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A. Appendix
A.1. Cases of several arms having the same expectation

Up to now, we have assumed that all arms have distinct ex-
pectations. Here, we consider cases in which some arms
have the same expectations. Without loss of generality,
we assume µ1 ≥ µ2 ≥, . . . ,≥ µK . Let us call arms
with a larger expectation than µL “strictly optimal” arms,
arms with the same expectation as µL “marginal” arms, and
arms with a smaller expectation than µL “strictly subopti-
mal” arms. Each arm is either strictly optimal, marginal, or
strictly suboptimal.

Case 1: Assume that all strictly optimal arms are distinct,
that there is only one marginal arm, and that there are sev-
eral strictly suboptimal arms with the same expectation. In
this case, the regret bound of Theorem 1 holds because our
analysis deals with each suboptimal arm separately.

Case 2: Assume that there is only one marginal arm, that
all strictly suboptimal arms are distinct, and that there are
several strictly optimal arms with the same expectation.
The regret bound also holds in this case since there is a
gap between each strictly suboptimal arm and each strictly
optimal arm.

Case 3: Assume that all strictly optimal arms and strictly
suboptimal arms are distinct and that there are several
marginal arms with the same expectation. Unfortunately,
we were unable to perform a meaningful analysis in
this case. Intuitively, as stated by Agrawal and Goyal
(Agrawal & Goyal, 2012) for SP-MAB, adding an addi-
tional marginal arm appears to require some extra explo-
ration, which slightly increases the regret. However, the re-
gret structure is more complex than the SP-MAB because
several marginal arms can be drawn simultaneously.

In summary, our Theorem 1 holds when the marginal arm
is distinct. That is, µ1 ≥ µ2 ≥ · · · ≥ µL−1 > µL >
µL+1 ≥ · · · ≥ µK .

A.2. Cascade model and position-dependent MP-MAB
problem

In the main paper, we assumed that the rewards of arms are
independently and identically drawn from individual dis-
tributions. In this section, we relax this assumption and
consider a wider class of the MP-MAB problem. Remem-
ber that, one of our primary applications is multiple adver-
tisement placement in the online advertising problem (c.f.,
Example 1). In this section, we interchangeably use the
terms an advertisement (ad) and an arm. It is known that
the CTR of an ad depends on the environment where the
ad is placed, especially on the position of the ad. Among
several models that explain this dependency on the posi-
tion, the model that explains human behavior and agrees

Algorithm 2 Bias-Corrected Multiple-play Thompson
sampling (BC-MP-TS) for binary rewards

Input: # of armsK, # of positionsL, discount fac-
tors {γl(i)}
for i = 1, 2, . . . ,K do
Ai, Ni = 1, 2

end for
t← 1.
for t = 1, 2 . . . , T do

for i = 1, 2, . . . ,K do
Bi ← max (Ni −Ai, 1)
θi(t) ∼ Beta(Ai, Bi)

end for
Select Il(t) (l = 1, . . . , L) in accordance with Section
A.2.2.
for l ∈ 1, 2, . . . , L do

if Xi(t) = 1 then
Ai ← Ai + 1

end if
Ni ← Ni +

∏l
l′=2 γl′(Il′−1(t))

end for
end for

well with real data (Craswell et al., 2008) is the cascade
model (Kempe & Mahdian, 2008; Aggarwal et al., 2008),
with which it is assumed that the user scans the ads from
top to bottom. Following Gatti et al. (2012), we define
the discount factor γl(i) for l ≥ 2 as the probability that
a user observing ad i in position l − 1 will observe the
ad in the next position. Namely, the MP-MAB problem
with a discount factor is defined as a MP-MAB problem
in which the arm at position l yields reward 1 with proba-
bility

(∏l
l′=2 γl′(Il′−1(t))

)
µIl(t), where Il(t) be the arm

placed at the l-th position at round t. Note that, when we
set γl(i) = 1 for any position l ∈ [L] and ad i, this model is
reduced to the model we considered in the main paper. In
the MP-MAB problem in the main paper, the order of the L
arms does not matter. Whereas, under a position-dependent
discount factor smaller than 1, the order of L arms matters:
the problem is not the selection of an L-set of arms, but an
L-sequence of arms.

