
Additive Gaussian Process Optimisation and Bandits

A. Some Auxiliary Material
A.1. Review of the GP-UCB Algorithm

In this subsection we present a brief summary of the GP-UCB algorithm in (Srinivas et al., 2010). The algorithm is given
in Algorithm 3.

The following theorem gives the rate of convergence for GP-UCB. Note that under an additive kernel, this is the same
rate as Theorem 5 which uses a different acquisition function. Note the differences in the choice of βt.

Theorem 6. (Modification of Theorem 2 in (Srinivas et al., 2010)) Suppose f is constructed by sampling f (j) ∼
GP(0, κ(j)) for j = 1, . . . ,M and then adding them. Let all kernels κ(j) satisfy assumption 2 for some L, a, b. Fur-
ther, we maximise the acquisition function ϕ̃t to within ζ0t−1/2 accuracy at time step t. Pick δ ∈ (0, 1) and choose

βt = 2 log

(
2t2π2

δ

)
+ 2D log

(
Dt3

)
∈ O (D log t)

Then, GP-UCB attains cumulative regretRT ∈ O
(√

DγTT log T
)

and hence simple regret ST ∈ O
(√

DγT log T/T
)

.
Precisely, with probability > 1− δ,

∀T ≥ 1, RT ≤
√

8C1βTMTγt + 2ζ0
√
T + C2

where C1 = 1/ log(1 + η−2) and C2 is a constant depending on a, b, D, δ, L and η.

Proof. Srinivas et al. (2010) bound the regret for exact maximisation of the GP-UCB acquisition ϕt. By following an
analysis similar to our proof of Theorem 5 the regret can be shown to be the same for an ζ0t−1/2- optimal maximisation.

Algorithm 3 GP-UCB
Input: Kernel κ, Input Space X .
For t = 1, 2 . . .
• D0 ← ∅,
• (µ0, κ0)← (0, κ)
• for t = 1, 2, . . .

1. xt ← argmaxz∈X µt−1(z) +
√
βtσt−1(z)

2. yt ← Query f at xt.
3. Dt = Dt−1 ∪ {(xt,yt)}.
4. Perform Bayesian posterior updates to obtain µt, σt for j = 1, . . . ,M .

A.2. Sequential Optimisation Approaches

If the function is known to be additive, we could consider several other approaches for maximisation. We list two of them
here and explain their deficiencies. We recommend that the reader read the main text before reading this section.

A.2.1. OPTIMISE ONE GROUP AND PROCEED TO THE NEXT

First, fix the coordinates of x(j), j 6= 1 and optimise w.r.t x(1) by querying the function for a pre-specified number of times.
Then we proceed sequentially optimising with respect to x(2), x(3) We have outlined this algorithm in Algorithm 4.
There are several reasons this approach is not desirable.

• First, it places too much faith on the additive assumption and requires that we know the decomposition at the start
of the algorithm. Note that this strategy will only have searched the space in M d-dimensional subspaces. In our
approach even if the function is not additive we can still hope to do well since we learn the best additive approximation
to the true function. Further, if the decomposition is not known we could learn the decomposition “on the go” or at
least find a reasonably good decomposition as we have explained in Section 4.4.

Additive Gaussian Process Optimisation and Bandits

• Such a sequential approach is not an anytime algorithm. This in particular means that we need to predetermine the
number of queries to be allocated to each group. After we proceed to a new group it is not straightforward to come
back and improve on the solution obtained for an older group.

• This approach is not suitable for the bandits setting. We suffer large instantaneous regret up until we get to the last
group. Further, after we proceed beyond a group since we cannot come back, we cannot improve on the best regret
obtained in that group.

Our approach does not have any of these deficiencies.

Algorithm 4 Seq-Add-GP-UCB
Input: Kernels κ(1), . . . , κ(M), Decomposition (X (j))Mj=1, Query Budget T ,
• RD 3 θ =

⋃M
j=1 θ

(j) = rand([0, 1]d)
• for j = 1, . . . ,M

1. D(j)
0 ← ∅,

2. (µ
(j)
0 , κ

(j)
0)← (0, κ(j)).

