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A. Algorithms

A.1. Two-Phased DDAERR

Algorithm 2 Two-Phased DDAERR
Parameters:m1,m2, δ, B, η > 0
Input: training setS = {(xt, yt)}t∈[m1+m2]

andk > 0
Output: regressor̄w with ‖w̄‖2 ≤ B
1: Initialize w1 6= 0, ‖w1‖2 ≤ B arbitrarily
2: Initialize A, counts andsquare sums - arrays of size

d with zeros
3: for t = 1 to m1 do
4: for r = 1 to k + 1 do
5: Pick it,r ∈ [d] uniformly at random
6: counts [it,r]← counts [it,r] + 1
7: square sums [it,r] ← square sums [it,r] +

xt [it,r]
2

8: end for
9: end for

10: for i = 1 to d do
11: A [i]← square sums[i]

counts[i]

12: end for
13: ε← d log 2d

δ

(k+1)m1

14: Run GAERR withqi =
√

A[i]+ 13
6 ε

∑d
j=1

√
A[j]+ 13

6 ε
on the fol-

lowing m2 examples and return its output

A.2. GAELR

The GAELR algorithm is based in the EG algorithm with
gradient estimates. The EG algorithm goes over the train-
ing set, and for each example builds an unbiased estimator
of the gradient and clips it (where theclip operation is de-
fined asclip(x, c) = max {min {x, c} ,−c}) to make the
updates more robust. Afterwards, the algorithm updateswt

by performing multiplicative updates of sizeη. The result
is projected over theL1 ball of sizeB, yieldingwt+1. At
the end, the algorithm outputs the average of allwt.

The gradient estimate is done here similarly to the GAERR
algorithm: we usek attributes to estimate the data pointxt

and1 attribute to estimate the inner product. The only dif-
ference here is that here we usepjt = |wt,jt | / ‖wt‖1 when
estimating the inner product, instead ofpjt = w2

t,jt
/ ‖wt‖

2
2

as in the GAERR algorithm.

Algorithm 3 GAELR
Parameters:B, η > 0 andqi for i ∈ [d]

Input: training setS = {(xt, yt)}t∈[m] andk > 0
Output: regressor̄w with ‖w̄‖1 ≤ B
1: Initialize z+

1 ← 1d, z
−
1 ← 1d

2: for t = 1 to m do
3: wt ←

(
z+

t − z−t
)
∙B/

(∥∥z+
t

∥
∥

1
+
∥
∥z−t

∥
∥

1

)

4: for r = 1 to k do
5: Pick it,r ∈ [d] with probabilityqit,r

and observe
xt [it,r]

6: x̃t,r ← 1
qit,r

xt [it,r] ∙ eit,r

7: end for
8: x̃t ← 1

k

∑k
r=1 x̃t,r

9: Choosejt ∈ [d] with probabilitypjt
= |wt[jt]|

‖wt‖1
and

observext [jt]
10: φ̃t ←

wt,j

pj
xt [jt]− yt

11: g̃t ← φ̃t ∙ x̃t

12: for i = 1 to d do
13: ḡt [i] = clip (g̃t [i] , 1/η)
14: z+

t+1 [i]← z+
t [i] ∙ exp (−ηḡt [i])

15: z−t+1 [i]← z−t [i] ∙ exp (+ηḡt [i])
16: end for
17: end for
18: w̄← 1

m

∑m
t=1 wt

A.3. Two-Phased DDAELR

Algorithm 4 Two-Phased DDAELR
Parameters:m1,m2, δ, B, η > 0
Input: training setS = {(xt, yt)}t∈[m1+m2]

andk > 0
Output: regressor̄w with ‖w̄‖ ≤ B
1: Initialize w1 6= 0, ‖w1‖2 ≤ B arbitrarily
2: Initialize A, counts andsquare sums - arrays of size

d with zeros
3: for t = 1 to m1 do
4: for r = 1 to k + 1 do
5: Pick it,r ∈ [d] uniformly at random
6: counts [it,r]← counts [it,r] + 1
7: square sums [it,r] ← square sums [it,r] +

xt [it,r]
2

8: end for
9: end for

10: for i = 1 to d do
11: A [i]← square sums[i]

counts[i]

12: end for
13: ε← min

(
d log 2d

δ

(k+1)m1
, 1
)

14: Run GAELR withqi = A[i]+ 13
6 ε

∑d
j=1(A[j]+ 13

6 ε) on the follow-

ing m2 examples and return its output
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B. Additional Experiment - Covertype

In this experiment we used the Covertype (Blackard &
Dean, 1999) data set which aims to predict the forest cover
type i.e. the dominant species of tree, from cartographic
variables. This data set is designed for multi class classifi-
cation, but we reduce it to binary classification by choosing
one of the tree species and address the problem by regress-
ing the−1 and+1 labels. For both the Ridge and Lasso
scenarios, we used a budget ofk + 1 = 5. For this data set
we haved = 54, ρRidge = 0.49 andρLasso= 0.08.

Figure 5.Test error for the algorithms withk+1 = 5 in the Ridge
scenario over the classification task in the Cover Type data set.

The results for the Ridge scenario appear in figure5:
Again, our DDAERR algorithm performs considerably bet-
ter than the AERR algorithm. Also, the DDAERR algo-
rithm performs similarly to the online Ridge algorithm for
a small number of examined attributes. The performance of
the Two-Phased DDAERR is between those of the AERR
algorithm and the DDAERR algorithm, and given a larger
training set will probably converge towards the DDAERR
algorithm as the number of observed attributes grow. This
time, however, the full-information Ridge algorithms out-
perform the attribute efficient ones.