A.2.1. THOMPSON SAMPLING FOR CASCADE MODEL

In the cascade model, there is some probability that the arm
at position l > 1 is not drawn. The probability that the
arm at position l is drawn,

∏l
l′=2 γl′(Il′−1(t)), can be con-

sidered as the effective number of the draws at position i.
MP-TS (Algorithm 1) keeps Ai and Bi, which respectively
correspond to the number of rewards 1 and 0. The number
of draws on the arm i is Ni = Ai +Bi. When we consider
the cascade model, we need to take the effective number of
draw into consideration. We introduce Bias-corrected MP-
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TS (BC-MP-TS, Algorithm 2). The crux of BC-MP-TS is
that, for each arm that is selected, Ni should be increased
not by 1, but by the effective number of draw for each posi-
tion. Note that, when γl(i) = 1, BC-MP-TS is essentially
the same as MP-TS.

A.2.2. OPTIMAL ARM SELECTION AND THE REGRET

In general discount factor γl(i), even if we have perfect
information over the expectation of all arms {µi}Ki=1, the
computation of the optimal sequence of L-arms at each
round t (optimal arm selection) appears to be computa-
tionally intractable when K is large because we need to
search all the possible allocation of K ads over L posi-
tions. Kempe & Mahdian (2008) proposed a polynomial-
time approximation of the optimal arm selection. We can
obtain the arm selection strategy for BC-MP-TS by us-
ing this approximation algorithm as an oracle and plugging
{θi(t)}Li=1 as estimated expected rewards.

Ad-independent discount factor: when the discount fac-
tor is independent of the ad at that position (i.e., γl(i) =
γl), the optimal arm selection is easy: just select µl (i.e.,
l-th best arm) on the l-th position. We define the arm selec-
tion strategy of BC-MP-TS as placing the arm of the l-th
largest θi (i.e., Il(t) = max

(l)
i∈[K] θi) on the l-th position.

Regret: naturally, the regret per round is defined as the
difference between the expected reward of the optimal arm
selection and that of an algorithm. Namely,

Reg(T ) =

T∑
t=1

L∑
l=1

(
l∏

l′=2

γl′(Iopt(l
′ − 1))µIopt(l)

−
l∏

l′=2

γl′(Il′−1(t))︸ ︷︷ ︸
effective number of draw at position l

×µIl(t)

)
,

where (Iopt(1), . . . , Iopt(L)) is the optimal arm selection.
In the case of the ad-independent discount factor, we con-
jecture that the regret lower bound should be identical to
the case of no-discount factor that we analysed in the main
paper (i.e., inequality (7)). Although we do not prove any
regret bound for this cascade model, the conjecture is sup-
ported by the fact that (i) by identifying the top-L arm
we immediately obtain the optimal arm selection, (ii) algo-
rithms should require log T/d(µi, µL) number of effective
draws to convince that suboptimal arm i > L is not as good
as arm L, and (iii) the best situation is that the simultane-
ous draw of several optimal arms rarely occurs: arm L is
pushed out instead of arm i, and the regret increase per an
effective draw is µL−µi. In the case of the general discount
factor, the problem is subtler because a slight difference in
{µi} can change the optimal arm selection.
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Figure 4. Simulation with a discount factor. Lower Bound is the
leading Ω(log T ) term of the RHS of inequality (7), which we
have conjectured to be the lower bound for the cascade model
with the ad-independent discount factor in Section A.2.2. The
regret is averaged over 10, 000 runs.

