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We present, for completeness, proofs which were omitted from the paper.

1 Proof of Lemma 4

Lemma 4. If ¢ : L*(S) — R is £y-strongly convez w.r.t. |- |, then 1* is ﬁ smooth

w.r.t. || ||« that is, for all x,y,
* * * 1
U* (@) =" (y) = (V" (y), 2 —y) < 57—l — yli2
20y
Proof. First, we prove that V¢* is ﬁ—LipSChitz (see for example Nesterov| [2009)]).

Let y1,y2 € E*, and x; = V¢*(y;). Since x; is the minimizer of the convex function
x = Y(x) — (y;,x), we have, by first-order optimality,

(Vip(x;) —yjx — ;) 20Ve € X
In particular, we have
(Vi (1) — y1, w2 — 1)
(Vip(z2) — y2, 21 — T2)
and summing both inequalities,
(y2 — y1, 2 — 1) > (Vp(x2) — Vp(21), 22 — 1)
By strong convexity, we have
(Y2 = y1, 22 — 21) = (Vip(2) — Vip(a1), 22 — 21) > Ly [lw2 — 1]

and by definition of the dual norm, we have (yo — y1,z2 — z1) < ||y2 — y1l|«||z2 — z1].
Therefore,
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>

ly2 = yallsllwe — @all = €y flaz — 21
rearranging, we have ||zg — 1] < %H;yg — 1|, Le.

196" (42) = V4 ()l < -l — 3l (1)
P
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2 Equivalence of Regret with respect to elements of

S and elements of X
In what follows, let X = {f € L?(S) : f > O a.e. and [q f(s)ds = 1}. Observe that
X is closed: We have X = X; N Xy, where X1 = {f € L2( ) : f > 0ae} and

Xy ={f e L*S fs ds = 1}. Xy is clearly closed, and so is Xg, being the inverse
image of the clo&ed set {1} under the continuous mapping f — [q f(s)ds.

We show the equivalence between the regret with respect to elements of the set S
and regret with respect to the set of Lebesgue continuous distributions on S, as stated
formally in the following:

Suppose that the €7 are L-Lipschitz, uniformly in time, and that S is v-uniformly
fat with respect to the Lebesque uniform measure. Then

t

t
R =%" <g(7)7 x<7>> _ Igleig;g(r)(g)

T7=1

t t
=y <g<r>,x<7>> _ ;g{ <; g(T)(s)7x>

Proof. Let s} be a minimizer of 23:1 £()(s). Then it suffices to show that for all € > 0,
there exists € X such that

t t
<Z 6(7),x> Zg(T
T=1 T=1

Fix € > 0. Since S is v-uniformly fat, there exists a convex set K; C S containing s},
with A(K;) > v. Let S; be the homothetic transform of K; as given in Lemma 3, of
center s; and ratio d; yet to be determined. Then we have

D(S;) = diD(K¢) < diD(S)

Now consider x = ﬁl s,- We have z € X, and since the () are uniformly L-Lipschitz,

t t 1
0z = ) (s)ds
(= > W

() (st) 4+ Ld,D(S))ds

= tLd,D(S) + ZE(T)(S*

In particular, if we choose d; = m, we have <Z::1 6(7),x> < 23:1 ) (s5) + e,

which proves the claim. O



3 Proof of Proposition 1

Next, we consider the dual averaging method when the regularization functional 1 is
taken to be the negative entropy

V() = / 2(5) In 2(s)ds + A(S)
S
We prove Proposition 1, which show that the solution to the dual averaging iteration is
given by the Hedge update rule:

Proposition 1. Let LY € E*, and consider the dual averaging iteration
1
2D € argmin <L(t)7x> + —¢(x) (2)
TEX Mt+1

where 1 is the negative entropy. Then the solution 1Y) is given by the Hedge update
rule: 1
(t+1) — —nep1 L (s)
x (s) 70 ¢

where Z®) s the normalization constant Z(® = s e~ L0 () g

Proof. Let K be the cone K = {x € L?(S) : # > 0}, and let
f(@) = (L0, )+

where ix is the indicator function of the cone K, i.e. igx(s) = 400 if s € K and 0
otherwise. The dual averaging iteration is equivalent to the following problem:

() + ik (r)

Tt+1

minimize,er2(g)  f(x)
subject to (1,z) =1

where 1 : S — R is identically equal to 1. Using the fact that the subdifferential of the
indicator ix is the normal cone Nk given byE|

Vo € K, Jig(x) = Nk (x) = {g € L*(S) : sup (g,y — z) < O},
yeK

the subdifferential of the objective function is

of (x) = LW + i(l +Inz) + Nk(z)
Tt+1

First, we show that, for all  and all ¢ € Nk (z), gr = 0 almost everywhere. Indeed,
fixing « € K we have (g,y —x) < 0 for all y € K. In particular, if we consider
y==x (1 + = 1g>0 219<0) we have

1 1
(g, y—x)= (g, 3 1g>0 = 51g<0 Ig\ Ig )z(s)

therefore & [ |g(s)|z(s)ds < 0, which implies that |g|lz = 0 a.e..
Now, consider the Lagrangian £: EF x R — R
1
L(z,v) = <L<t>,x> b ——(@) +ig(e) + v((1,z) — 1)
Nt+1
Then (z*,v*) is an optimal pair only if
1
0e LW 4+ —(1+Inz*)+ Ng(z*) + vl

Nt+1
1,2*) =1

ISee for example Chapter 16 in [Bauschke and Combettes| [2011]



see for example Bauschke and Combettes [2011] Section 19.3. We can rewrite the sta-
tionarity condition in the following way:

1

Nt+1

Jg* € Ng(2*) such that L) + (I1+Inz*)+v1+4g"=0.

Therefore,

*(s) = 6*’7t+1L(t)(S)/61+77t+1('/*+9*(8)) a.e.

g € Nk (z*)

1,2%) =1
In particular, 2* > 0 a.e., thus by the observation that g*z* = 0 a.e., we must have
g* = 0 a.e. Therefore, the necessary conditions become
e—m+1L<t)(S)

Z(t)
7 — v’

x*(s) =

fennte,

70 1

which proves the claim. O
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