo
Ep.allp (W)] < Lp (W*) +4—=1/~ |Ep [x?]||s + 1. 5a3 |24+ 40|y 10g 3
Vm V k : 2[|24+32e]|  +2 SRF Dy
1 1
The proof can be found in Append.3. Then for allm; and for anyw* € R? with |w*||, < B,

Recalling that with probability 1 we hav]|, < 1, it is with probability 1 over the first phase, we have

easy to see thalEp [x?|||, < d, therefore the DDAERR - . 4B?% [6d
: o B Ep,a, [Lp (W)] — Lp (W") < -
bound is at least as good as the AERR bdurtdowever, vVma V k

5 .
HED [X ]Hé may also be much smaller thah |_n cases Also, with probability> 1 — ¢ over the first phase, we have
where the second moments vary between attributes or the

Ep [x?] is approximately sparse. In these cases, we may Ep.a, [Lp (W)] — Lp (w") <
gain a significant improvement.

1682 |1 e g, 2dlog 2
3.2. Unknown Second Moment Scenario e\l k| V IED el + (k+1)m;

The solution presented in the previous section requires ex-

act knowledge o, [2?] for all i. Such prior knowledge The proof can be found in Appendi.4.

may not be available, thus we turn to consider the cas?f we examine the bound we can see that with
where the moments are initially unknown. The problem in i, :

this scenario is that without prior knowledge of the seconopmbab'“ty 1 over the first phase, re_gardless Of_ the
moments of the attributes, the learner cannot calculate th$U€ Of 71, the expected excess risk bound is at
optimalg;-s via equation). To address this issue we split most O (ﬁ\/&) which is the same bound as the
the learning into two phases: In the first phase we run otARERR algorithm.  Asm, increases, the bound turns
the firstm; training examples and estimate the second mo- ) —\ 2

ments by sampling the attributes uniformly at random. Into O \/1572\/( IEp [X2]||% +dy/ (kff);j“) +k

the second phase we run on the nexttraining examples,

and p_erfo_rm the regular DDAERR algorithm, with a slight Therefore, ifm, > d*log 3¢ , we achieve an improvement
modification - in the calculation of thg-s, we use an upper . & log 24
confidence interval instead of 1tShe second moments therRVer the AERR algorithm. lfn, > GFDTELLT ! the
ST/ % where A [i] is the
average of the square of thh attribute as calculated dur-

ing the first phases = % and/ is the probability

selves, namely;; = bound become®) % IEp [x2][|y + K |, which is
the same bound as in the regular DDAERR algorithm with

prior knowledge of the second moment of the attributes.

2Actually, in all the relevant locations, it is enough to assume

only Ep [y°] is bounded, but we prefer to remain within the 4. Attribute Efficient Lasso Regression
framework of previous works.

*If ||[Ep [x%]|| . = dwe havethaEp [z;] = 4 foralli € [d].  In this section we present our algorithms for Lasso regres-
2 . . . . .
In this case, all they;-s are equal to} and the DDAERR and ~ Sion, where the loss is again the squared loss, but this time
AERR algorithms coincide. the 1-norm is bounded, i.¢w|, < B.



Attribute Efficient Linear Regression with Distribution-Dependent Sampling

The generic approach to the Lasso attribute efficient scewe can minimize this bound as a function of thes, under
nario, which we call the General Attribute Efficient Lasso the constraints oEfZl gi = 1andg; > 0foralli € [d].
Regression (GAELR) algorithm, is similar to the Ridge | emma 4.3. The solution to the optimization problem de-
scenario but with two main differences: First, it is basedﬁneol isq, — — Eo[?]

on a variant of the Exponentiated Gradient (EG) algo- %= >4 Eplz?]”

rithm using unbiased gradient estimat&vinen & War- .

muth, 199% Hazan & I%oren 2012, insteatg of the OGD The proof can be found in Appendt.12

algorithm.  Second, when estimating the inner prod-As in the Ridge scenario, we could have tried to optimize
uct, instead of sampling one attribute with probability the sampling probabilities of the inner product estimation.

pj. = wi;,/ [[will3, it samples it with probability;, = However, sincelp 4 {(bt } is calculated using the same

[wrs | /1lwell,, as the Lasso scenario has a bound on the, 4 o< in the Ridge scenario, the optimal samplin
1-norm of the predictor. The rest of the estimation process 9 ! P pling

is the same. More details can be found in ApperAliX. probabilities remairp;, =

vl we wil
. . 7:1 \/ W?,ZED [IJZ] ,
The expected excess risk bound of the GAELR algorithmstil| not include this improvement in our analysis.
is presented in the next theorem which is a slightly more

general version of Theorem 3.4 iHg&zan & Koren2012. 4.1. Known Second Moment Scenario
Theorem 4.1. Assume the distributiorD is such that
x|, < 1and|y| < B with probability 1. Letw be the
output of GAELR, when run with step size< 5L where