The results for the Lasso scenario in figure6 are sim-
ilar: The DDAELR algorithm performs better than the
AELR algorithm. Also, the performance of the Two-
Phased DDAELR is between those of the AELR algorithm
and the DDAELR algorithm and converges towards the
DDAELR algorithm, as the number of attributes grows. For
a small number of examined attributes, the DDAELR algo-
rithm performs similarly to the online Lasso algorithm but
as the number of examined attributes grow, the algorithms
drift apart.

Figure 6.Test error for the algorithms withk+1 = 5 in the Lasso
scenario over the classification task in the Cover Type data set.

C. Proofs

C.1. Proof of Theorem3.1

We follow the path of the proof of Theorem 3.3 in (Hazan
& Koren, 2012) by using the standard analysis of the OGD
algorithm. Its expected excess risk bound is stated in the
following lemma.

Lemma C.1 (Zinkevich, 2003). For any ‖w∗‖ ≤ B, we
have

m∑

t=1

g̃T
t (wt −w∗) ≤

2B2

η
+

η

2

m∑

t=1

‖g̃t‖
2
2 . (4)

To use this lemma, first we need to prove that the GAERR
algorithm actually corresponds to OGD with unbiased gra-
dient estimates, as implied by the following lemma:

Lemma C.2. The vector̃gt is an unbiased estimator of the
gradientgt =

(
wT

t xt − yt

)
xt, that isEA [g̃t] = gt.

Now, we can take the expectation of equation (4) with re-
spect to the randomization of the algorithm and the data
distribution, and using LemmaC.2we have

ED,A

[
m∑

t=1

gT
t (wt −w∗)

]

≤
2B2

η
+

η

2
G2m.

On the other hand, the convexity of̀ gives
`t (wt) − `t (w∗) ≤ gT (wt −w∗). Together with
the above we have

ED,A

[
1
m

m∑

t=1

`t (wt)

]

≤ ED,A

[
1
m

m∑

t=1

`t (w∗)

]

+
2B2

ηm
+

η

2
G2,
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or

ED,A

[
1
m

m∑

t=1

LD (wt)

]

≤ LD (w∗) +
2B2

ηm
+

η

2
G2,

Using the convexity ofLD and Jensen’s inequality, the the-
orem follows.

Proof of LemmaC.2. First, it is straightforward to see
EA [x̃t,r] = xt for all r thus alsoEA [x̃t] = xt. Also, a
simple calculation reveals that

EA

[
φ̃t

]
=

d∑

j=1

pj

(
wt,j

pj
xt [j]− yt

)

= wT
t xt − yt.

Sincex̃t and φ̃t are independent givenxt, we obtain that
EA [g̃t] =

(
wT

t xt − yt

)
∙xt, which is the requiredgradient.

C.2. Proof of Lemma3.2

We will use two auxiliary lemmas. The first will help us
bound the 2-norm of the data point estimator.

Lemma C.3. For every distribution (q1, .., qd) where

qi ≥ 0 and
∑d

i=1 qi = 1, we haveED,A

[
‖x̃t‖

2
2

]
≤

1
kED,A

[
‖x̃t,r‖

2
2

]
+ k−1

k ED

[
‖x‖22

]
.

The second will help us bound the square of the estimator
of the inner product (minus the label).

Lemma C.4. Using our sampling method we have

ED,A

[
φ̃t

2
]
≤ 4B2.

Now, the lemma follows directly from LemmasC.3 and
C.4, using the independence of̃xt and φ̃t given xt and
‖x‖2 ≤ 1.

Proof of LemmaC.3. From the definition of̃xt,

ED,A

[
‖x̃t‖

2
2

]
=

1
k2
ED,A





∥
∥
∥
∥
∥

k∑

r=1

x̃t,r

∥
∥
∥
∥
∥

2

2





=
1
k2

k∑

r=1

ED,A

[
‖x̃t,r‖

2
2

]
+

1
k2

k∑

r=1

k∑

s 6=r

ED,A [〈x̃t,r, x̃t,s〉] .

Since x̃t,r and x̃t,s are independent of each other and
ED,A [x̃t,r] = ED [x], we finally have

ED,A

[
‖x̃t‖

2
2

]
=

1
k
ED,A

[
‖x̃t,r‖

2
2

]
+

k2 − k

k2
‖ED [x]‖22

=
1
k
ED,A

[
‖x̃t,r‖

2
2

]
+

k − 1
k
‖ED [x]‖22 .

Using the convexity of the 2-norm and Jensen’s inequality,
the lemma follows.

Proof of LemmaC.4. Recalling|yt| ≤ B and using the in-
equality(a− b)2 ≤ 2

(
a2 + b2

)
, by a straightforward cal-

culation we obtain

ED,A

[
φ̃t

2
]

= ED,A

[(
wt,j

pj
xt [jt]− yt

)2
]

≤ 2ED,A

[(
wt,j

pj
xt [jt]

)2

+ y2
t

]

≤ 2
d∑

j=1

1
pj

w2
t,jED

[
x2

j

]
+ 2B2

= 2 ‖wt‖
2
2 ED

[
‖x‖22

]
+ 2B2

≤ 4B2.

C.3. Proof of Theorem3.3

The theorem follows directly from Theorem3.1,
Lemma 3.2, equation (1) and the calculatedqi-s in
equation (2).