3. for t = 1, 2, . . . T/M

(a) x
(j)
t ← argmaxz∈X (j) µ(j)(z) +

√
βtσ

(j)(z)

(b) xt ← x
(j)
t

⋃
k 6=j θ

(k).
(c) yt ← Query f at xt.
(d) D(j)

t = D(j)
t−1 ∪ {(x

(j)
t ,yt)}.

(e) Perform Bayesian posterior updates to obtain µ(j)
t , σ

(j)
t .

4. θ(j) ← x
(j)
T/M

• Return θ

A.2.2. ONLY CHANGE ONE GROUP PER QUERY

In this strategy, the approach would be very similar to Add-GP-UCB except that at each query we will only update one
group at time. If it is the kth group the query point is determined by maximising ϕ̃(k)

t for x(k)
t and for all other groups we use

values from the previous rotation. After M iterations we cycle through the groups. We have outlined this in Algorithm 5.

This is a reasonable approach and does not suffer from the same deficiencies as Algorithm 4. Maximising the acquisition
function will also be slightly easier O(ζ−d) since we need to optimise only one group at a time. However, the regret for
this approach would beO(M

√
DγTT log T) which is a factor ofM worse than the regret in our method (This can be show

by following an analysis similar to the one in section B.2. This is not surprising, since at each iteration you are moving in
d-coordinates of the space and you have to wait M iterations before the entire point is updated.

Algorithm 5 Add-GP-UCB-Buggy
Input: Kernels κ(1), . . . , κ(M), Decomposition (X (j))Mj=1

• D0 ← ∅,
• for j = 1, . . . ,M , (µ

(j)
0 , κ

(j)
0)← (0, κ(j)).

• for t = 1, 2, . . .

1. k = j mod M

2. x
(k)
t ← argmaxz∈X (k) µ(k)(z) +

√
βtσ

(k)(z)

3. for j 6= k, x(j)
t ← x

(j)
t−1

4. xt ←
⋃M
j=1 x

(j)
t .

5. yt ← Query f at xt.
6. Dt = Dt−1 ∪ {(xt,yt)}.
7. Perform Bayesian posterior updates to obtain µ(j)

t , σ
(j)
t for j = 1, . . . ,M .

Additive Gaussian Process Optimisation and Bandits

B. Proofs of Results in Section 4.3
B.1. Bounding the Information Gain γT

For this we will use the following two results from Srinivas et al. (2010).

Lemma 7. (Information Gain in GP, (Srinivas et al., 2010) Lemma 5.3) Using the basic properties of a GP, they show that

I(yA; fA) =
1

2

n∑
t=1

log(1 + η−2σ2
t−1(xt))

where σ2
t−1 is the posterior variance after observing the first t− 1 points.

Theorem 8. (Bound on Information Gain, (Srinivas et al., 2010) Theorem 8) Suppose that X is compact and κ is a kernel
on d dimensions satisfying Assumption 2. Let nT = C9T

τ log T where C9 = 4d+ 2. For any T∗ ∈ {1, . . . ,min(T, nT)},
let Bκ(T∗) =

∑
s>T∗

λs. Here (λn)n∈N are the eigenvalues of κ w.r.t the uniform distribution over X . Then,

γT ≤ inf
τ

(
1/2

1− e−1
max

r∈{1,...,T}

(
T∗ log(rnT /η

2) + C9η
2(1− r/T)(T τ+1Bκ(T∗) + 1) log T

)
+O(T 1−τ/d)

)

B.1.1. PROOF OF THEOREM 4-1

Proof. We will use some bounds on the eigenvalues for the simple squared exponential kernel given in (Seeger et al.,
2008). It was shown that the eigenvalues {λ(i)

s } of κ(i) satisfied λ(i)
s ≤ cdBs

1/di where B < 1 (See Remark 9). Since the
kernel is additive, and x(i) ∩ x(j) = ∅ the eigenfunctions corresponding to κ(i) and κ(j) will be orthogonal. Hence the
eigenvalues of κ will just be the union of the eigenvalues of the individual kernels – i.e. {λs} =

