
Surrogate Functions for Maximizing Precision at the Top

A. Structural SVM Surrogate for prec@k
The structural SVM surrogate for prec@k for a set of n points {(x1, y1), . . . , (xn, yn)} ∈ (Rd × {0, 1})n and model
w ∈ Rd can be written as `struct

prec@k(w):

max
ŷ∈{0,1}n
‖ŷ‖1=k

{
1 +

n∑
i=1

ŷi

(
1

n
w>xi −

1

k
yi

)
− 1

n

n∑
i=1

yiw
>xi

}
.

We shall now give a simple setting where this surrogate produces a suboptimal model.

Consider a set of 6 points in R × {0, 1}: {(−1, 1), (−1, 1), (−2, 1), (−3, 0), (−3, 0), (−3, 0)}, and suppose we are inter-
ested in Prec@1. Note that the optimum model that maximizes prec@1 on these points has a positive sign. We will now
show that the model w∗ ∈ R that maximizes the above structural SVM surrogate on these points has a negative sign. On
the contrary, let us assume that w∗ has a positive sign, and arrive at a contradiction; we shall consider the following two
cases:

(i) w∗ > 3
2 . It can be verified that

`struct
prec@k(w∗) = 1 +

(
1

6
(−w∗)− 1

)
− 1

6
(−w∗ +−w∗ +−2w∗)

=
1

2
w∗

On the other hand, for the model w′ = −w∗, we have

`struct
prec@k(w′) = 1 +

(
1

6
(−3w′)− 0

)
− 1

6
(−w′ +−w′ +−2w′)

= 1 +

(
1

6
(3w∗)− 0

)
− 1

6
(w∗ + w∗ + 2w∗)

= 1− 1

6
w∗ < `struct

prec@k(w∗),

where the last step follows from w∗ > 3
2 ; clearly, w∗ is not optimal for the structural SVM surrogate, and hence a

contradiction.

(i) w∗ ≤ 3
2 . Here we have

`struct
prec@k(w∗) = 1 +

(
1

6
(−3w∗)− 0

)
− 1

6
(−w∗ +−w∗ +−2w∗)

= 1 +
1

6
w∗.

For w′ = −w∗,

`struct
prec@k(w′) = 1 +

(
1

6
(−3w′)− 0

)
− 1

6
(−w′ +−w′ +−2w′)

= 1 +

(
1

6
(3w∗)− 0

)
− 1

6
(w∗ + w∗ + 2w∗)

= 1− 1

6
w∗ < `struct

prec@k(w∗).

Here again, we have a contradiction. Notice that this surrogate can take negative values (when w < −6 for example)
whereas prec@k is a positive valued function. This clearly indicates that this surrogate cannot upper bound prec@k.
More specifically, notice that for w < 0, we have prec@k(w) = 1, however, the above analysis demonstrates cases when
`struct

prec@k(w) < 1 which gives an explicit example that this surrogate is not even an upper bounding surrogate.
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B. Proofs of Claims from Section 3
B.1. Proof of Claim 1

Claim 1. For any k ≤ n+ and scoring function s, we have

`ramp
prec@k(s) ≥ prec@k(s).

Moreover, if for some scoring function s, we have `ramp
prec@k(s) ≤ ξ, then there necessarily exists a set S ⊂ [n] of size at most

k such that for all ‖ŷ‖ = k, we have ∑
i∈S

si ≥
n∑
i=1

ŷisi + ∆(y, ŷ)− ξ.

Proof. Let ŷ = y(s,k) so that we have ∆(y, ŷ) = prec@k(s). Then we have

`ramp
prec@k(s) = max

‖ŷ‖1=k

{
∆(y, ŷ) +

n∑
i=1

ŷisi

}
− max
‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi

≥ ∆(y, ŷ) +

n∑
i=1

ŷisi − max
‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi

= ∆(y, ŷ) + max
‖ỹ‖1=k

n∑
i=1

ỹisi − max
‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi

≥ ∆(y, ŷ),

where the third step follows from the definition of ŷ. This proves the first claim. For the second claim, suppose for some
scoring function s, we have `ramp

prec@k(s) ≤ ξ. Then if we consider S∗ to be the set of k-highest ranked positive points, then
we have ∑

i∈S∗
si = max

‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi ≥ max
‖ŷ‖1=k

{
∆(y, ŷ) +

n∑
i=1

ŷisi

}
− ξ ≥

n∑
i=1

ŷisi + ∆(y, ŷ)− ξ,

which proves the claim.

B.2. Proof of Claim 3

Claim 3. For any scoring function s that realizes the weak k-margin over a dataset we have,

`ramp
prec@k(s) = prec@k(s) = 0.

Proof. Consider a scoring function s that satisfies the weak k-margin condition and any ŷ such that ‖ŷ‖1 = k. Based on
the prec@k accuracy of ŷ, we have the following two cases

Case 1 (K(y, ŷ) = k): In this case we have

∆(y, ŷ) +

n∑
i=1

ŷisi − max
‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi = 0 +

n∑
i=1

ŷisi − max
‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi ≤ 0,

where the first step follows since K(y, ŷ) = k and the second step follows since ‖ŷ‖1 = k, as well as K(y, ŷ) = k.

Case 2 (K(y, ŷ) = k′ < k): In this case let S∗ be the set of k top ranked positive points according to the scoring function
s. Also let S∗1 be the set of k′(= K(y, ŷ)) top ranked positives and let S∗2 = S∗\S∗1 . Then we have

∆(y, ŷ) +

n∑
i=1

ŷisi − max
‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi = ∆(y, ŷ) +

n∑
i=1

ŷiyisi︸ ︷︷ ︸
(A)

+

n∑
i=1

ŷi(1− yi)si − max
‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi
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≤ ∆(y, ŷ) +
∑
i∈S∗1

si +

n∑
i=1

ŷi(1− yi)si︸ ︷︷ ︸
(B)

− max
‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi

≤ ∆(y, ŷ) +
∑
i∈S∗1

si +
∑
i∈S∗2

si − (k − k′)− max
‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi

= k − k′ +
∑
i∈S∗

si − (k − k′)− max
‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi

= 0,

where the second step follows since the term (A) consists of k′ true positives the third step follows since the term (B)
contains k − k′ false positives i.e. negatives and the k-margin condition, the fourth step follows since ∆(y, ŷ) = k −
K(y, ŷ) and the fifth step follows since by the definition of the set S∗, we have∑

i∈S∗
si = max

‖ỹ‖1=k
K(y,ỹ)=k

n∑
i=1

ỹisi.

In both cases, we have shown the surrogate to be non-positive. Since the performance measure prec@k cannot take negative
values, this, along with the upper bounding property implies that prec@k(s) = 0 as well. This finishes the proof.