C.4. Proof of Theorem3.4

The main goal of the proof is to bound the expected
squared 2-norm of the gradient estimator from above. By
using Lemma3.2, all that remains is to upper bound

ED,A2

[
‖x̃t,r‖

2
2

]
. In the next lemma we show two different

upper bounds onED,A2

[
‖x̃t,r‖

2
2

]
. The first states that with

probability 1 over the first phaseED,A2

[
‖x̃t,r‖

2
2

]
≤ 5d,

meaning that up to a constant factor the bound is the same
as in the AERR algorithm. The second bound decreases in
ε, and will help up to analyze the convergence rate of the
algorithm.

Lemma C.5. For all m1 and t > m1, with probability1
over the first phase, we have

ED,A2

[
‖x̃t,r‖

2
2

]
≤ 5d,

and with probability≥ 1− δ over the first phase, we have

ED,A2

[
‖x̃t,r‖

2
2

]
≤ 2

∥
∥ED

[
x2
]∥∥

1
2
+2

√
5ε

3
d
√
‖ED [x2]‖ 1

2
.

The proof can be found in AppendixC.5.

We will treat each bound separately, and later join the re-
sults into a single lemma. First, we prove that with a proper
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choice ofη, the bound of our Two-Phased DDAERR algo-
rithm is with probability1 over the first phase equal to the
bound of the AERR algorithm, up to a constant factor.

Lemma C.6. Letw̄ be the output of Two-Phased DDAERR

when run withη =
√

k
6dm2

. Then with probability1 over

the first phase, we have for allm1 and for anyw∗ ∈ Rd

with ‖w∗‖2 ≤ B,

ED,A2 [LD (w̄)]− LD (w∗) ≤ 4B2

√
6d

km2
.

The proof can be found in AppendixC.6.

Assume for simplicity that we have an estimator for∥
∥ED

[
x2
]∥∥

1
2

that satisfiesH ≥
∥
∥ED

[
x2
]∥∥

1
2
. We can use

it to calculate an appropriate step size and to bound the risk,
as shown in the next lemma.

Lemma C.7. Assume we have a valueH that satisfiesH ≥∥
∥ED

[
x2
]∥∥

1
2
. Letw̄ be the output of Two-Phased DDAERR

when run withη = 1√

m2

(
2
k H+ 2

k

√
5
3 d

√
H

√
ε+1

) . Then with

probability≥ 1− δ over the first phase, we have for allm1

and for anyw∗ ∈ Rd with ‖w∗‖2 ≤ B,

ED,A2 [LD (w̄)]− LD (w∗) ≤

4B2

√
m2

√
2
k

H +
2
k

√
5
3
d
√

H
√

ε + 1.

The proof can be found in AppendixC.7.

This lemma gives a non-trivial expected excess risk bound
only if ε is small enough, but whenm1 is small, this is
not necessarily the case. Therefore, we would like to unite
these two lemmas to ensure that even in the worst case, we
will not have a worse bound than the AERR algorithm.

Lemma C.8. Assume we have a valueH that satisfiesH ≥∥
∥ED

[
x2
]∥∥

1
2
. Letw̄ be the output of Two-Phased DDAERR

when run withη = max (η1, η2) whereη1 =
√

k
6dm2

and

η2 =
√

k

m2

(

2H+2
√

5
3 d

√
H

√
d log 2d

δ
(k+1)m1

+k

) .

Then for allm1 and for anyw∗ ∈ Rd with ‖w∗‖2 ≤ B,
with probability1 over the first phase, we have

ED,A2 [LD (w̄)]− LD (w∗) ≤
4B2

√
m2

√
6d

k
.

Also, with probability≥ 1− δ over the first phase, we have

ED,A2 [LD (w̄)]− LD (w∗) ≤

4B2

√
m2

√√
√
√2

k
H +

2
k

√
5
3
d
√

H

√
d log 2d

δ

(k + 1) m1
+ 1.

The proof can be found in AppendixC.8.

The last thing we require is an estimator for
∥
∥ED

[
x2
]∥∥

1
2
.

We could always naively bound
∥
∥ED

[
x2
]∥∥

1
2

from above

by d, but then, even ifm1 tends to infinity, the bound of the
algorithm will not be better than the bound of the AERR
algorithm. A better estimator is stated in the next lemma:

Lemma C.9. The estimatorH =
∥
∥2A + 10

3 ε
∥
∥

1
2
, sat-

isfies, with probability≥ 1 − δ over the first phase,∥
∥ED

[
x2
]∥∥

1
2
≤ H ≤ 8

∥
∥ED

[
x2
]∥∥

1
2

+ 34
3 d2ε.

The proof can be found in AppendixC.9.

Finally, the proof of the main theorem is straightforward,
using LemmaC.8, LemmaC.9and some algebraic manip-
ulations.

C.5. Proof of LemmaC.5

First, we state a simple probabilistic lemma that will be
used to bound our estimates for the second moment of the
attributes. The proof appears a bit later in the section.

Lemma C.10. Let Z1, Z2, ..., Zn be i.i.d random vari-
ables. Zi ∈ [0, 1]. Let Ê [Z] = 1

n

∑n
i=1 Zi be their av-

erage. Then, with probability≥ 1− δ

Ê [Z] ≤ 2E [Z] +
7 log 1

δ

6n
.

Also, with probability≥ 1− δ

Ê [Z] ≥
1
2
E [Z]−

5 log 1
δ

3n
.

We prefer to use this lemma rather than a direct application
of the more standard Hoeffding or Bernstein inequality, be-
cause we are interested in a fast convergence rate of1

n , and
are willing to pay the price of an additional constant factor
in front of the expectation.