If we assume we have prior knowledge of the second mo-
ment of each attribute, we can use Lem#a to calcu-

.y ) R ¢ g late the optimal values of theg;-s. This is the idea be-
maxy ||Ep 4 {gt } Hoo < G*. Thenforanyw™ € R*with  hing our DDAELR (Distribution-Dependent Attribute Ef-
[Ilw*|l; < B, ficient Lasso Regression) algorithm. Its expected excess

risk bound is formulated in the next theorem.
Epallp(W)]<Lp(w")+ B (%iid + 5nG2) . Theorem 4.4. Assume the distributiorD is such that

[x].. < 1and|y| < B with probability 1 andEp [z?]
are known fori € [d]. Letw be the output of DDAELR,

The general idea of the proof is thg is an unbiased es- ) ) or2d
timator of the gradient, therefore we can use the standaréfen runwithy = 55, /=iy Ifm > log 2d
analysis of the EG algorithm. The full proof can be found
in AppendixC.10

The AELR algorithm is one variant of the GAELR algo- Epa[Lp (W)] = Lp (w") <
rithm. It was presented irHazan & Koren2012 and uses , [5log2d (|Ep [x?][, + k)
uniform sampling to estimate;. In our GAELR notation 4B

it usesq; = L Vi € [d]. The authors prove (Lemma 3.8

in (Hazan & Koren 2012) that for the AELR algorithm, The proof can be found in Append&.13

G? < 8B%d/k, which together with Theoremh.1 and us- . , - .
— 1 <
25 vields an expected excess risk bound OfRecaIImg that with probability 1 we havex|| < 1, itis

N9 " = Gum easy to see thalE p [x?] |, < d, therefore the DDAELR
4B?,/10dloazd, bound is at least as good as the AELR bdundowever,
|Ep [x?] ||1 may also be much smaller thah in cases

Similarly to the Ridge scenario, by analyzing the bound,qre the second moments vary between attributes or the
we show that we can improve the bound in a distribution-

vector is sparse. In these cases, we may gain a significant
dependent manner: Theorefhl tells us that the expected improvement
excess risk bound is proportional €&, therefore we wish

to develop a sampllng method that minimizes the |nf|n|ty4_2_ Unknown Second Moment Scenario
norm of the gradient estimator.

Lemma 4.2. The GAELR algorithm gen- In @ case we lack prior knowledge &fp [«7] for all ,

erates gradient estimates that for all ¢, We take a similar approach to the Two-Phased DDAERR
~ ~ Igorithm: in the first phase, we estimate the second

E { 2”‘ <432(l1E 2 1). a ; €, .

H DA B = i [Ep.a %]l + moments by uniform sampling, exactly as in the Two-

Phased DDAERR algorithm. In the second phase, we

then for anyw* € R? with ||w*||, < B,

km

The proof can be found in Append&x.11
*If |Ep [x?]]|, = d we have thaEp [z;] = 1 for all i € [d].
SO 1 In this case, all they-s are equal tot and the DDAELR and
2 _ 2 , i
Ep,a [Xt,r [i]] = —Ep 23], 3 AELR algorithms coincide. ¢

4qi

Since
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run the DAELR with modifiedg;-s, but this time with 5. Experiments

o Ali]+i2e . .
4% = ijl(A[j]:%e) which are more suitable for the Lasso We now turn to describe some experiments illustrating the
scenario. This approach is the basis for our Two-PhaseBehavior of our algorithms. We conducted two sets of

DDAELR algorithm (Algorithm4 in AppendixA.3). experiments: One on artificial data, which allows us to

As in the Two-Phased DDAERR algorithm, during the first easily control data properties such H'ED [XQ] H% and
phase one can actually run the AELR algorithm in order to||[Ep [x?]||,; And the other on a subset of the popular
obtain a better starting point for the second phase, but agaiMNIST (LeCun et al, 1998 data set, similar toGesa-
we will ignore this improvement in our analysis. Bianchi et al, 2011 Hazan & Koren 2012. An addi-
tional experiment on a different data set is described in Ap-

The expected excess risk bound of the algorithm is formu'pendixB.

lated in the following theorem.