B.3. A Useful Supplementary Lemma

Lemma 16. Given a set of n real numbers x1 . . . xn and any two integers k ≤ k′ ≤ n, we have

min
|S|=k

1

k

∑
i∈S

xi ≤ min
|S′|=k′

1

k′

∑
j∈S′

xj

Proof. The above is obviously true if k = k′ so we assume that k′ > k. Without loss of generality assume that the set is
ordered in ascending order i.e. x1 ≤ x2 ≤ . . . ≤ xn. Thus, the above statement is equivalent to showing that

1

k

k∑
i=1

xi ≤
1

k′

k′∑
j=1

xj ⇔
(

1

k
− 1

k′

) k∑
i=1

xi ≤
1

k′

k′∑
j=k+1

xj ⇔
1

k

k∑
i=1

xi ≤
1

k′ − k

k′∑
j=k+1

xj ,

where the last inequality is true since k−k′ > 0 and the left hand side is the average of numbers which are all smaller than
the numbers whose average forms the right hand side. This proves the lemma.

B.4. Proof of the Upper-bounding Property for the `avg
prec@k(·) Surrogate

Claim 17. For any k ≤ n+ and scoring function s, we have

`avg
prec@k(s) ≥ prec@k(s).

Moreover, for linear scoring functions i.e. s(xi) = w>xi for w ∈ W , the surrogate `avg
prec@k(w) is convex in w.

Proof. We use the fact observed before that for any scoring function, we have ∆(y,y(s,k)) = prec@k(s). We start off by
showing the second part of the claim. Recall the definition of the surrogate `avg

prec@k(s)

`avg
prec@k(w) = max

‖ŷ‖1=k

{
∆(y, ŷ) +

n∑
i=1

(ŷi − yi) ·w>xi +
1

C(ŷ)

n∑
i=1

(1− ŷi)yi ·w>xi

}
For sake of simplicity, for any ŷ ∈ {0, 1}n, define

∆(s, ŷ) = ∆(y, ŷ) +

n∑
i=1

si(ŷi − yi) +
1

C(ŷ)

n∑
i=1

(1− ŷi)yisi.
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The convexity of `avg
prec@k(w) follows from the observation that the inner term in the maximization is linear (hence convex)

in w and the max function is convex and increasing. We now move on to prove the first part. For sake of convenience
ỹ = y(s,k). Note that ‖ỹ‖1 = k by definition. This gives us

`avg
prec@k(s) = max

‖ŷ‖1=k
∆(s, ŷ) ≥ ∆(s, ỹ)

= ∆(y, ỹ) +

n∑
i=1

si(ỹi − yi) +
1

C(ỹ)

n∑
i=1

(1− ỹi)yisi

= ∆(y, ỹ) +

n∑
i=1

si(ỹi(1− yi)− yi(1− ỹi)) +
n+ − k

n+ −K(y, ỹ)

n∑
i=1

(1− ỹi)yisi

= ∆(y, ỹ) +

n∑
i=1

ỹi(1− yi)si︸ ︷︷ ︸
(A)

− k −K(y, ỹ)

n+ −K(y, ỹ)

n∑
i=1

(1− ỹi)yisi︸ ︷︷ ︸
(B)

.

Now define m = minỹi=1
yi=0

si and M = maxỹi=0
yi=1

si. This gives us

(A) =

n∑
i=1

ỹi(1− yi)si ≥ m
n∑
i=1

ỹi(1− yi) = ∆(y, ỹ) ·m,

and

(B) =
k −K(y, ỹ)

n+ −K(y, ỹ)

n∑
i=1

(1− ỹi)yisi ≤
k −K(y, ỹ)

n+ −K(y, ỹ)

n∑
i=1

(1− ỹi)yiM = (k −K(y, ỹ)) ·M = ∆(y, ỹ) ·M.

However, by definition of ỹ = y(s,k), we have

m ≥ min
ỹ=1

si ≥ max
ỹ=0

si ≥M.

Thus we have

`avg
prec@k(s) ≥ ∆(y, ỹ) + (A)− (B) ≥ ∆(y, ỹ)(1 +m−M) ≥ ∆(y, ỹ) = prec@k(s)

B.5. Proof of Claim 6

Claim 6. For any scoring function s that realizes the k-margin over a dataset we have,

`avg
prec@k(s) = prec@k(s) = 0.

Proof. We shall prove that for any ŷ such that ‖ŷ‖1 = k, under the k-margin condition, we have ∆(s, ŷ) = 0. This will
show us that `avg

prec@k(s) = max‖ŷ‖1=k ∆(s, ŷ) = 0. Using Claim 17 and the fact that prec@k(s) ≥ 0 will then prove the
claimed result. We will analyze two cases in order to do this

Case 1 (K(y, ŷ) = k): In this case the labeling ŷ is able to identify k relevant points correctly and thus we have C(ŷ) = 1
and we have

∆(s, ŷ) = ∆(y, ŷ) +

n∑
i=1

si(ŷi − yi) +

n∑
i=1

(1− ŷi)yisi

Now, since K(y, ŷ) = k, we have ∆(y, ŷ) = 0 which means for all i such that ŷi = 1, we also have yi = 1. Thus, we
have ŷi = ŷiyi. Thus,

∆(s, ŷ) = 0 +

n∑
i=1

si(ŷi − yi) +

n∑
i=1

(yi − ŷiyi)si =

n∑
i=1

si(ŷi − yi) +

n∑
i=1

(yi − ŷi)si = 0
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Case 2 (K(y, ŷ) = k′ < k): In this case, ŷ contains false positives. Thus we have

∆(s, ŷ) = ∆(y, ŷ) +

n∑
i=1

si(ŷi − yi) +
n+ − k
n+ − k′

n∑
i=1

(1− ŷi)yisi

= ∆(y, ŷ) +

n∑
i=1

ŷi(1− yi)si −
k − k′

n+ − k′
n∑
i=1

yi(1− ŷi)si

= (k − k′)

 1

k − k′
∆(y, ŷ)︸ ︷︷ ︸

(A)

+
1

k − k′
n∑
i=1

ŷi(1− yi)si︸ ︷︷ ︸
(B)

− 1

n+ − k′
n∑
i=1

yi(1− ŷi)si︸ ︷︷ ︸
(C)


Now we have, by definition, (A) = 1. We also have

(B) =
1

k − k′
n∑
i=1

ŷi(1− yi)si ≤ max
j:yj=0

sj ,

as well as

(C) =
1

n+ − k′
n∑
i=1

yi(1− ŷi)si

≥ min
S+⊆X+

|S+|=n+−k′

1

n+ − k′
∑
i∈S+

yi(1− ŷi)si

≥ min
S+⊆X+

|S+|=n+−k+1

1

n+ − k + 1

∑
i∈S+

yi(1− ŷi)si,

where the last step follows from Lemma 16 and the fact that k′ ≤ k − 1 in this case analysis. Then we have

∆(s, ŷ) = (k − k′)((A) + (B)− (C)) ≤ (k − k′)

1 + max
j:yj=0

sj − min
S+⊆X+

|S+|=n+−k+1

1

n+ − k + 1

∑
i∈S+

yi(1− ŷi)si

 ≤ 0

where the last step follows because s realizes the k-margin. Having exhausted all cases, we establish the claim.