⋃M
j=1{λ

(j)
s }. As B < 1,

λ
(i)
s ≤ cdBs

1/d

. Let T+ = bT∗/Mc and α = − logB. Then,

Bκ(T∗) =
∑
s>T∗

λs ≤Mc
∑
s>T+

Bs
1/d

≤ cdM

(
BT

1/d
+ +

∫ ∞
T+

exp(−αx1/d)

)
dx

≤ cdM
(
BT

1/d
+ + dα−dΓ(d, αT

1/d
+)

)
≤ cdMe−αT

1/d
+

(
1 + d!dα−d(αT

1/d
+)d−1

)
The last step holds true whenever αT 1/d

+ ≥ 1. Here in the second step we bound the series by an integral and in the third
step we used the substitution y = αx1/d to simplify the integral. Here Γ(s, x) =

∫∞
x
ts−1e−tdt is the (upper) incomplete

Gamma function. In the last step we have used the following identity and the bound for integral s and x ≥ 1

Γ(s, x) = (s− 1)!e−x
s−1∑
k=0

xk

k!
≤ s!e−xxd−1

By using τ = d and by using T∗ ≤ (M + 1)T+, we use Theorem 8 to obtain the following bound on γT ,

γT ≤
1/2

1− e−1
max

r∈{1,...,T}

(
(M + 1)T+ log(rnT /η

2)+

C9η
2(1− r/T) log T

(
1 + cdMe−αT

1/d
+ T d+1

(
1 + d!dα−d(αT

1/d
+)d−1

)))
(7)

Now we need to pick T+ so as to balance these two terms. We will choose T+ =
(

log(TnT)
α

)d
which is less than

min(T, nT)/M for sufficiently large T . Then e−αT
1/d
+ = 1/TnT . Then the first term S1 inside the paranthesis is,

S1 = (M + 1) logd
(
TnT
α

)
log

(
rnT
η2

)
∈ O

(
M (log(TnT))

d
log(rnT)

)

Additive Gaussian Process Optimisation and Bandits

∈ O
(
M
(
log(T d+1 log T)

)d
log(rT d log T)

)
∈ O

(
Mdd+1(log T)d+1 +Mdd(log T)d log(r)

)
Note that the constant in front has exponential dependence on d but we ignore it since we already have dd, (log T)d terms.
The second term S2 becomes,

S2 = C9η
2(1− r/T) log T

(
1 +

cdM

TnT
T d+1

(
1 + d!dα−d(log(TnT)d−1

)))
≤ C9η

2(1− r/T)

(
log T +

cdM

C9

(
1 + d!dα−d(log(TnT)d−1

)))
≤ C9η

2(1− r/T)
(
O(log T) +O(1) +O(d!dd(log T)d−1)

))
∈ O

(
(1− r/T)d!dd(log T)d−1

)
Since S1 dominates S2, we should choose r = T to maximise the RHS in (7). This gives us,

γT ∈ O
(
Mdd+1(log T)d+1

)
∈ O

(
Ddd(log T)d+1

)

B.1.2. PROOF OF THEOREM 4-2

Proof. Once again, we use bounds given in (Seeger et al., 2008). It was shown that the eigenvalues {λ(i)
s } for κ(i)

satisfied λ(i)
s ≤ cds

−
2ν+dj
dj (See Remark 9). By following a similar argument to above we have {λs} =

⋃M
j=1{λ

(j)
s }

and λ(i)
s ≤ cds−

2ν+d
d . Let T+ = bT∗/Mc. Then,

Bκ(T∗) =
∑
s>T∗

λs ≤Mcd
∑
s>T+

s−
2ν+d
d ≤Mcd

(
T
− 2ν+d

d
+ +

∫ ∞
T+

s−
2ν+d
d

)
≤ C82dMT

1− 2ν+d
d

+

where C8 is an appropriate constant. We set T+ = (TnT)
d

2ν+d (log(TnT))−
d

2ν+d and accordingly we have the following
bound on γT as a function of T+ ∈ {1, . . . ,min(T, nT)/M},

γT ≤ inf
τ

(
1/2

1− e−1
max

r∈{1,...,T}

(
(M + 1)T+ log(rnT /η

2) + C9η
2(1− r/T)

(
log T + C82dMT+ log(TnT)