Theorem 4.5 Assume the distributionD is such In the Ridge regression scenario we tested 5 algorithms:

that |x[|, < 1 and |y < B with probabil- _ _
ity 1. Let w be the output of DDAELR, when 1. Our DDAERR algorithm that has prior knowledge of

the second moment of the attributes.

run with p = o2l -

2052m2 (8\|A\I1+2Odmm(7<k+i>il ’1>+’€> 2. Our Two-Phased DDAERR algorithm that does not
If moy > log2d then for anym; and for anyw* € R? have prior knowledge of the second moments of the
with |[w* |, < B, with probability 1 over the first phase we attributes, and tries to estimate them.
have

3. The AERR algorithm that does not require any prior

knowledge.
Ep.a, [ (W)] - Lp (w*) < 6152 | 820, o | -
' kma 4. Online Ridge regression that performs online gradient

. . . descent and has access to all the attributes.
Also, with probabilityl — ¢ over the first phase we have

5. Offline Ridge regression that minimizes the empirical
Ep.a, [Lp (W)] — Lp (w*) < 4B? x risk, which also has access to all attributes, and uses
y 412 .
each training example more than once.

. dlog 22
5 (161Ep (2]l + 559 min( G255, 1) + &) log 2d

kmo For the Lasso scenario we used the corresponding algo-
rithms. In all cases our algorithms used the improved in-

, ner product estimation as well as the improved data point
The proof can be found in Append&.14 estimation.

With - probability 1 over the first phase, regard- g 4 fajr comparison between the attribute efficient algo-
less of the value Ofml; the expected excess risk (ithms and the full-information algorithms, we use the X-
bound is at mostO (%\/dlog d), which is the axis in our figures to represent the numberattributes
same bound of the AELR algorithm.  Asn; in- each algorithm sees, rather than the number of examples,
creases, the expected excess risk bound become#ice the comparison should be in terms of the total at-

B2 2 log 24 tribute budget used.
O ([ (IED 5], + G + k) log d ). There- _ o
Jlog 24 To quantify the theoretical improvement of the DDAERR
fore, ifm; > ,:fff , we achieve an improvement over the algorithm, we compargE, [x?]||, and||Ep [x?] ||1 tod,
2

AELR algorithm. Ifm; > (kij\\ﬁiﬁwl’ the expected as_this is the_ poten_tial _improvement accqrding to our anal-
] 5 ysis. To avoid scaling issues, we normalize by 2kh@orm

excess risk bound turns 0 (\/ﬁTZ IED [x*]ly + k) or the co-norm of the data and define our "Improvement

which is the same bound as in the regular DDAELR Ratios’ by

algorithm with prior knowledge of the second moment of

the attributes. |Ep [x%] H% IEp [x?]

I,
Interestingly, here the first phase generally requires less PRidge dEp {qug} » Presso= GED L
samples than the two-phased DDAERR algorithm. This
is essentially due t&p [xf] being easier to estimate than Sijmilar to (Cesa-Bianchi et gl.2011 Hazan & Koren

Ep [«?], because the square root is not a Lipschitz func-2012, we used 10-fold cross validation to optimize the pa-
tion. rameters for each phase. We measured the performance of
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Figure 1.Test error for the algorithms with+-1 = 5inthe Ridge  Figure 2.Test error for the algorithms with+1 = 5 in the Lasso
scenario over simulated data with= 500. scenario over simulated data with= 500.

each algorithm by the average loss over the testing set, di-

vided by the loss of the zero predictor, and defined the errofhe Lasso scenario, the target values were generated us-
bars as one standard deviation ov@0 repeats of each ex- ing @ scalar product with a random sparse weight vec-
periment. For the two-phased algorithms, wersgt= 2, tor from {—1,0,1}, wi,s,, Which was generated i.i.d.
ms = 92, and run the AERR/AELR algorithm during the With P(w{5ssq; = 1) = P(w{assq; = —1) = 0.15 and

first phase, using its result as a starting point for the second (w{assq; = 0) = 0.7.

phase. Unlike the theoretical analysis, west 0, Sinceé  1he Ridge results appear in figureln the first experiment,

the theoretical upper confidence bound is conservative, ang\| ihe attributes have the same distributipigge = 1, and

split the attribute budget evenly between the data point esne DDAERR and AERR algorithms are equivafenis
t|mat|9n and the inner pr.oduct estimation as we found tha})Ridge decreases, the algorithms drift apart, and we see a
these improve the empirical results. significant improvement in our methods.