C. Proofs from Section 4
C.1. Proof of Theorem 7

Theorem 7. Suppose
∥∥xit∥∥ ≤ R for all t, i. Let ∆C

T =
∑T
t=1 ∆t be the cumulative observed mistake values when

Algorithm 1 is run. Also, for any predictor w, let L̂T (w) =
∑T
t=1 `

avg
prec@k(w;Xt,yt). Then we have

∆C
T ≤ min

w

(
‖w‖ ·R ·

√
4k +

√
L̂T (w)

)2

.

Proof. We will prove the theorem using two lemmata that we state below.

Lemma 18. For any time step t, we have

‖wt‖2 ≤ ‖wt−1‖2 + 4kR2∆t

Lemma 19. For any fixed w ∈ W , define Pt := 〈wt,w〉. Then we have

Pt ≥ Pt−1 + ∆t − `avg
prec@k(w;Xt,yt).
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Using Lemmata 18 and 19, we can establish the mistake bound as follows. A repeated application of Lemma 19 tells us
that

PT ≥
T∑
t=1

∆t −
T∑
t=1

`avg
prec@k(w;Xt,yt) = ∆C

t − L̂T (w).

In case the right hand side is negative, we already have the result with us. In case it is positive, we can now analyze further
using the Cauchy-Schwartz inequality, and a repeated application of Lemma 18. Starting from the above we have

∆C
T ≤ PT + L̂T (w)

= 〈wT ,w〉+ L̂T (w)

≤ ‖wT ‖ ‖w‖+ L̂T (w)

≤ ‖w‖
√

4kR2 ·∆C
T + L̂T (w),

which gives us the desired result upon solving the quadratic inequality1. We now prove the lemmata below. Note that in
the following discussion, we have, for sake of brevity, used the notation ŷ = ŷt = y(wt−1,k).

Proof of Lemma 18. For time steps where ∆t = 0, the result obviously holds since wt = wt−1. For analyzing other time
steps, let vt = Dt ·

∑
i∈[b](1− ŷi)yi · xit −

∑
i∈[b](1− yi)ŷi · xit so that wt = wt−1 + vt. This gives us

‖wt‖2 = ‖wt−1‖2 + 2 〈wt−1,vt〉+ ‖vt‖2 .

Let si = w>t−1x
i
t. Then we have

〈wt−1,vt〉 = Dt ·
∑
i∈[b]

(1− ŷi)yisi −
∑
i∈[b]

(1− yi)ŷisi

= ∆t


1

‖yt‖1 −K(yt, ŷt)

∑
i∈[b]

(1− ŷi)yisi︸ ︷︷ ︸
(A)

− 1

∆t

∑
i∈[b]

(1− yi)ŷisi︸ ︷︷ ︸
(B)


≤ 0,

where the last step follows since (A) is the average of scores given to the false negatives and (B) is the average of scores
given to the false positives and by the definition of ŷt, since false negatives are assigned scores less than false positives,
we have (A) ≤ (B). We also have

‖vt‖2 = ∆2
t

∥∥∥∥∥∥ 1

‖yt‖1 −K(yt, ŷt)
·
∑
i∈[b]

(1− ŷi)yi · xit −
1

∆t

∑
i∈[b]

(1− yi)ŷi · xit

∥∥∥∥∥∥
2

≤ 4∆2
tR

2 ≤ 4kR2∆t,

since ∆t ≤ k. Combining the two gives us the desired result.

Proof of Lemma 19. We prove the result using two cases. For sake of convenience, we will refer to yt and ŷt as y and ŷ
respectively.

Case 1 (∆t = 0): In this case Pt = Pt−1 since the model is not updated. However, since `avg
prec@k(w) ≥ prec@k(w) ≥ 0

for all w ∈ W (by Claim 17), we still get

Pt ≥ Pt−1 − `avg
prec@k(w;Xt,yt),

as required.

1More specifically, we use the fact that the inequality (x− l)2 ≤ cx has a solution x ≤ (
√
l+
√
c)2 whenever x, l, c ≥ 0 and x ≥ l.
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Case 2 (∆t > 0): In this case we use the update to wt−1 to evaluate the update to Pt−1. For sake of convenience, let us
use the notation si = w>xit. Also note that in Algorithm 1, Dt = 1− 1

C(ŷ) .

Pt = Pt−1 −
∑
i∈[b]

(1− yi)ŷisi +Dt ·
∑
i∈[b]

(1− ŷi)yisi

= Pt−1 −
∑
i∈[b]

(1− yi)ŷisi +

(
1− 1

C(ŷ)

)∑
i∈[b]

(1− ŷi)yisi

= Pt−1 −

∑
i∈[b]

(ŷi − yi)si +
1

C(ŷ)

∑
i∈[b]

(1− ŷi)yisi


︸ ︷︷ ︸

(Q)

≥ Pt−1 + ∆t − `avg
prec@k(w;Xt,yt),

where the last step follows from the definition of `avg
prec@k(·) which gives us

∆t + (Q) = ∆(y, ŷ) +
∑
i∈[b]

(ŷi − yi)si +
1

C(ŷ)

∑
i∈[b]

(1− ŷi)yisi

≤ max
‖ŷ‖1=k

∆(y, ŷ) +
∑
i∈[b]

si(ŷi − yi) +
1

C(ŷ)

∑
i∈[b]

(1− ŷi)yisi


= `avg

prec@k(s) = `avg
prec@k(w;Xt,yt)

This concludes the proof of the mistake bound.

C.2. Proof of Theorem 9

Theorem 9. Suppose
∥∥xit∥∥ ≤ R for all t, i. Let ∆C

T =
∑T
t=1 ∆t be the cumulative observed mistake values when

Algorithm 2 is run. Also, for any predictor w, let L̂max
T (w) =

∑T
t=1 `

max
prec@k(w;Xt,yt). Then we have

∆C
T ≤ min

w

(
‖w‖ ·R ·

√
4k +

√
L̂max
T (w)

)2

.

Proof. As before, we will prove this theorem in two parts. Lemma 18 will continue to hold in this case as well. However,
we will need a modified form of Lemma 19 that we prove below. As before, we will use the notation ŷ = ŷt = y(wt−1,k).

Lemma 20. For any fixed w ∈ W , define Pt := 〈wt,w〉. Then we have

Pt ≥ Pt−1 + ∆t − `max
prec@k(w;Xt,yt).