To prove our lemma, we use the definition of‖x̃t,r‖
2
2,

ED,A2

[
‖x̃t,r‖

2
2

]
= ED,A2

[
x̃t,r [it,r]

2
]

=
d∑

i=1

1
qi
ED

[
x2

i

]

=
d∑

j=1

√

A [j] +
13
6

ε

d∑

i=1

ED

[
x2

i

]

√
A [i] + 13

6 ε
.

For all i ∈ [d] let Ti be a random variable describing the
amount of times the algorithm sampled thei-th attribute
during the first phase. For every realizationti of Ti, since
Ti and the samples themselves are independent, we can use
LemmaC.10and by the union bound have that with proba-
bility larger than1− δ, A [i] ≤ 2ED

[
x2

i

]
+ 7

6EA1 [εi], and
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A [i] ≥ 1
2ED

[
x2

i

]
− 5

3EA1 [εi] whereεi = log 2d
δ

ti
. Clearly,

EA1 [Ti] = (k+1)m1

d , and using the convexity off (x) = 1
x

we haveEA1 [εi] ≥
d log 2d

δ

(k+1)m1
= ε. Therefore, with proba-

bility ≥ 1− δ over the first phase, we have

{
A [i] ≤ 2ED

[
x2

i

]
+ 7

6ε
A [i] ≥ 1

2ED

[
x2

i

]
− 5

3ε.
(5)

Note that these equations also hold trivially for anyε ≥ 1
as with probability 1 we havex2

i ≤ 1 for all i ∈ [d].

Now we can continue and get that,

ED,A2

[
‖x̃t,r‖

2
2

]

≤
d∑

j=1

√

2ED [x2
i ] +

7
6
ε +

13
6

ε

d∑

i=1

ED

[
x2

i

]

√
1
2ED [x2

i ]−
5
3ε + 13

6 ε

=
d∑

j=1

√

2

(

ED [x2
i ] +

5
3
ε

) d∑

i=1

ED

[
x2

i

]

√
1
2 (ED [x2

i ] + ε)

= 2
d∑

j=1

√

ED [x2
i ] +

5
3
ε

d∑

i=1

ED

[
x2

i

]

√
ED [x2

i ] + ε
.

We shall bound this value in two ways. For the first part of
the lemma, we have

ED,A2

[
‖x̃t,r‖

2
2

]

≤ 2
d∑

j=1

√

ED

[
x2

j

]
+

5
3
ε

d∑

i=1

ED

[
x2

i

]

√
ED [x2

i ] + ε

≤ 2
d∑

j=1

√
ED

[
x2

j

] d∑

i=1

ED

[
x2

i

]

√
ED [x2

i ] + ε

+ 2
d∑

j=1

√
5
3
ε

d∑

i=1

ED

[
x2

i

]

√
ED [x2

i ] + ε
.

Continuing, we upper bound the above by

≤ 2
d∑

j=1

√
ED

[
x2

j

] d∑

i=1

ED

[
x2

i

]

√
ED [x2

i ]

+ 2
d∑

j=1

√
5
3
ε

d∑

i=1

ED

[
x2

i

]

√
ε

≤ 2
∥
∥ED

[
x2
]∥∥

1
2

+ 2d

√
5
3

d∑

i=1

ED

[
x2

i

]

≤ 2
∥
∥ED

[
x2
]∥∥

1
2

+ 2

√
5
3
d

≤ 5d.

As this bound is independent ofε, it holds with probability
1 over the first phase.

For the second part of the lemma, we have with probability
≥ 1− δ,

ED,A2

[
‖x̃t,r‖

2
2

]

≤ 2
d∑

j=1

√

ED

[
x2

j

]
+

5
3
ε

d∑

i=1

ED

[
x2

i

]

√
ED [x2

i ] + ε

≤ 2
d∑

j=1

√

ED

[
x2

j

]
+

5
3
ε

d∑

i=1

ED

[
x2

i

]

√
ED [x2

i ]

≤ 2
d∑

j=1

√
ED

[
x2

j

] d∑

i=1

ED

[
x2

i

]

√
ED [x2

i ]

+ 2
d∑

j=1

√
5
3
ε

d∑

i=1

ED

[
x2

i

]

√
ED [x2

i ]

≤ 2
∥
∥ED

[
x2
]∥∥

1
2

+ 2

√
5
3
d
√
‖ED [x2]‖ 1

2

√
ε,

which concludes the proof.

Proof of LemmaC.10. Let us denote the variance ofZ by
σ2 = E

[
Z2
]
− E [Z]2. By Bernstein’s inequality, with

probability≥ 1− δ, we have

Ê [Z] ≤ E [Z] +

√
2σ2 log 1

δ

n
+

2 log 1
δ

3n
.

Using Zi ∈ [0, 1], we obtainσ2 = E
[
Z2
]
− E [Z]2 ≤

E
[
Z2
]
≤ E [Z]. Plugging back in the expression forÊ [Z],

Ê [Z] ≤ E [Z] +

√
2E [Z] log 1

δ

n
+

2 log 1
δ

3n
.

Using the fact that the geometric mean is smaller or equal
to the arithmetic mean, we have

Ê [Z] ≤ E [Z] +
2E [Z]

2
+

log 1
δ

2n
+

2 log 1
δ

3n

or,

Ê [Z] ≤ 2E [Z] +
7 log 1

δ

6n
,

which concludes the first part of the proof.