A.2.3. EXPERIMENT OF CASCADE MODEL

This simulation adapts the cascade model and involves a
constant discount factor γl(i) = 0.7 for any position and
arm. There are 9 Bernoulli arms with µ1 = 0.24, µ2 =
0.21, . . . , µ9 = 0.00 and L = 3. In this case the optimal
arm selection strategy is to choose {I1(t), I2(t), I3(t)} =
{µ1, µ2, µ3} (c.f., Section A.2.2). The regret of the al-
gorithms is shown in 4. On one hand, MP-TS failed to
have a small regret due to its ignorance to the discount fac-
tors. On the other hand, the slope of BC-MP-TS quickly
approaches the conjectured Lower Bound, which is em-
pirical evidence of the ability of BC-MP-TS to correct the
position-dependent bias.

A.3. Key fact and lemmas

Fact 5. (Chernoff bound for binary random variables)

LetX1, . . . , Xn be i.i.d. binary random variables. Let X̂ =
1
n

∑n
i=1Xi and µ = E[Xi]. Then, for any ε ∈ (0, 1− µ),

Pr(X̂ ≥ µ+ ε) ≤ exp (−d(µ+ ε, µ)n).

and, for any ε ∈ (0, µ),

Pr(X̂ ≤ µ− ε) ≤ exp (−d(µ− ε, µ)n).

Fact 6. (Beta-Binomial equality) Let F beta
α,β (y) be the cdf

of the beta distribution with integer parameters α and β.
Let FB

n,p(·) be the cdf of the binomial distribution with pa-
rameters n, p. Then,

F beta
α,β (y) = 1− FB

α+β−1,y(α− 1),

Fact 7. (Pinsker’s inequality for binary random variables)
For p, q ∈ (0, 1), the KL divergence between two Bernoulli
distributions is bounded as:

d(p, q) ≥ 2(p− q)2.
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Lemma 8. (Lemma 2 in Agrawal & Goyal (2013b)) Let
k ∈ [K], n ≥ 0 and x < µk. Let µ̂k,n be the em-
pirical average of n samples from Bernoulli(µk). Let
pk,n(x) = 1− F beta

µ̂k,nn+1,(1−µ̂k,n)n+1(y) be the probability
that the posterior sample from the Beta distribution with its
parameter µ̂k,nn+ 1, (1− µ̂k,n)n+ 1 exceeds x. Then, its
average over runs is bounded as:

E
[

1

pk,n(x)

]
≤

1 + 3
∆k(x) (n < 8/∆k(x))

1 + Θ

(
e−∆k(x)2n/2 + 1

(n+1)∆k(x)2 e
−Dk(x)n

+ 1

e∆k(x)2n/4−1

)
(n ≥ 8/∆k(x)),

where ∆k(x) = µk − x,Dk(x) = d(x, µk).

In the proof of Lemma 3 we use the following Lemmas
9, 10, and 11 several times. Lemma 9 is essentially the
combination of the existing techniques of Agrawal & Goyal
(2013b) and Honda & Takemura (2014). Lemmas 10 and
11 are also existing techniques that appear in several previ-
ous analyses in Bayesian bandits with Bernoulli arms.

Lemma 9. Let k ∈ [K], z < µk be arbitrary, S(t), T (t),
and U(t) be events such that

(i) if {θk(t) ≥ z}, S(t), and T (t) occurred then the arm
k is drawn at round t,

(ii) θk(t), S(t) and T (t) are mutually independent given
{µ̂i(t)}Ki=1 and {Ni(t)}Ki=1.

(iii) The event U(t) is deterministic given {µ̂i(t)}Ki=1 and
{Ni(t)}Ki=1.

(iv) Given {µ̂i(t)}Ki=1 and {Ni(t)}Ki=1 such that U(t)
holds, T (t) occurs with probability at least q > 0.

Then

E

[
T∑
t=1

1{θk(t) < z,S(t),U(t)}

]
= O

(
1

q(µk − z)2

)
.