5.1. Simulated Data The Lasso results that appear in fig@are similar, this
time with respect tdEp [x?] ||, instead of|Ep [x?]||,.
We begin by studying a synthetic linear data set which al- 2
lows us to control the improvement ratio in both scenario

and to demonstrate the dependence of the algorithms 2?1'2' MNIST Data Set

them. We first defined a vectar ¢ R? (whered = 500) In our next set of experiments, we choose to repeat the ex-
with exponentially decaying coefficientsu; = i for periments in Cesa-Bianchi et 312011, Hazan & Koren
somea < 0 and projected it on thé., (L) ball of ra- 2012 and use the MNIST data set. Each training example
dius 1 for the Ridge (Lasso) scenario, to produce the exdis a labeled8 x 28 grayscale image of one hand-written
pected values of each attribute. To generate one trainingdigit. As in the original experiments, we focused on the
example, we generated independent binary variables withlassification problem of distinguishing between the "3”
the corresponding expectations, and joined them infe a digits (which we labeled -1) and the "5” digits (which we
dimensional vector. To generate the entire training set, wéabeled +1) and addressed it by regressing the labels. As in
repeated the example generation process independently (Hazan & Koren2012, we usedk + 1 = 57 attributes for
times. In all these experiments, we used 1 = 5. each training example in the Ridge scenario Ardl = 5

. . attributes in the Lasso scenario. For this data set we have
In the Ridge scenario, the target values were generated us-

ing a scalar product with a random weight vector from3 = 784, prigge = 045 aNdprasso= 0.2.

{-1,1}9, Wrigge Which itself was generated i.i.d. with >The small difference between the algorithms is caused by the
P(whiggei = 1) = P(wgigge; = —1) = 0.5. In  different methods of calculating
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Figure 3.Test error for the algorithms witk + 1 = 57 in the
Ridge scenario over the classification task "3” vs. "5” in the
MNIST data set.

Figure 4.Test error for the algorithms with+1 = 5 in the Lasso
scenario over the classification task "3" vs. "5” in the MNIST data
set.

The Ridge results appear in figuBe Our DDAERR al- are able to achieve distribution-dependent improvements
gorithm performs considerably better than the AERR al-factors for the excess risk bound over the state-of-the-art,
gorithm, for all the training set sizes checked, in corre-Which can be as large &3(,/d/k). Moreover, under rea-
spondence with the theory. Also, the DDAERR algo- Sonable assumptions, our algorithms are the first to prov-
rithm performs similarly to the online Ridge algorithm, ably use less attributes than full-information algorithms,
and even better for a small total number of examined atwhich is the main concern in budgeted learning.

tributes. This suggests that at least for a small number ofarestingly, our partial information algorithms can also be
total attﬂbutes, our attribute efficient _meth(_)d is better than,sed to speed up learning in the full-information case: To
the full-information method. The offline Ridge algorithm |4 a linear (Ridge) predictor in the full information case,
is the best algorithm, because it can utilize all attributesye can use OGD, obtain a convergence rat (f/+/mn)
from each example, as well as use each example more th3fAih a cost of processing attributes per example. How-

once, unlike the attribute efficient algorithms. The perfor-oor one may also use our DDAERR algorithm by setting
mance of the Two-Phased DDAERR is between those of. _ HED [x?] Hl This will result in the same convergence
2

the AERR algorithm and the DDAERR algorithm, and con-
verges towards the DDAERR algorithm as the number o
observed attributes grows, as expected.

trate, but at the cost of processing o®ly- 1 attributes per
example, which can be much faster.

There are several possible directions for future work. For
example, our work focuses on learning from i.i.d. data, and
it would be interesting to extend it to a non-stochastic on-
line learning environment, where the data is possibly gen-
erated by an adversary. Another direction is to replace the

is smaller than that of other algorithms. Also, this time it is dependence on the second moments of the data by a more

much clearer that the Two-Phased DDAELR algorithm per_ref|ned n_ot|on, Wh'(?h also depgnd; on the geometry of the
o : optimal linear predictor (e.g. if it is sparse, then perhaps

forms similarly to the AELR algorithm for a small amount one can learn while sampling fewer ‘irrelevant’ features)

of examined attributes, and converges to DDAELR as the ping '

: : . Also, it would be interesting to generalize the results be-
number of examined attributes increases, as expected. : . L
yond the Ridge and Lasso scenarios to a joint framework

. with general norms and loss functions. Finally, proving
6. Summary and Extensions distribution-dependent lower bounds may complement our
results, or show additional room for improvements.

The Lasso results, which appear in figukeare similar:
The DDAELR algorithm performs considerably better than
the AELR algorithm, and comparable with the online Lasso,
algorithm, if not slightly better. It is interesting to note that
the variance in the performance of the DDAELR algorithm

In this paper we studied the attribute efficient local bud-
get setting and developed efficient linear regression algoAcknowledgements: This research was partially sup-
rithms for the Ridge and Lasso regression scenarios. Ouysorted by an Israel Science Foundation Grant (425/13) and
algorithms utilize the geometry of the data distribution, andan FP7 Marie Curie CIG grant.
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