Similarly, by Bernstein’s inequality again, with probability
≥ 1− δ, we have

Ê [Z] ≥ E [Z]−

√
2σ2 log 1

δ

n
−

2 log 1
δ

3n
.
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Usingσ2 ≤ E [Z], this turns to

Ê [Z] ≥ E [Z]−

√
2E [Z] log 1

δ

n
−

2 log 1
δ

3n
.

Again using the fact that the geometric mean is smaller or
equal to the arithmetic mean, we have

Ê [Z] ≥ E [Z]−
E [Z]

2
−

2 log 1
δ

2n
−

2 log 1
δ

3n

or,

Ê [Z] ≥
1
2
E [Z]−

5 log 1
δ

3n
,

which concludes theproof.

C.6. Proof of LemmaC.6

First, using Theorem3.1 on the second phase of the algo-
rithm, we have

ED,A2 [LD (w̄)]− LD (w∗) ≤
2B2

ηm2
+

η

2
G2. (6)

Now we use the first part of LemmaC.5, plug it into
Lemma3.2 and obtain that with probability1, we have

G2 ≤ 4B2
(

5d
k + 1

)
≤ 24B2 d

k . Pluggingη =
√

k
6dm2

into equation (6) finishes the proof.

C.7. Proof of LemmaC.7

We use the second part of LemmaC.5,
plug it into Lemma 3.2 and obtain that
with probability ≥ 1 − δ, we have G2 ≤

4B2

(
2
k

∥
∥ED

[
x2
]∥∥

1
2

+ 2
k

√
5
3d
√
‖ED [x2]‖ 1

2

√
ε + 1

)

.

We denote Ĝ2 = 4B2
(

2
kH + 2

k

√
5
3d
√

H
√

ε + 1
)

.

Since H ≥
∥
∥ED

[
x2
]∥∥

1
2

we haveG2 ≤ Ĝ2. Plug-

ging η = 2B√
Ĝ2m2

= 1√

m2

(
2
k H+ 2

k

√
5
3 d

√
H

√
ε+1

) into

equation (6), we get

ED,A2 [LD (w̄)]−LD (w∗)

≤
2B2

ηm2
+

η

2
G2

≤
2B2

ηm2
+

η

2
Ĝ2

≤
2B
√

m2

√

Ĝ2

=
4B2

√
m2

√
2
k

H +
2
k

√
5
3
d
√

H
√

ε + 1.

C.8. Proof of LemmaC.8

First, we state a simple lemma that will allow us to combine
two risk bounds, each is achieved by a different value ofη.

Lemma C.11. Let f (η) = A
η + ηBG2 for some posi-

tive constantsA,B,G, whereG ≤ min (G1, G2). Let

ηi = 1
Gi

√
A
B for i = 1, 2. Thenf (max (η1, η2)) ≤

min (f (η1) , f (η2)).

By LemmaC.6, usingη =
√

k
12dm2

, we have with proba-

bility 1,

ED,A2 [LD (w̄)]− LD (w∗) ≤ 4B2

√
6d

km2
.

Similarly, by Lemma C.7, using η =
1√√

√
√m2

(
2
k H+ 2

k

√
5
3 d

√
H

√
d log 2d

δ
(k+1)m1

+1

) , we have with proba-

bility ≥ 1− δ,

ED,A2 [LD (w̄)]− LD (w∗)

≤
4B2

√
m2

√√
√
√2

k
H +

2
k

√
5
3
d
√

H

√
d log 2d

δ

(k + 1) m1
+ 1.

Using Theorem3.1, the expected excess risk bound has the
form of the function in LemmaC.11, and the theorem fol-
lows directly.

Proof of LemmaC.11. Assume without loss of generality
thatG1 ≥ G2, therefore we also haveη2 ≥ η1. It is enough
to provef (η2) ≤ f (η1) which follows directly by simple
algebraicmanipulations.

C.9. Proof of LemmaC.9

First, using the second inequality in equation (5) we
have with probability≥ 1 − δ, that

∥
∥ED

[
x2
]∥∥

1
2
≤

∥
∥2A + 10

3 ε
∥
∥

1
2
. Using the first inequality in equation (5)

and the identity‖a + b‖ 1
2
≤ 2 ‖a‖ 1

2
+ 2 ‖b‖ 1

2
we can see

that with probability≥ 1− δ,

∥
∥
∥
∥2A +

10
3

ε

∥
∥
∥
∥

1
2

≤

∥
∥
∥
∥4ED

[
x2
]
+

14
6

ε +
10
3

ε

∥
∥
∥
∥

1
2

≤8
∥
∥ED

[
x2
]∥∥

1
2

+
34
3

d2ε.

(7)

C.10. Proof of Theorem4.1

Our analysis is based on the analysis in (Hazan & Koren,
2012) and brought here for completeness. First, we state
the second-order bound for the EG algorithm.
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Lemma C.12(simplified version of Lemma II.3 of (Clark-
son et al., 2012)). Let η > 0, and letc1, .., ct be an arbi-
trary sequence of vectors inRn, with ct [i] ≥ − 1

η for all
t and all i ∈ [n]. Define a sequencez1, .., .zT by letting
z1 = 1n and fort ≥ 1,

zt+1 [i] = zt [i] ∙ exp (−ηct [i]) i = 1, .., n.

Then, for the vectorspt = z′
t

‖z′
t‖1

we have

m∑

t=1

pT
t ct ≤ min

i∈[n]

m∑

t=1

ct [i] +
log n

η
+ η

m∑

t=1

pT
t c2

t .