In particular, by setting T (t) and U(t) the trivial events
that always hold (q = 1), we obtain the following inequal-
ity:

E

[
T∑
t=1

1{θk(t) < z,S(t)}

]
= O

(
1

(µk − z)2

)
. (17)

Proof. First we have

T∑
t=1

1{θk(t) < z,S(t),U(t)}

≤
T−1∑
n=0

T∑
t=1

1{θk(t) < z,S(t),U(t), Nk(t) = n}

≤
T−1∑
n=0

T∑
m=1

1

[
m ≤

T∑
t=1

1{θk(t) < z,S(t),U(t), Nk(t) = n}

]
.

(18)

Here note that the event

m ≤
T∑
t=1

1{θk(t) < z,S(t),U(t), Nk(t) = n} (19)

implies that the event

{S(t),U(t), Nk(t) = n} (20)

occurred for at least m rounds and {θk(t) < z} or T c(t)
occurred for the first m rounds such that (20) occurred.
Thus, by using the mutual independence of {θk(t) < z},
S(t), and T (t), we have

Pr

[
m ≤

T∑
t=1

1{θk(t) < z,S(t),U(t), Nk(t) = n}

∣∣∣∣∣µ̂k,n
]

≤ (1− pk,n(z)q)m (21)

and therefore

E

[
T∑
t=1

1{θk(t) < z,S(t),U(t)}

∣∣∣∣∣µ̂k,n
]

≤
T−1∑
n=0

T∑
m=1

(1− pk,n(z)q)m (by (18) and (21))

≤
T−1∑
n=0

1− pk,n(z)q

pk,n(z)q
≤ 1

q

T−1∑
n=0

(
1

pk,n(z)
− 1

)
, (22)

where we used q ≤ 1 in the last transformation. By using
Lemma 8, we obtain

E

[
T−1∑
n=0

(
1

pk,n(z)
− 1

)]

≤ 24

∆k(z)2
+

T−1∑
n=d8/∆k(z)e

O

(
e−∆k(z)2n/2

+
e−Dk(z)n

(n+ 1)∆k(z)2
+

1

e∆k(z)2n/4 − 1

)
.

(23)



Optimal Regret Analysis of Thompson Sampling in Stochastic Multi-armed Bandit Problem with Multiple Plays

By using the fact thatDk(z) = d(z, µk) = Ω(1/(µk−z)2)
(from the Pinsker’s inequality), it is easy to verify that the
RHS of (23) is O(1/(µk − z)2). By using these facts, we
finally obtain

E

[
T∑
t=1

1{θk(t)<z,S(t),U(t)}

]
≤1

q
E

[
T−1∑
n=0

(
1

pk,n(z)
−1

)]

= O

(
1

q(µk − z)2

)
,

which concludes the proof of the lemma.

Lemma 10. (Deviation of empirical averages, Agrawal &
Goyal (2013b, Appendix B.1)) Let k ∈ [K] and z > µk be
arbitrary. Then,

E

[ ∞∑
t=0

1{Ak(t), µ̂k(t) > z}

]
< 1 +

1

d(z, µk)
.

Lemma 11. (Deviation of Beta posteriors) Let k ∈ [K],
x1, x2 ∈ [0, 1] be arbitrary values such that x1 > x2, and
n ≥ 1. Then,

Pr(θk(t) ≥ x1|µ̂k(t) ≤ x2, Nk(t) = n)

≤ exp (−d(x2, x1)n).

Proof. Note that, this lemma is essentially the same as
the first display in Agrawal & Goyal (2013b, Appendix
B.2). While Agrawal & Goyal (2013b) provide a bound
for Nk(t) > n, the bound in our lemma is for Nk(t) = n.
For the sake of rigor, we write the proof here.