))
+O(T 1−τ/d)

)
(8)

Since this is a concave function on r we can find the optimum by setting the derivative w.r.t r to be zero. We get r ∈
O(T/2d log(TnT)) and hence,

γT ∈ inf
τ

(
O
(
MT+ log

(
TnT

2d log(TnT)

))
+O

(
M2dT+ log(TnT)

)
+O(T 1−τ/d)

)
∈ inf

τ

(
O

(
M2d log(TnT)

(
T τ+1 log(T)

(τ + 1) log(T) + log log T

) d
2ν+d

)
+O(T 1−τ/d)

)
∈ inf

τ

(
O
(
M2d log(TnT)T

(τ+1)d
2ν+d

)
+O(T 1−τ/d)

)
∈ O

(
M2dT

d(d+1)
2ν+d(d+1) log(T)

)
Here in the second step we have substituted the values for T+ first and then nT . In the last step we have balanced the
polynomial dependence on T in both terms by setting τ = 2νd

2ν+d(d+1) .

Additive Gaussian Process Optimisation and Bandits

Remark 9. The eigenvalues and eigenfunctions for the kernel are defined with respect to a base distribution on X . In
the development of Theorem 8, Srinivas et al. (2010) draw nT samples from the uniform distribution on X . Hence, the
eigenvalues/eigenfunctions should be w.r.t the uniform distribution. The bounds given in Seeger et al. (2008) are for the
uniform distribution for the Matérn kernel and a Gaussian Distribution for the Squared Exponential Kernel. For the latter
case, Srinivas et al. (2010) argue that the uniform distribution still satisfies the required tail constraints and therefore the
bounds would only differ up to constants.

B.2. Rates on Add-GP-UCB

Our analysis in this section draws ideas from Srinivas et al. (2010). We will try our best to stick to their same notation.
However, unlike them we also handle the case where the acquisition function is optimised within some error. In the
ensuing discussion, we will use x̃t =

⋃
j x̃

(j)
t to denote the true maximiser of ϕ̃t – i.e. x̃

(j)
t = argmaxz∈X (j) ϕ̃

(j)
t (z).

xt =
⋃
j x

(j)
t denotes the point chosen by Add-GP-UCB at the tth iteration. Recall that xt is ζ0t−1/2–optimal; I.e.

ϕ̃t(x̃t)− ϕ̃t(xt) ≤ ζ0t−1/2.

Denote p =
∑
j dj . πt denotes a sequence such that

∑
t π
−1
t = 1. For e.g. when we use πt = π2t2/6 below, we obtain

the rates in Theorem 5.

In what follows, we will construct discretisations Ω(j) on each group X (j) for the sake of analysis. Let
ωj = |Ω(j)| and ωm = maxj ωj . The discretisation of the individual groups induces a discretisation Ω on X it-
self, Ω = {x =

⋃
j x

(j) : x(j) ∈ Ω(j), j = 1, . . . ,M}. Let ω = |Ω| =
∏
j ωj . We first establish the following two lemmas

before we prove Theorem 5.

Lemma 10. Pick δ ∈ (0, 1) and set βt = 2 log(ωmMπt/δ). Then with probability > 1− δ,

∀t ≥ 1,∀x ∈ Ω, |f(x)− µt−1(x)| ≤ β1/2
t

M∑
j=1

σ
(j)
t−1(x(j))

Proof. Conditioned on Dt−1, at any given x and t we have f(x(j)) ∼ N (µ
(j)
t−1(x(j)), σ

(j)
t−1j), ∀j = 1, . . .M . Using the

tail bound, P(z > M) ≤ 1
2e
−M2/2 for z ∼ N (0, 1) we have with probability > 1− δ/ωMπt,

|f (j)(x(j))− µ(j)
t−1(x(j))|

σ
(j)
t−1(x(j))

> β
1/2
t ≤ e−βt/2 =

δ

ωmMπt

By using a union bound ωj ≤ ωm times over all x(j) ∈ Ω(j) and then M times over all discretisations the above holds
with probability > 1 − δ/πt for all j = 1, . . . ,M and x(j) ∈ Ω(j). Therefore, we have |f(x) − µt−1(x)| ≤ |f(x(j)) −
µ

(j)
t−1(x(j))| ≤ β1/2

t

∑
j σ

(j)
t−1(x(j)) for all x ∈ Ω. Now using the union bound on all t yields the result.