Now we examine the vectorsz′ =
(
z+

t , z−t
)
∈ R2d and

ḡ′
t = (ḡ,−ḡ) ∈ R2d, and settingpt = z′

t

‖z′
t‖1

. We have the
following lemma:

Lemma C.13(Lemma 3.5 of (Hazan & Koren, 2012)).

m∑

t=1

pT
t ḡ′

t ≤ min
i∈[2d]

m∑

t=1

ḡ′
t [i] +

log 2d

η
+ η

m∑

t=1

pT
t (ḡ′

t)
2
.

Using this lemma, we establish an expected excess risk
bound with respect to the clipped linear functionsḡT

t w:

Lemma C.14(Lemma 3.6 of (Hazan & Koren, 2012)). As-
sume that

∥
∥ED,A

[
g̃2

t

]∥∥
∞
≤ G2 for all t, for someG ≥ 0.

Then, for any‖w∗‖1 ≤ B, we have

ED,A

[
m∑

t=1

ḡT
t wt

]

≤ ED,A

[
m∑

t=1

ḡT
t w∗

]

+ B

(
log 2d

η
+ ηG2m

)

.

For the proof of LemmaC.16we will need a simple lemma,
that allows us to bound the deviation of the expected value
of a clipped random variable from that of the original vari-
able, in terms of its variance.

Lemma C.15. LetX be a random variable with|E [X]| ≤
C
2 for someC > 0. Then for the clipped variablēX =
clip (X,C) = max {min {X,C} ,−C} we have

∣
∣E
[
X̄
]
− E [X]

∣
∣ ≤ 2

Var [X]
C

.

The next step is to relate the risk generated by the linear
functionsg̃T

t w, to that generated by the clipped functions,
ḡT

t w.

Lemma C.16 (A correction of Lemma 3.7 of (Hazan &
Koren, 2012)). Assume that

∥
∥E
[
g̃2

t

]∥∥
∞
≤ G2 for all t, for

someG ≥ 0. Then, for0 ≤ η ≤ 1
2G , we have

ED,A

[
m∑

t=1

g̃T
t (wt −w∗)

]

≤

ED,A

[
m∑

t=1

ḡT
t (wt −w∗)

]

+ 4BηG2m.

Using these lemmas, we proceed to the proof of the theo-
rem. First, from LemmaC.2, as the GAERR and GAELR
algorithm build the gradient estimator using the same
method, we haveEA [g̃t] = gt. From this follows that
EA

[∑m
t=1 g̃T

t (wt −w∗)
]

= EA

[∑m
t=1 gT

t (wt −w∗)
]
.

Combining this with LemmasC.14andC.16, for η ≤ 1
2G ,

we have

ED,A

[
m∑

t=1

gT
t (wt −w∗)

]

≤
B log 2d

η
+ 5BηG2m.

Proceeding as in the proof of Theorem3.1 finishes the
proof of Theorem4.1.

Proof of LemmaC.12. Using the fact thatex ≤ 1+x+x2,
for x ≤ 1, we have

‖zt+1‖1 =
n∑

i=1

zt [i] ∙ e−ηct[i]

≤
n∑

i=1

zt [i] ∙
(
1− ηct [i] + η2ct [i]2

)

= ‖zt‖1 ∙
(
1− ηpT

t ct + η2pT
t c2

t

)
,

and sinceez ≥ 1 + z for z ∈ R, this implies by induction
that

log ‖zT+1‖1 = log n +
T∑

t=1

log
(
1− ηpT

t ct + η2pT
t c2

t

)

≤ log n− η

T∑

t=1

pT
t ct + η2

T∑

t=1

pT
t c2

t .

On the other hand, we have

log ‖zT+1‖1 = log
n∑

i=1

T∏

t=1

eηct[i]

≥ log
T∏

t=1

eηct[i
∗]

= −η
T∑

t=1

ct [i∗] .
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Combining these two and rearranging, we obtain

m∑

t=1

pT
t ct ≤

m∑

t=1

ct [i∗] +
log n

η
+ η

m∑

t=1

pT
t c2

t

for anyi∗, which completes theproof.

Proof of LemmaC.13. To see how LemmaC.13 follows
from LemmaC.12, note that we can write the update rule
of the GAELR algorithm in the terms of the augmented
vectors,zt andḡ′

t as follows

zt+1 [i] = zt [i] ∙ exp (−ηḡ′
t [i]) i = 1, .., 2d.

That is,zt+1 is obtained fromzt by a multiplicative update
based on the vector̄g′

t. Noticing that‖ḡ′
t‖∞ = ‖ḡt‖∞ ≤

1
η , we see from LemmaC.12that for anyi∗,

m∑

t=1

pT
t ḡ′

t ≤
m∑

t=1

ḡ′
t [i∗] +

log 2d

η
+ η

m∑

t=1

pT
t (ḡ′

t)
2
,

wherept = z′
t

‖z′
t‖1

, which gives thelemma.

Proof of LemmaC.14. Notice that by our notation,

m∑

t=1

pT
t ḡ′

t =
m∑

t=1

(
z+

t , z−t
)T

(ḡt,−ḡt)∥
∥z+

t

∥
∥

1
+
∥
∥z−t

∥
∥

1

=
1
B

m∑

t=1

wT
t ḡt

and

min
i

m∑

t=1

ḡ′
t [i] = min

‖w‖1≤B

1
B

m∑

t=1

wT ḡt ≤
1
B

m∑

t=1

w∗T ḡt

for anyw∗ with ‖w∗‖1 ≤ B. Plugging into the bound of
LemmaC.13, we get

m∑

t=1

ḡt (wt −w∗) ≤ B

(
log 2d

η
+ η

m∑

t=1

pT
t (ḡ′

t)
2

)

.