Pr(θj(t) ≥ x1|µ̂j(t) ≤ x2, Nj(t) = n)

= Pr

(
θ ∼ Beta(µ̂j(t)n+ 1, (1− µ̂j(t))n+ 1),

θ ≥ x1

∣∣∣∣µ̂j(t) ≤ x2

)
= 1− F beta

x2n+1,(1−x2)n+1(x1)

= FB
n+1,x1

(x2n)

(by the Beta-Binomial equality)

≤ FB
n,x1

(x2n) ≤ exp (−d(x2, x1)n)

(by the Chernoff bound).

A.4. Proof of Lemma 3

Evaluation of term (A):

Proof. Here, we prove inequality (13). Recall that

(A) =

T∑
t=1

1{Bc(t)} =

T∑
t=1

1{θ∗(t) < µ
(−)
L }.

Since θ∗(t) is theL-th largest posterior sample among arms
at round t, θ∗(t) < µ

(−)
L implies that, there exists at least

one arm in [L] with its posterior sample smaller than µ(−)
L .

Namely,

{θ∗(t) < µ
(−)
L } ⊂

⋃
k∈[L]

{θk(t) < µ
(−)
L },

and therefore

{θ∗(t) < µ
(−)
L }

=
⋃
k∈[L]

{θk(t) < µ
(−)
L , θ∗(t) < µ

(−)
L }

=
⋃
k∈[L]

{θk(t) < µ
(−)
L ,max

j∈[L]

(L)θj(t) < µ
(−)
L }

⊂
⋃
k∈[L]

{θk(t) < µ
(−)
L , max

j∈[L]\{k}
(L)θj(t) < µ

(−)
L }.

By using the union bound, we obtain

1{θ∗(t) < µ
(−)
L }

≤
∑
k∈[L]

1{θk(t) < µ
(−)
L , max

j∈[L]\{k}
(L)θj(t) < µ

(−)
L }.

Note that the event max
(L)
j∈[L]\{k} θj(t) < µ

(−)
L satisfies the

condition for the event S(t) in (17) in Lemma 9 with z :=

µ
(−)
L . Therefore we obtain from Lemma 9 that

E

[
T∑
t=1

1{θ∗(t) < µ
(−)
L }

]

= O

(
1

(µk − µ(−)
L )2

)
= O

(
1

(µL − µ(−)
L )2

)
,

which concludes the proof of inequality (13).

Evaluation of term (B):

Proof. Here, we prove inequality (14). We have,

(B) =

T∑
t=1

1{Ai(t), Cci (t)}

=

T∑
t=1

1

 ⋃
j∈[K]\([L−1]∪{i})

{Ai(t), θ∗∗\i,j(t) < ν}


=

T∑
t=1

∑
j∈[K]\([L−1]∪{i})

1
{
Ai(t), θ∗∗\i,j(t) < ν

}

=

T∑
t=1

∑
j∈[K]\([L−1]∪{i}){

1 {Ai(t), µ̂i(t)>µL}+1
{
Ai(t), µ̂i(t)≤µL, θ∗∗\i,j(t) < ν

}}
.

(24)
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In the following, we bound the first and the second terms
in the inner sum of the last line of (24). From Lemma 10,
the first term of (24) is bounded as:

E

[
T∑
t=1

1 {Ai(t), µ̂i(t) > µL}

]
≤ 1 +

1

d(µL, µi)
= O(1).

On the other hand, the second term of (24) is transformed
as:
T∑
t=1

1
{
Ai(t), µ̂i(t) ≤ µL, θ∗∗\i,j(t) < ν

}
≤ 1

d(µL, ν)

+

T∑
t=1

1

{
Ai(t), Ni(t)>

1

d(µL, ν)
, µ̂i(t)≤µL, θ∗∗\i,j(t)<ν

}
≤ 1

d(µL, ν)

+

T∑
t=1

1

{
Ni(t) >

1

d(µL, ν)
, µ̂i(t) ≤ µL, θ∗∗\i,j(t) < ν

}
.