Using Lemmata 18 and 20, the theorem follows as before. All that remains now is to prove Lemma 20.

Proof of Lemma 20. We prove the result using two cases as before. For sake of convenience, we will refer to yt and ŷt as
y and ŷ respectively.

Case 1 (∆t = 0): In this case Pt = Pt−1 since the model is not updated. However, since `max
prec@k(w) ≥ prec@k(w) ≥ 0

for all w ∈ W (by Claim 1), we still get

Pt ≥ Pt−1 − `max
prec@k(w;Xt,yt),

as required.
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Case 2 (∆t > 0): In this case we use the update to wt−1 to evaluate the update to Pt−1. For sake of convenience, let us use
the notation si = w>xit. Also note that the set St := FN(wt−1,∆t) contains the false negatives in the top ∆t positions as
ranked by wt−1.

Pt = Pt−1 −
∑
i∈[b]

(1− yi)ŷisi +
∑
i∈St

(1− ŷi)yisi

= Pt−1 −
∑
i∈[b]

(1− yi)ŷisi −
∑
i∈[b]

yiŷisi +
∑
i∈[b]

yiŷisi +
∑
i∈St

(1− ŷi)yisi

= Pt−1 −
∑
i∈[b]

ŷisi +
∑
i∈[b]

yiŷisi +
∑
i∈St

(1− ŷi)yisi

= Pt−1 −

∑
i∈[b]

(ŷi − yi)si +
∑
i∈[b]

(1− ŷi)yisi −
∑
i∈St

(1− ŷi)yisi


≥ Pt−1 −

∑
i∈[b]

(ŷi − yi)si + max
ỹ�(1−ŷ)·y
‖ỹ‖1=n+−k

n∑
i=1

ỹisi


︸ ︷︷ ︸

(Q)

≥ Pt−1 + ∆t − `max
prec@k(w;Xt,yt),

where the last step follows from the definition of `avg
prec@k(·) which gives us

∆t + (Q) = ∆t +
∑
i∈[b]

(ŷi − yi)si + max
ỹ�(1−ŷ)·y
‖ỹ‖1=n+−k

n∑
i=1

ỹisi

≤ max
‖ŷ‖1=k

∆t +
∑
i∈[b]

(ŷi − yi)si + max
ỹ�(1−ŷ)·y
‖ỹ‖1=n+−k

n∑
i=1

ỹisi


= `max

prec@k(s) = `max
prec@k(w;Xt,yt)

This concludes the proof of the theorem.

D. Proof of Theorem 12
Our proof of Theorem 12 crucially utilizes the following two lemmas that helps in exploiting the structure in our surrogate
functions. The first basic lemma states that the pointwise supremum of a set of Lipschitz functions is also Lipschitz.

Lemma 21. Let f1, . . . , fm be m real valued functions fi : Rn → R such that every fi is 1-Lipschitz with respect to the
‖·‖∞ norm. Then the function

g(v) = max
i∈[m]

fi(v)

is 1-Lipschitz with respect to the ‖·‖∞ norm too.

The second lemma establishes the convergence of additive estimates over the top of ranked lists. The abstract nature of the
result would allow us to apply it to a wide variety of situations and would be crucial to our analyses.

Lemma 22. Let V be a universe with a total order � established on it and let v1, . . . ,vn be a population of n items
arranged in decreasing order. Let v̂1, . . . , v̂b be a sample chosen i.i.d. (or without replacement) from the population and
arranged in decreasing order as well. Then for any fixed h : V → [−1, 1] and κ ∈ (0, 1], we have, with probability at least
1− δ over the choice of the samples,∣∣∣∣∣∣ 1

dκne

dκne∑
i=1

h(vi)−
1

dκbe

dκbe∑
i=1

h(v̂i)

∣∣∣∣∣∣ ≤ 4

√
log 2

δ

κb
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Theorem 12. The performance measure prec@κ(·), as well as the surrogates `ramp
prec@κ(·), `avg

prec@κ(·) and `max
prec@κ(·), all

exhibit uniform convergence at the rate α(b, δ) = O
(√

1
b log 1

δ

)
.

We will prove the four parts of the theorem in three separate subsections below. We shall consider a population z1, . . . , zn
and a sample of size b ẑ1, . . . , ẑb chosen uniformly at random with (i.e. i.i.d.) or without replacement. We shall let p
and p̂ denote the fraction of positives in the population and the sample respectively. In the following, we shall reserve the
notation ŷ for the label vector in the sample and shall use the notation ỹ to denote candidate labellings in the definition of
the surrogate.

D.1. A Uniform Convergence Bound for the prec@κ(·) Performance Measure

We note that a point-wise convergence result for prec@κ(·) follows simply from Lemma 22. To see this, given a population
z1, . . . , z)n and a fixed model w ∈ W , construct a parallel population using the transformation vi ← (w>xi,yi) ∈ R2.
We order these tuples according to their first component, i.e. along the scores and use h(vi) = 1− yi. Let the population
be arranged such that v1 � v2 � . . .. Then this gives us

k∑
i=1

h(vi) =

k∑
i=1

(1− yi) = prec@k(y,y(w,k)) = prec@k(w).

Thus, the application of Lemma 22 gives us the following result

Lemma 23. For any fixed model w ∈ W , with probability at least 1− δ over the choice of b samples, we have

|prec@κ(w; z1, . . . , zn)− prec@κ(w; ẑ1, . . . , ẑb)| ≤ O

(√
1

b
log

1

δ

)
.

To prove the uniform convergence result, we will, in some sense, require a uniform version of Lemma 22. To do so we fix
some notation. For any fixed κ > 0, and for any w ∈ W , we will define vw as the largest real number v such that

n∑
i=1

I
[
w>xi ≥ v

]
= κpn

Similarly, we will define v̂w as the largest real number v such that

b∑
i=1

I
[
w>x̂i ≥ v

]
= κp̂b

Using this notation we can redefine prec@κ(·) on the population, as well as the sample, as

prec@κ(w; z1, . . . , zn) :=
1

κpn

n∑
i=1

I
[
w>x ≥ vw

]
· I [yi = 0]

prec@κ(w; ẑ1, . . . , ẑb) :=
1

κp̂b

b∑
i=1

I
[
w>x ≥ v̂w

]
· I [ŷi = 0]

We can now write

sup
w∈W

|prec@κ(w; z1, . . . , zn)− prec@κ(w; ẑ1, . . . , ẑb)|

= sup
w∈W

∣∣∣∣∣ 1

κpn

n∑
i=1

I
[
w>x ≥ vw

]
· I [yi = 0]− 1

κp̂b

b∑
i=1

I
[
w>x ≥ v̂w

]
· I [ŷi = 0]