Lemma 11. The posterior mean µt−1 for a GP whose kernel κ(·, x) is L-Lipschitz satisfies,

P
(
∀t ≥ 1 |µt−1(x)− µt−1(x′)| ≤

(
f(x∗) + η

√
2 log(πt/2δ)

)
Lη−2t‖x− x′‖2

)
≥ 1− δ

Proof. Note that for given t,

P
(
yt < f(x∗) + η

√
2 log(πt/2δ)

)
≤ P

(
εt/η <

√
2 log(πt/2δ)

)
≤ δ/πt

Therefore the statement is true with probability > 1 − δ for all t. Further, ∆ � η2I implies ‖∆−1‖op ≤ η−2 and
|k(x, z)− k(x′, z)| ≤ L‖x− x′‖. Therefore

|µt−1(x)− µt−1(x′)| = |Y >t−1∆−1(k(x,XT)− k(x′, XT)| ≤ ‖Yt−1‖2‖∆−1‖op‖k(x,Xt−1)− k(x′, Xt−1)‖2

≤
(
f(x∗) + η

√
2 log(πt/2δ)

)
Lη−2(t− 1)‖x− x′‖2

Additive Gaussian Process Optimisation and Bandits

B.2.1. PROOF OF THEOREM 5

Proof. First note that by Assumption 2 and the union bound we have, P(∀i supx(j)∈X (j) |∂f (j)(x(j))/∂x
(j)
i | > J) ≤

diae
−(J/b)2 . Since, ∂f(x)/∂x

(j)
i = ∂f (j)(x(j))/∂x

(j)
i , we have,

P
(
∀i = 1, . . . , D sup

x∈X

∣∣∣∂f(x)

∂xi

∣∣∣ > J

)
≤ pae−(J/b)2

By setting δ/3 = pae−J
2/b2 we have with probability > 1− δ/3,

∀x, x′ ∈ X , |f(x)− f(x′)| ≤ b
√

log(3ap/δ)‖x− x′‖1 (9)

Now, we construct a sequence of discretisations Ω
(j)
t satisfying ‖x(j) − [x(j)]t]‖1 ≤ dj/τt ∀x(j) ∈ Ω

(j)
t . Here, [x(j)]t is

the closest point to x(j) in Ω
(j)
t in an L2 sense. A sufficient discretisation is a grid with τt uniformly spaced points. Then

it follows that for all x ∈ Ωt, ‖x − [x]t‖1 ≤ p/τt. Here Ωt is the discretisation induced on X by the Ω
(j)
t ’s and [x]t is

the closest point to x in Ωt. Note that ‖x(j) − [x(j)]t‖2 ≤
√
dj/τt ∀x(j) ∈ Ω(j) and ‖x − [x]t‖2 ≤

√
p/τt. We will

set τt = pt3–therefore, ωtj ≤ (pt3)d
∆
= ωmt. When combining this with (9), we get that with probability > 1 − δ/3,

|f(x)− f([x])| ≤ b
√

log(3ap/δ)/t3. By our choice of βt and using Lemma 10 the following is true for all t ≥ 1 and for
all x ∈ X with probability > 1− 2δ/3,

|f(x)− µt−1([x]t)| ≤ |f(x)− f([x]t)|+ |f([x]t)− µt−1([x]t)| ≤
b
√

log(3ap/δ)

t2
+ β

1/2
t

M∑
j=1

σ
(j)
t−1([x(j)]t) (10)

By Lemma 11 with probability > 1− δ/3 we have,

∀x ∈ X , |µt−1(x)− µt−1([x]t)| ≤
L
(
f(x∗) + η

√
2 log(3πt/2δ)

)
√
pη2t2

(11)

We use the above results to obtain the following bound on the instantaneous regret rt which holds with probability > 1− δ
for all t ≥ 1,

rt = f(x∗)− f(xt)