Since θ∗∗\i,j(t) is the (L − 1)-th largest posterior sample
among arms except for arms i and j, θ∗∗\i,j(t) < ν indicates
that, the number of arms excluding i and j with posterior
samples larger than or equal to ν is at most L− 2, and thus
at least one arm among [L−1] has its posterior smaller than
ν. Namely,

{θ∗∗\i,j(t) < ν} = { max
l∈[K]\{i,j}

(L−1)θl(t) < ν}

=
⋃

k∈[L−1]

{θk(t) < ν, max
l∈[K]\{i,j}

(L−1)θl(t) < ν}

⊂
⋃

k∈[L−1]

{θk(t) < ν, max
l∈[K]\{i,j,k}

(L−1)θl(t) < ν}.

By using this, we have

T∑
t=1

1

{
Ni(t) >

1

d(µL, ν)
, µ̂i(t) ≤ µL, θ∗∗\i,j(t) < ν

}

≤
T∑
t=1

∑
k∈[L−1]

1
{
Ni(t) >

1

d(µL, ν)
, µ̂i(t) ≤ µL,

θk(t) < ν, max
l∈[K]\{i,j,k}

(L−1)θl(t) < ν
}
.

Here, z := ν, S(t) := {max
(L−1)
l∈[K]\{i,j,k} θl(t) <

ν}, T (t) := {θi(t) ≤ ν}, and U(t) := {Ni(t) >
1/d(µL, ν), µ̂i(t) ≤ µL} satisfy the condition in Lemma
9. Under U(t), T (t) holds with probability at least

1− exp

(
−d(µL, ν)(

1

d(µL, ν)
)

)
= 1− 1/e

by Lemma 11. Therefore, by using Lemma 9 we obtain

E

[
T∑
t=1

1
{
Ni(t) >

1

d(µL, ν)
, µ̂i(t) ≤ µL,

θk(t) < ν, max
l∈[K]\{i,j,k}

(L−1)θl(t) < ν
}]

≤ O
(

1

(1− 1/e)(µk − ν)2

)
= O(1). (25)

From (25) and the union bound over k ∈ [L−1], the second
term of (24) is O(1). In summary, term (B) is O(1) in
expectation.

Evaluation of term (C):

Proof. Here, we prove inequality (15). Recall that,

(C) =
∑

j∈[K]\([L−1]∪{i})

T∑
t=1

1{Ai(t),Aj(t), Ci(t),Di(t)}.

Let ν2 = (ν + µL)/2 = (µL−1 + 3µL)/4. Note that,
we defined ν and ν2 such that µL−1 > ν > ν2 > µL,
O(µL−1 − ν) = O(ν − ν2) = O(ν2 − µL) = O(µL−1 −
µL) = O(1) as a function of T . Then,

T∑
t=1

1{Ai(t),Aj(t), Ci(t),Di(t)}

=

T∑
t=1

1{Ai(t),Aj(t), Ci(t),Di(t), µ̂j(t) > ν2}

+

T∑
t=1

1{Ai(t),Aj(t), Ci(t),Di(t), µ̂j(t) ≤ ν2}

≤
T∑
t=1

1{Aj(t), µ̂j(t) > ν2}

+

T∑
t=1

1{Ai(t),Aj(t), Ci(t),Di(t), µ̂j(t) ≤ ν2}.

(26)

By using Lemma 10 with z := ν2, the first term in (26) is
bounded as:

E

[
T∑
t=1

1{Aj(t), µ̂j(t) > ν2}

]
≤ 1 +

1

d(ν2, µj)

= O

(
1

(ν2 − µj)2

)
= O

(
1

(µL−1 − µL)2

)
= O(1).

(27)
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We now bound the second term in (26). Let C′i,j(t) =
{θ∗∗\i,j(t) ≥ ν} ⊃ Ci(t). Let Ej(t) = {Nj(t) ≥ ε2 log T}.
We have,

T∑
t=1

1{Ai(t),Aj(t), Ci(t),Di(t), µ̂j(t) ≤ ν2}

≤
T∑
t=1

1{Ai(t),Aj(t), C′i,j(t),Di(t), µ̂j(t) ≤ ν2}

≤ ε2 log T

+

T∑
t=1

1{Ai(t),Aj(t), C′i,j(t),Di(t), µ̂j(t) ≤ ν2, Ej(t)}.