∣∣∣∣∣
≤ sup

w∈W

∣∣∣∣∣ 1

κpn

n∑
i=1

I
[
w>x ≥ vw

]
· I [yi = 0]− 1

κp̂b

b∑
i=1

I
[
w>x ≥ vw

]
· I [ŷi = 0]

∣∣∣∣∣
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+ sup
w∈W

∣∣∣∣∣ 1

κp̂b

b∑
i=1

I
[
w>x ≥ vw

]
· I [ŷi = 0]− 1

κp̂b

b∑
i=1

I
[
w>x ≥ v̂w

]
· I [ŷi = 0]

∣∣∣∣∣
≤ sup

w∈W,t∈R

∣∣∣∣∣ 1

κpn

n∑
i=1

I
[
w>x ≥ t

]
· I [yi = 0]− 1

κp̂b

b∑
i=1

I
[
w>x ≥ t

]
· I [ŷi = 0]

∣∣∣∣∣︸ ︷︷ ︸
(A)

+ sup
w∈W

∣∣∣∣∣ 1

κp̂b

b∑
i=1

I
[
w>x ≥ vw

]
· I [ŷi = 0]− 1

κp̂b

b∑
i=1

I
[
w>x ≥ v̂w

]
· I [ŷi = 0]

∣∣∣∣∣︸ ︷︷ ︸
(B)

Now, using a standard VC-dimension based uniform convergence argument over the class of thresholded classifiers, we
get the following result: with probability at least 1− δ

(A) ≤ O

(√
1

b

(
log

1

δ
+ dVC(W) · log b

))
= Õ

(√
1

b
log

1

δ

)
,

where dVC(W) is the VC-dimension of the set of classifiers W . Moving on to bound the second term, we can use an
argument similar to the one used to prove Lemma 22 to show that

(B) ≤ sup
w∈W

∣∣∣∣∣ 1

κp̂b

b∑
i=1

I
[
w>x ≥ vw

]
− 1

κp̂b

b∑
i=1

I
[
w>x ≥ v̂w

]∣∣∣∣∣
≤ sup

w∈W

∣∣∣∣∣ 1

κp̂b

b∑
i=1

I
[
w>x ≥ vw

]
− κ

∣∣∣∣∣
≤ sup

w∈W

∣∣∣∣∣ 1

κp̂b

b∑
i=1

I
[
w>x ≥ vw

]
− 1

κpn

n∑
i=1

I
[
w>x ≥ vw

]∣∣∣∣∣
≤ Õ

(√
1

b
log

1

δ

)
,

where the last step follows from a standard VC-dimension based uniform convergence argument as before. This establishes
the following uniform convergence result for the prec@k(·) performance measure

Theorem 24. We have, with probability at least 1− δ over the choice of b samples,

sup
w∈W

|prec@κ(w; z1, . . . , zn)− prec@κ(w; ẑ1, . . . , ẑb)| ≤ Õ

(√
1

b
log

1

δ

)
.

D.2. A Uniform Convergence Bound for the `ramp
prec@κ(·) Surrogate

We first recall the form of the (normalized) surrogate below - note that this is a non-convex surrogate. Also recall that
k = κ · n+(y).

`ramp
prec@κ(w; z1, . . . , zn) = max

‖ỹ‖1=k

{
∆(y, ỹ)

k
+

1

k

n∑
i=1

ỹiw
>xi

}
︸ ︷︷ ︸

Ψ1(w; z1,...,zn)

− max
‖ỹ‖1=k
K(y,ỹ)=k

1

k

n∑
i=1

ỹiw
>xi

︸ ︷︷ ︸
Ψ2(w; z1,...,zn)

We will now show that both the functions Ψ1(·), as well as Ψ2(·), exhibit uniform convergence. This shall suffice to prove
that `ramp

prec@κ(·) exhibits uniform convergence. To do so we shall show that the two functions exhibit pointwise convergence
and that they are Lipschitz. This will allow a standard L∞ covering number argument (Zhang, 2002) to give us the required
uniform convergence results.



Surrogate Functions for Maximizing Precision at the Top

D.2.1. A UNIFORM CONVERGENCE RESULT FOR Ψ1(·)

We have

Ψ1(w; z1, . . . , zn) = max
‖ỹ‖1=κpn

{
1

κpn

n∑
i=1

ỹi(w
>xi − yi)

}
+ 1

Ψ1(w; ẑ1, . . . , ẑb) = max
‖ỹ‖1=κp̂b

{
1

κp̂b

b∑
i=1

ỹi(w
>x̂i − ŷi)

}
+ 1

An application of Corollary 29 indicates that Ψ1(·) is Lipschitz i.e.

|Ψ1(w; z1, . . . , zn)−Ψ1(w′; z1, . . . , zn)| ≤ O (‖w −w′‖2) .

Thus, all that remains is to prove pointwise convergence. We decompose the error as follows

|Ψ1(w; z1, . . . , zn)−Ψ1(w; ẑ1, . . . , ẑb)| ≤

∣∣∣∣∣Ψ1(w; z1, . . . , zn)− max
‖ỹ‖1=κpb

{
1

κpb

b∑
i=1

ỹi(w
>x̂i − ŷi)

}
+ 1

∣∣∣∣∣︸ ︷︷ ︸
(A)

+

∣∣∣∣∣ max
‖ỹ‖1=κpb

{
1

κpb

b∑
i=1

ỹi(w
>x̂i − ŷi)

}
+ 1−Ψ1(w; ẑ1, . . . , ẑb)

∣∣∣∣∣︸ ︷︷ ︸
(B)

An application of Lemma 22 using vi = w>x̂i − ŷi and h(·) as the identity function shows us that

(A) ≤ O

(
1

κp

√
1

b
log

1

δ

)
.

To bound the residual term (B), notice that an application of the Hoeffding’s inequality tells us that with probability at
least 1− δ

|p− p̂| ≤
√

1

2b
log

2

δ
,

which lets us bound the residual as follows. Assume, for sake of simplicity, that the sample data points have been ordered
in decreasing order of the quantity w>x̂i − yi as well as that

∣∣w>x∣∣ ≤ 1 for all x.