Finally, taking the expectation with respect to the random-
ization of the algorithm and the data distribution, and notic-

ing that
∥
∥
∥ED,A

[
(ḡ′

t)
2
]∥∥
∥
∞
≤
∥
∥ED,A

[
g̃2

t

]∥∥
∞
≤ G2, the

proof iscomplete.

Proof of LemmaC.15. As a first step, note that forx > C
we havex− E [X] ≥ C/2, so that

C (x− C) ≤ 2 (x− E [X]) (x− C) ≤ 2 (x− E [X])2 .

Hence, denoting byμ the probability measure ofX, we
obtain

∣
∣E
[
X̄
]
− E [X]

∣
∣ ≤

∫

x<−C

(x + C) dμ +
∫

x>C

(x− C) dμ

≤
∫

x>C

(x− C) dμ

≤
2
C

∫

x>C

(x− E [X])2 dμ

≤ 2
Var [X]

C
.

Similarly one can prove thatE
[
X̄
]
− E [X] ≥

−2Var [X] /C, and the result follows.

Proof of LemmaC.16. Notice that
∥
∥ED,A

[
g̃2

t

]∥∥
∞
≤ G2

implies‖ED,A [g̃t]‖∞ ≤ G as

‖ED,A [g̃t]‖
2
∞ =

∥
∥
∥ED,A [g̃t]

2
∥
∥
∥
∞
≤
∥
∥ED,A

[
g̃2

t

]∥∥
∞

.

Sinceḡ [i] = clip (g̃ [i] , 1/η) and |ED,A [g̃t [i]]| ≤ G ≤
1/2η the above lemma implies that

|ED,A [ḡt [i]]− ED,A [g̃t [i]]| ≤ 2ηED,A

[
g̃t [i]2

]
≤ 2ηG2

for all i, which means‖ED,A [g̃t − ḡt]‖∞ ≤ 2ηG2. To-
gether with‖wt −w∗‖1 ≤ 2B, this implies,

ED,A

[
(ḡt − g̃t)

T (wt −w∗)
]
≤ 4ηG2.

Summing overt = 1, ..,m, and taking the expectations, we
obtain thelemma.

C.11. Proof of Lemma4.2

We will use two auxiliary lemmas. The first will help us
bound the infinity norm of the data point estimator.

Lemma C.17. For every distribution(q1, .., qd) where
qi ≥ 0 and i ∈ [d], we have

∥
∥ED,A

[
x̃2

t

]∥∥
∞
≤

maxi
1
kED,A

[
x̃2

t,r [i]
]
+ k−1

k ED [‖x‖∞]2.

The second will help us bound the square of the estimator
of the inner product (minus the label).

Lemma C.18. Using our sampling method we have

ED,A

[
φ̃t

2
]
≤ 4B2.

Now, the lemma follows directly from these lemmas, using
the independence of̃xt andφ̃t givenxt and the assumption
of ‖x‖∞ ≤ 1.
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Proof of LemmaC.17. From the definition of̃xt, we have
∥
∥ED,A

[
x̃2

t

]∥∥
∞

=

∥
∥
∥
∥
∥
∥
ED,A





(
1
k

k∑

r=1

x̃t,r

)2




∥
∥
∥
∥
∥
∥
∞

=
1
k2

∥
∥
∥
∥
∥
∥

k∑

r=1

ED,A

[
x̃2

t,r

]
+

k∑

r 6=s

ED,A [x̃t,r]
2

∥
∥
∥
∥
∥
∥
∞

,

where we used the fact thatx̃t,r andx̃t,s are independent of
each other. Now using the triangle inequality on the infinity
norm and the fact thatED,A [x̃t,r] = ED [x], we have
∥
∥ED,A

[
x̃2

t

]∥∥
∞
≤

max
i

1
k
ED,A

[
x̃2

t,r [i]
]
+

k − 1
k

∥
∥
∥ED [x]2

∥
∥
∥
∞

.

Using the convexity of the infinity norm and Jensen’s in-
equality, the lemma follows.

Proof of LemmaC.18. Recalling |yt| ≤ B and using the
inequality (a− b)2 ≤ 2

(
a2 + b2

)
, by a straightforward

calculation we obtain:

ED,A

[
φ̃t

2
]

= ED,A

[(
wt,j

pj
xt [jt]− yt

)2
]

≤ 2ED,A

[(
wt,j

pj
xt [jt]

)2

+ y2
t

]

≤ 2
d∑

j=1

1
pj

w2
t,jED

[
x2

j

]
+ 2B2

≤ 2
d∑

j=1

‖wt‖1
|wt,j |

w2
t,j + 2B2

≤ 2 ‖wt‖1

d∑

j=1

|wt,j |+ 2B2

≤ 4B2.

C.12. Proof of Lemma4.3

The optimization problem is equivalent to

minimize
qi

max
i

1
qi
ED

[
x2

i

]

subject to
d∑

i=1

qi = 1, ∀i qi ≥ 0.