≤ ε2 log T +

Nsuf
i (T )−1∑
n=0

T∑
t=1

1{Ai(t),Aj(t), C′i,j(t), Ni(t) = n, µ̂j(t) ≤ ν2, Ej(t)}.

In the following, we bound

T∑
t=1

1{Ai(t),Aj(t), C′i,j(t), Ni(t) = n, µ̂j(t) ≤ ν2, Ej(t)}.

(28)
Note that, (28) is at most 1 since {Ai(t), Ni(t) = n} oc-
curs at most once. Let τ be the first round (if exists) at
which {C′i,j(t), θ∗∗\i,j(t) ≤ θi(t),Ai(t), Ni(t) = n} is sat-
isfied. It is necessary that {θj(τ) ≥ θ∗∗\i,j(τ)} for (28) to be
1: this is because, (i) both θi(τ) and θj(τ) need to be larger
than θ∗∗\i,j(τ) for the simultaneous draw of arms i and j,
(ii) and if θj(τ) < θ∗∗\i,j(τ) then arm i is drawn and thus
{Ni(t) = n} is never satisfied after t > τ . Here,

Pr{θj(τ) ≥ θ∗∗\i,j(τ), θ∗∗\i,j(τ) ≥ ν, µ̂j(τ) ≤ ν2}
≤ exp (−d(ν2, ν)Nj(τ)),

by Lemma 11. Therefore, we have

E

[
T∑
t=1

1{Ai(t),Aj(t), Ci(t), Ni(t) = n, µ̂j(t) ≤ ν2}

]
≤ exp (−d(ν2, ν)ε2 log T ) = T−ε2d(ν2,ν). (29)

In summary, the second term in (26) is bounded as:

E

[
T∑
t=1

1{Ai(t),Aj(t), Ci(t),Di(t), µ̂j(t) ≤ ν2}

]
≤ ε2 log T +N suf

i (T )T−ε2d(ν2,ν)

≤
(
ε2 +

4T−ε2d(ν2,ν)

d(µi, µL)

)
log T (by (1 + δ)2 < 4),

and thus,

E[(C)]

≤
∑

j∈[K]\([L−1]∪{i})

((
ε2 + 4T−ε2d(ν2,ν)

)
log T

d(µi, µL)

)
+O(1)

≤
∑

j∈[K]\([L−1]∪{i})


(
ε2 + 4T−ε2∆2

L,L−1/8
)

log T

d(µi, µL)

+O(1),

where we used the fact that d(ν2, ν) ≥ 2(ν − ν2)2 = 2 ×
((µL−1 − µL)/4)2 in the last transformation.

Evaluation of term (D):

Proof. Here, we prove inequality (16). We first divide term
(D) into two subterms as:

E[(D)] = E

[
T∑
t=1

1{Ai(t),B(t), Ni(t) ≥ N suf
i (T )}

]

≤ E

[
T∑
t=1

1{Ai(t),B(t), µ̂i(t) > µ
(+)
i , Ni(t) ≥ N suf

i (T )}

]

+ E

[
T∑
t=1

1{Ai(t),B(t), µ̂i(t) ≤ µ(+)
i , Ni(t) ≥ N suf

i (T )}

]
.

(30)

On one hand, the first term in (30) is bounded as:

E

[
T∑
t=1

1{Ai(t),B(t), µ̂i(t) > µ
(+)
i , Ni(t) ≥ N

suf
i (T )}

]

≤ E

[
T∑
t=1

1{Ai(t), µ̂i(t) > µ
(+)
i }

]

≤ 1 +
1

d(µ
(+)
i , µi)

(by Lemma 10). (31)

On the other hand, each component of the second term of