(B) =

∣∣∣∣∣ max
‖ỹ‖1=κpb

{
1

κpb

b∑
i=1

ỹi(w
>x̂i − ŷi)

}
− max
‖ỹ‖1=κp̂b

{
1

κp̂b

b∑
i=1

ỹi(w
>x̂i − ŷi)

}∣∣∣∣∣
=

∣∣∣∣∣ 1

κpb

κpb∑
i=1

(w>x̂i − ŷi)−
1

κp̂b

κp̂b∑
i=1

(w>x̂i − ŷi)

∣∣∣∣∣
≤

∣∣∣∣∣∣
κmin{p,p̂}b∑

i=1

(
1

κpb
− 1

κp̂b

)
(w>x̂i − ŷi)

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

κmax {p, p̂} b

κmax{p,p̂}b∑
i=κmin{p,p̂}b+1

(w>x̂i − ŷi)

∣∣∣∣∣∣
≤ 2

κb

∣∣∣∣p− p̂pp̂

∣∣∣∣ · κmin {p, p̂} b+
2

κmax {p, p̂} b
· κ |p− p̂| b

= 2 |p− p̂| ·
(

min {p, p̂}
pp̂

+
1

max {p, p̂}

)
≤
√

1

2b
log

2

δ
· 2

max {p, p̂}
≤ 2

p

√
1

2b
log

2

δ
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This establishes that for any fixed w ∈ W , with probability at least 1− δ, we have

|Ψ1(w; z1, . . . , zn)−Ψ1(w; ẑ1, . . . , ẑb)| ≤ O

(√
1

b
log

1

δ

)
which concludes the uniform convergence proof.

D.2.2. A UNIFORM CONVERGENCE RESULT FOR Ψ2(·)

The proof follows similarly here with a direct application of Corollary 29 showing us that Ψ2(·) is Lipschitz and an appli-

cation of Lemma 22 along with the observation that |p− p̂| ≤
√

1
2b log 2

δ similar to the discussion used above concluding
the point-wise convergence proof.

The above two part argument establishes the following uniform convergence result for the `ramp
prec@κ(·) performance measure

Theorem 25. We have, with probability at least 1− δ over the choice of b samples,

sup
w∈W

∣∣∣`ramp
prec@κ(w; z1, . . . , zn)− `ramp

prec@κ(w; ẑ1, . . . , ẑb)
∣∣∣ ≤ O(√1

b
log

1

δ

)
.

D.3. A Uniform Convergence Bound for the `avg
prec@κ(·) Surrogate

This will be the most involved of the four bounds, given the intricate nature of the surrogate. We will prove this result
using a series of partial results which we state below. As before, for any w ∈ W and any ỹ, we define

∆(w, ỹ) :=
1

κpn

(
∆(y, ỹ) +

n∑
i=1

(ỹi − yi)w
>xi +

1

C(ỹ)

n∑
i=1

(1− ỹi)yiw
>xi

)

∆̂(w, ỹ) :=
1

κp̂b

(
∆(ŷ, ỹ) +

n∑
i=1

(ỹi − ŷi)w
>x̂i +

1

C(ỹ)

n∑
i=1

(1− ỹi)ŷiw
>x̂i

)
Recall that we are using ŷ to denote the true labels of the sample points and ỹ to denote the candidate labellings while
defining the surrogates. We also define, for any β ∈ [0, 1], the following quantities

∆(w, β) := max
‖ỹ‖1=κpn
K(y,ỹ)=βpn

{∆(w, ỹ)}

∆̂(w, β) := max
‖ỹ‖1=κp̂b
K(ŷ,ỹ)=βp̂b

{
∆̂(w, ỹ)

}
Note that β denotes a target true positive rate and consequently, can only take values between 0 and κ. Given the above,
we claim the following lemmata

Lemma 26. For every w and any β, β′ ∈ [0, κ], we have

|∆(w, β)−∆(w, β′)| ≤ O (|β − β′|) .

Lemma 27. For any fixed β, we have, with probability at least 1− δ over the choice of the sample

sup
w∈W

∣∣∣∆(w, β)− ∆̂(w, β)
∣∣∣ ≤ O(√1

b
log

1

δ

)
.

Using the above two lemmata as given, we can now prove the desired uniform convergence result for the `avg
prec@κ(·) surro-

gate:

Theorem 28. With probability at least 1− δ over the choice of the samples, we have

sup
w∈W

∣∣∣`avg
prec@κ(w; z1, . . . , zn)− `avg

prec@κ(w; ẑ1, . . . , ẑb)
∣∣∣ ≤ Õ(√1

b
log

1

δ

)
.
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Proof. We note that given the definitions of ∆(w, β) and ∆̂(w, β), we can redefine the performance measure as follows

`avg
prec@κ(w; z1, . . . , zn) = max

β∈[0,κ]
∆(w, β)

We now note that for the population, the set of achievable values of true positive rates i.e. β is

B =

{
0,

1

κpn
,

2

κpn
, . . . ,

κpn− 1

κpn
, 1

}
,

which correspond, respectively, to classifiers for which the number of true positives equals {0, 1, 2 . . . κpn− 1, κpn}.
Similarly, the set of achievable values of true positive rates i.e. β for the sample is

B̂ =

{
0,

1

κp̂b
,

2

κp̂b
, . . . ,

κp̂b− 1

κp̂b
, 1

}
.

Clearly, for any β ∈ B, there exists a πB̂(β) ∈ B̂ such that

∣∣πB̂(β)− β
∣∣ ≤ 1

κp̂b
.

Given this, let us define

β∗(w) = arg max
β∈[0,κ]

∆(w, β)

β̂∗(w) = arg max
β̂∈[0,κ]

∆̂(w, β̂)

We shall assume, for the sake of simplicity, that s|n so that B̂ ⊂ B. This gives us the following set of inequalities for any
w ∈ W:

∆(w, β∗(w)) ≤ ∆(w, πB̂(β∗(w))) +
∣∣β∗(w)− πB̂(β∗(w))

∣∣
≤ ∆̂(w, πB̂(β∗(w))) + sup

w∈W

∣∣∣∆(w, πB̂(β∗(w)))− ∆̂(w, πB̂(β∗(w)))
∣∣∣+

1

κp̂b

≤ ∆̂(w, πB̂(β∗(w))) + sup
w∈W,β̂∈B̂

∣∣∣∆(w, β̂)− ∆̂(w, β̂)
∣∣∣+

1

κp̂b

≤ ∆̂(w, πB̂(β∗(w))) +O

(√
1

b
log

b

δ

)
+

1

κp̂b

≤ ∆̂(w, β̂∗(w)) +O

(√
1

b
log

b

δ

)
+

1

κp̂b
,

where the first step follows from Lemma 26, the third step follows since πB̂(β∗(w)) ∈ B̂, the fourth step follows from

an application of the union bound with Lemma 27 over the set of elements in B̂ and noting
∣∣∣B̂∣∣∣ ≤ O (b), and the last step

follows from the optimality of β̂∗(w). Similarly we can write, for any w ∈ W ,

∆̂(w, β̂∗(w)) ≤ ∆(w, β̂∗(w)) +O

(√
1

b
log

b

δ

)

≤ ∆(w, β∗(w)) +O

(√
1

b
log

b

δ

)
,

where the first step uses Lemma 27 with a union bound over elements in B̂ and the fact that β̂∗(w) ∈ B̂ ⊂ B (note that
this assumption is not crucial to the argument – indeed, even if β̂∗(w) /∈ B, we would only incur an extra O

(
1
n

)
error by
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an application of Lemma 26 since given the granularity of B, we would always be able to find a value in B that is no more
than O

(
1
n

)
far from β̂∗(w)), and the last step uses the optimality of β∗(w). Thus, we can write

sup
w∈W

∣∣∣`avg
prec@κ(w; z1, . . . , zn)− `avg

prec@κ(w; ẑ1, . . . , ẑb)
∣∣∣ = sup

w∈W

∣∣∣∆(w, β∗(w))− ∆̂(w, β̂∗(w))
∣∣∣

≤ O

(√
1

b
log

b

δ

)
+

1

κp̂b

≤ Õ

(√
1

b
log

1

δ

)
,

since p̂ ≥ Ω (1) with probability at least 1 − δ. Thus, all we are left is to prove Lemmata 26 and 27 which we do below.
To proceed with the proofs, we first write the form of ∆(w, β) for a fixed w and β and simplify the expression for ease of
further analysis. We shall assume, for sake of simplicity, that βpn, κpn, βp̂b, and κp̂b are all integers.