Let Ci =
ED[x2

i ]
qi

. Note thatqi =
ED[x2

i ]
∑d

j=1 ED[x2
j ]

if, and

only if, all Ci are equal. Assume by contradiction that not

all Ci are equal, yet they still yield the minimal value for
maxi

1
qi
ED

[
x2

i

]
. Let I = {i|Ci = maxjCj}, andi0 be

an index for whichCi0 < maxjCj , which exists, by our
assumption. ForΔ > 0, consider a new set ofq′i-s, such
that q′i0 = qi0 − Δ, andq′i = qi + Δ

|I| for i ∈ I. For a
small enoughΔ, still C ′

i0
< maxjC

′
j . Note that this is still

a valid assignment of probabilities because
∑d

i=1 q′i = 1
and allq′i > 0 for a small enoughΔ. However,maxjC

′
j

is smaller thanmaxjCj , in contradiction to the assump-
tion. Therefore, allCi are equal and the minimal value is

attained whenqi =
ED[x2

i ]
∑d

j=1 ED[x2
j ]

.

C.13. Proof of Theorem4.4

If m ≥ log 2d, we haveη ≤ 1
2G and the theorem follows

directly from Theorem4.1, Lemma4.2, equation (3) and
the calculatedqi-s in Lemma4.3.

C.14. Proof of Theorem4.5

The main goal of the proof is to bound the expected
squared infinity-norm of the gradient estimator from above.
By using Lemma4.2, all that remains is to upper bound∥
∥ED,A

[
x̃2

t,r

]∥∥
∞

as we do in the next lemma.

Lemma C.19. For all t > m1, the following bound

holds with probability1 if ε = 1 and with probability≥
1− δ, if ε ≤ 1

∥
∥ED,A2

[
x̃2

t,r

]∥∥
∞
≤ 4

∥
∥ED

[
x2
]∥∥

1
+

20
3

dε.

The proof can be found in AppendixC.15.

In the Lasso scenario it is sufficient to use one bound (com-
pare to LemmaC.5 in the Ridge scenario) as we are able
to join the two regimes ofε by ensuringε ≤ 1 (Algorithm
4, line 4). Using this bound, the proof of the theorem is
straightforward. First, using Theorem4.1 on the second
phase of the algorithm, we have

ED,A2 [LD (w̄)]− LD (w∗) ≤ B

(
log 2d

ηm2
+ 5ηG2

)

.

(8)
Now we use LemmaC.19, plug it into Lemma4.2 and
haveG2 ≤ 4B2

(
4
k

∥
∥ED

[
x2
]∥∥

1
+ 20

3kdε + 1
)

with prob-
ability 1 if ε = 1 and with probability≥ 1 − δ,
if ε ≤ 1. We continue by denotingĜ2 =
4B2

(
4
k

∥
∥2A + 10

3 ε
∥
∥

1
+ 20

3kdε + 1
)

and by using equa-

tion (5) we obtainG2 ≤ Ĝ2. Pluggingη =
√

log 2d

Ĝ25m2
=
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√
k log 2d

20B2m2(8‖A‖1+20dε+k) into equation (8), we have

ED,A2 [LD (w̄)]− LD (w∗)

≤ B

(
log 2d

m2η
+ 5ηG2

)

≤ B

(
log 2d

m2η
+ 5ηĜ2

)

≤ 2B

√
5Ĝ2 log 2d

m2

≤ 4B2

√
5
(
4
∥
∥2A + 10

3 ε
∥
∥

1
+ 20

3 dε + k
)
log 2d

km2
.

Using

∥
∥
∥
∥2A +

10
3

ε

∥
∥
∥
∥

1

≤

∥
∥
∥
∥4ED

[
x2
]
+

14
6

ε +
10
3

ε

∥
∥
∥
∥

1

≤ 4
∥
∥ED

[
x2
]∥∥

1
+

17
3

dε,

(9)

we have

ED,A2 [LD (w̄)]− LD (w∗)

≤ 4B2

√
5
(
16 ‖ED [x2]‖1 + 68

3 dε + 20
3 dε + k

)
log 2d

km2

≤ 4B2

√
5
(
16 ‖ED [x2]‖1 + 88

3 dε + k
)
log 2d

km2
.

If ε = 1, we have

4B2

√
5
(
16 ‖ED [x2]‖1 + 88

3 dε + k
)
log 2d

km2

≤ 61B2

√
d log 2d

km2

with probability 1. Otherwise plugging inε =

min
(

d log 2d
δ

(k+1)m1
, 1
)

finishes the proof.

C.15. Proof of LemmaC.19

Using the definition of̃xt,r,

∥
∥ED,A2

[
x̃2

t,r

]∥∥
∞

= max
i
ED,A2

[
x̃2

t,r [i]
]

= max
i

1
qi
ED

[
x2

i

]

=
d∑

j=1

(

A [j] +
13
6

ε

)

max
i

ED

[
x2

i

]

A [i] + 13
6 ε

.

Using equations (5), we have
∥
∥ED,A2

[
x̃2

t,r

]∥∥
∞

≤
d∑

j=1

(

2ED

[
x2

j

]
+

7
6
ε +

13
6

ε

)

max
i

ED

[
x2

i

]

1
2ED [x2

i ]−
5
3ε + 13

6 ε

≤ 4
d∑

j=1

(

ED

[
x2

j

]
+

5
3
ε

)

max
i

ED

[
x2

i

]

ED [x2
i ] + ε

≤ 4
d∑

j=1

(

ED

[
x2

j

]
+

5
3
ε

)

max
i

ED

[
x2

i

]

ED [x2
i ]

≤ 4
∥
∥ED

[
x2
]∥∥

1
+

20
3

dε.

If ε = 1, as equations (5) hold with probability1, this
bound also holds with probability1. If ε ≤ 1, this bound
holds with probability≥ 1− δ.