∆(w, β) = max
‖ỹ‖1=κpn
K(y,ỹ)=βpn

{
1

κpn

(
∆(y, ỹ) +

n∑
i=1

(ỹi − yi)w
>xi +

1

C(ỹ)

n∑
i=1

(1− ỹi)yiw
>xi

)}

= 1− β

κ
− 1

κpn

(
κ− β
1− β

) n∑
i=1

yiw
>xi︸ ︷︷ ︸

A(w,β)

+ max
‖ỹ‖1=κpn
K(y,ỹ)=βpn

{
1

κpn

n∑
i=1

ỹi

(
1− 1− κ

1− β
· yi
)
w>xi

}
︸ ︷︷ ︸

B(w,β)

We can similarly define Â(w, β) and B̂(w, β) for the samples.

Proof of Lemma 26. We have, by the above simplification,

|∆(w, β)−∆(w, β′)| = 1

κ
|β − β′|+ |A(w, β)−A(w, β′)|+ |B(w, β)−B(w, β′)| ,

as well as, assuming without loss of generality, that
∣∣w>x∣∣ ≤ 1 for all w and x,

|A(w, β)−A(w, β′)| ≤
∣∣∣∣κ− β1− β

− κ− β′

1− β′

∣∣∣∣ ·
∣∣∣∣∣ 1

κpn

n∑
i=1

yiw
>xi

∣∣∣∣∣
≤ (1− κ) |β − β′|
κ(1− β)(1− β′)

≤ 1

κ(1− κ)
|β − β′| ,

where the last step follows since β, β′ ≤ κ. To analyze the third term i.e. |B(w, β)−B(w, β′)|, we analyze the nature of
the assignment ỹ which defines B(w, β). Clearly ỹ must assign βpn positives and (κ − β)pn negatives a label of 1 and
the rest, a label of 0. Since it is supposed to maximize the scores thus obtained, it clearly assigns the top ranked (κ− β)pn

negatives a label of 1. As far as positives are concerned, β < κ, we have
(

1− 1−κ
1−β

)
≥ 0 which means that the βpn top

ranked positives will get assigned a label of 1.

To formalize this, let us set some notation. Let s+
1 ≥ s+

2 ≥ . . . ≥ s+
pn denote the scores of the positive points arranged in

descending order. Similarly, let s−1 ≥ s
−
2 ≥ . . . ≥ s

−
(1−p)n denote the scores of the negative points arranged in descending

order. Given this notation, we can rewrite B(w, β) as follows:

B(w, β) =
1

κpn

(κ− β
1− β

) βpn∑
i=1

s+
i +

(κ−β)pn∑
i=1

s−i

 .

Thus, assuming without loss of generality that
∣∣s+
i

∣∣ , ∣∣s−i ∣∣ ≤ 1, we have,

|B(w, β)−B(w, β′)| = 1

κpn

∣∣∣∣∣∣
(
κ− β
1− β

) βpn∑
i=1

s+
i +

(κ−β)pn∑
i=1

s−i −
(
κ− β′

1− β′

) β′pn∑
i=1

s+
i −

(κ−β′)pn∑
i=1

s−i

∣∣∣∣∣∣
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≤ 1

κpn

∣∣∣∣∣∣
(
κ− β
1− β

) βpn∑
i=1

s+
i −

(
κ− β′

1− β′

) β′pn∑
i=1

s+
i

∣∣∣∣∣∣+
1

κpn

∣∣∣∣∣∣
(κ−β)pn∑
i=1

s−i −
(κ−β′)pn∑
i=1

s−i

∣∣∣∣∣∣
≤
∣∣∣∣κ− β1− β

− κ− β′

1− β′

∣∣∣∣ ·
∣∣∣∣∣∣∣

1

κpn

min{β,β′}pn∑
i=1

s+
i

∣∣∣∣∣∣∣+
1

κpn

κ−max {β, β′}
1−max {β, β′}

|β − β′| pn+
|β − β′| pn

κpn

≤ 1

κ(1− κ)
|β − β′| min {β, β′} pn

κpn
+

1

κ

κ−max {β, β′}
1−max {β, β′}

|β − β′|+ |β − β
′|

κ

≤ 2

κ(1− κ)
|β − β′| ,

where the last step uses the fact that 0 ≤ β, β′ ≤ κ. This tells us that

|∆(w, β)−∆(w, β′)| ≤ 4− κ
κ(1− κ)

|β − β′| ,

which finishes the proof.

Proof of Lemma 27. We will prove the theorem by showing that the terms A(w, β) and B(w, β) exhibit uniform conver-
gence.

It is easy to see that A(w, β) exhibits uniform convergence since it is a simple average of population scores. The only
thing to be taken care of is that A(w, β) contains p in the normalization whereas Â(w, β) contains p̂. However, since p
and p̂ are very close with high probability, an argument similar to the one used in the proof of Theorem 25 can be used to
conclude that with probability at least 1− δ, we have

sup
w∈W

∣∣∣A(w, β)− Â(w, β)
∣∣∣ ≤ O(√1

b
log

1

δ

)
.

To prove uniform convergence for B(w, β) we will use our earlier method of showing that this function exhibits pointwise
convergence and that this function is Lipschitz with respect to w. The Lipschitz property of B(w, β) is evident from an
application of Corollary 29. To analyze its pointwise convergence property

Thus the function B(w, β), as analyzed in the proof of Lemma 26, is composed by sorting the positives and negatives
separately and taking the top few positions in each list and adding the scores present therein. This allows an application
of Lemma 22, as used in the proof of Theorem 25, separately to the positive and negative lists, to conclude the pointwise
convergence bound for B(w, β).

This concludes the proof of the uniform convergence bound for `avg
prec@κ(·).

D.4. Proof of Lemma 21

Lemma 21. Let f1, . . . , fm be m real valued functions fi : Rn → R such that every fi is 1-Lipschitz with respect to the
‖·‖∞ norm. Then the function

g(v) = max
i∈[m]

fi(v)

is 1-Lipschitz with respect to the ‖·‖∞ norm too.

Proof. Fix v,v′ ∈ Rn. The premise guarantees us that for any i ∈ [m], we have

|fi(v)− fi(v′)| ≤ ‖v − v′‖∞ .

Now let g(v) = fi(v) and g(v′) = fj(v
′). Then we have

g(v)− g(v′) = fi(v)− fj(v′) ≤ fi(v)− fi(v′) ≤ ‖v − v′‖∞ ,

since fj(v′) ≥ fi(v′). Similarly we have g(v′)− g(v) ≤ ‖v − v′‖∞. This completes the proof.
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The following corollary would be most useful in our subsequent analyses.

Corollary 29. Let Ψ :W → R be a function defined as follows

Ψ(w) = max
ŷ∈{0,1}n
‖ŷ‖1=k

1

k

∑
ŷi(w

>xi − ci),

where ci are constants independent of w and we assume without loss of generality that ‖xi‖2 ≤ 1 for all i. Then Ψ(·) is
1- Lipschitz with respect to the L2 norm i.e. for all w,w′ ∈ W

|Ψ(w)−Ψ(w′)| ≤ ‖w −w′‖2 .

Proof. Note that for any ŷ such that ‖ŷ‖1 = k, the function fŷ(v) = 1
k

∑
ŷi(vi − ci) is 1-Lipschitz with respect to the

‖·‖∞ norm. Thus if we define
Φ(v) = max

‖ŷ‖1=k
fŷ(v),

then an application of Lemma 21 tells us that Φ(·) is 1-Lipschitz with respect to the ‖·‖∞ norm as well. Also note that if
we define

v(w) =
(
w>x1 − c1, . . . ,w>xn − cn

)
,

then we have
Ψ(w) = Φ(v(w))

We now note that by an application of Cauchy-Schwartz inequality, and the fact that ‖xi‖2 ≤ 1 for all i, we have

‖v(w)− v(w′)‖∞ ≤ ‖w −w′‖2

Thus we have
|Ψ(w)−Ψ(w′)| = |Φ(v(w))− Φ(v(w′))| ≤ ‖v(w)− v(w′)‖∞ ≤ ‖w −w′‖2

which gives us the desired result.

D.5. Proof of Lemma 22

Lemma 22. Let V be a universe with a total order � established on it and let v1, . . . ,vn be a population of n items
arranged in decreasing order. Let v̂1, . . . , v̂b be a sample chosen i.i.d. (or without replacement) from the population and
arranged in decreasing order as well. Then for any fixed h : V → [−1, 1] and κ ∈ (0, 1], we have, with probability at least
1− δ over the choice of the samples,∣∣∣∣∣∣ 1

dκne

dκne∑
i=1

h(vi)−
1

dκbe

dκbe∑
i=1

h(v̂i)

∣∣∣∣∣∣ ≤ 4

√
log 2

δ

κb

Proof. We will assume, for sake of simplicity, that κn and κb are both integers so that there are no rounding off issues. Let
v∗n := vκn and v∗b := v̂κb denote the elements at the bottom of the κ-th fraction of the top in the sorted population and
sample lists (recall that the population and the sample lists are sorted in descending order). Also let T(v) := I [v � v∗n]

and T̂(v) := I [v � v∗b ] (note that I [E] is the indicator variable for the event E) so that we have∣∣∣∣∣ 1

κn

κn∑
i=1

h(vi)−
1

κb

κb∑
i=1

h(v̂i)

∣∣∣∣∣ =

∣∣∣∣∣ 1

κn

n∑
i=1

T(vi) · h(vi)−
1

κb

b∑
i=1

T̂(v̂i) · h(v̂i)

∣∣∣∣∣
≤

∣∣∣∣∣ 1

κn

n∑
i=1

T(vi) · h(vi)−
1

κb

b∑
i=1

T(v̂i) · h(v̂i)

∣∣∣∣∣+

∣∣∣∣∣ 1

κb

b∑
i=1

(
T(v̂i)− T̂(v̂i)

)
· h(v̂i)

∣∣∣∣∣
≤ 2

√
log 2

δ

κb
+

∣∣∣∣∣ 1

κb

b∑
i=1

(
T(v̂i)− T̂(v̂i)

)
· h(v̂i)

∣∣∣∣∣︸ ︷︷ ︸
(A)

,
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where the third step follows from Bernstein’s inequality (which holds in situations with sampling without replacement as
well (Boucheron et al., 2004)) since |T(v) · h(v)| ≤ 1 for all v and we have assumed b ≥ 1

κ log 2
δ . Now if v∗n � v∗b , then

we have T̂(v) ≥ T(v) for all v. On the other hand if v∗b � v∗n, then we have T̂(v) ≤ T(v) for all v. This means that since
|h(v)| ≤ 1 for all v, we have

(A) ≤

∣∣∣∣∣ 1

κb

b∑
i=1

(
T(v̂i)− T̂(v̂i)

)∣∣∣∣∣ =

∣∣∣∣∣ 1

κb

b∑
i=1

T(v̂i)− 1

∣∣∣∣∣ ≤ 2

√
log 2

δ

κb
,

where the second step follows since 1
κb

∑b
i=1 T̂(v̂i) = 1 by definition and the last step follows from another application of

Bernstein’s inequality. This completes the proof.

D.6. A Uniform Convergence Bound for the `max
prec@κ(·) Surrogate

Having proved a generalization bound for the `avg
prec@κ(·) surrogate, we note that similar techniques, that involve partitioning

the candidate label space into labels that have a fixed true positive rate β, and arguing uniform convergence for each
partition, can be used to prove a generalization bound for the `max

prec@κ(·) surrogate as well. We postpone the details of the
argument to a later version of the paper.

E. Proof of Theorem 15
Theorem 15. Let w̄ be the model returned by Algorithm 3 when executed on a stream with T batches of length b. Then
with probability at least 1− δ, for any w∗ ∈ W , we have

`avg
prec@κ(w̄;Z) ≤ `avg

prec@κ(w∗;Z) +O

(√
1

b
log

T

δ

)
+O

(√
1

T

)

Proof. The proof of this theorem closely follows that of Theorems 7 and 8 in (Kar et al., 2014). More specifically, Theorem
6 from (Kar et al., 2014) ensures that any convex loss function demonstrating uniform convergence would ensure a result
of the kind we are trying to prove. Since Theorem 12 confirms that `avg

prec@κ(·) exhibits uniform convergence, the proof
follows.

F. Additional Empirical Results
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Figure 4. A comparison of the proposed perceptron and SGD based methods with baseline methods (SVMPerf and 1PMB) on prec@0.25
maximization tasks.