≤ µt−1([x∗]t) + β
1/2
t

M∑
j=1

σ
(j)
t−1([x

(j)
∗]t)− µt−1([xt]t) + β

1/2
t

M∑
j=1

σ
(j)
t−1([x

(j)
t]t) +

2b
√

log(3ap/δ)

t3

≤
2b
√

log(3ap/δ)

t3
+
ζ0√
t

+ β
1/2
t

 M∑
j=1

σ
(j)
t−1(x

(j)
t) +

M∑
j=1

σ
(j)
t−1([x

(j)
t]t)

+ µt−1(xt)− µt−1([xt]t)

≤
2b
√

log(3ap/δ)

t3
+
L
(
f(x∗) + η

√
2 log(πt/2δ)

)
√
pη2t2

+
ζ0√
t

+ β
1/2
t

 M∑
j=1

σ
(j)
t−1(x

(j)
t) +

M∑
j=1

σ
(j)
t−1([x

(j)
t]t)

 (12)

In the first step we have applied Equation (10) at x∗ and xt. In the second step we have used the fact that ϕ̃t([x∗]t) ≤
ϕ̃t(x̃t) ≤ ϕ̃t(xt) + ζ0t

−1/2. In the third step we have used Equation (11).

For any x ∈ X we can bound σt(x)
2 as follows,

σt(x)
2

= η2η−2σt(x)
2 ≤ 1

log(1 + η−2)
log
(

1 + η−2σt(x)
2
)

Here we have used the fact that u2 ≤ v2 log(1 + u2)/ log(1 + v2) for u ≤ v and σt(x)
2 ≤ κ(x, x) = 1. Write

C1 = log−1(1 + η−2). By using Jensen’s inequality and Definition 3 for any set of T points {x1, x2, . . . xT } ⊂ X , T∑
t=1

M∑
j=1

σ
(j)
t (x(j))

2

≤MT

T∑
t=1

M∑
j=1

σ
(j)
t (x(j))

2
≤ C1MT

T∑
t=1

log
(

1 + η−2σt(x)
2
)
≤ 2C1MTγT (13)

Additive Gaussian Process Optimisation and Bandits

Figure 4. Illustration of the trimodal function fd′ in d′ = 2.

Finally we can bound the cumulative regret with probability > 1− δ for all T ≥ 1 by,

RT =

T∑
t=1

rt ≤ C2(a, b,D, L, δ) + ζ0

T∑
t=1

t−1/2 + β
1/2
T

 T∑
t=1

M∑
j=1

σ
(j)
t−1(x

(j)
t) +

T∑
t=1

M∑
j=1

σ
(j)
t−1([x

(j)
t]t)

≤ C2(a, b,D, L, δ) + 2ζ0

√
T +

√
8C1βTMTγT

where we have used the summability of the first two terms in Equation (12). Here, for δ < 0.8, the constant C2 is given by,

C2 ≥ b
√

log(3ap/δ) +
π2Lf(x∗)

6
√
pη2

+
Lπ3/2

√
12pδη

C. Experiments
To demonstrate the efficacy of Add-GP-UCB over GP-UCB we optimise the acquisition function under a constrained
budget. Following, Brochu et al. (2010) we use DiRect to maximise ϕt, ϕ̃t. To demonstrate the efficacy of Add-GP-UCB
we optimise the acquisition function under a constrained budget. We compare Add-GP-UCB against GP-UCB, random
querying (RAND) and DiRect1. On the real datasets we also compare it to the Expected Improvement (GP-EI) acquisition
function which is popular in BO applications and the method of Wang et al. (2013) which uses a random projection
before applying BO (REMBO). We have multiple instantiations of Add-GP-UCB for different values for (d,M). For
optimisation, we perform comparisons based on the simple regret ST and for bandits we use the time averaged cumulative
regret RT /T .

For all GPB/ BOmethods we set Ninit = 10, Ncyc = 25 in all experiments. Further, for the first 25 iterations we set the
bandwidth to a small value (10−5) to encourage an explorative strategy. We use SE kernels for each additive kernels and
use the same scale σ and bandwidth h hyperparameters for all the kernels. Every 25 iterations we maximise the marginal
likelihood with respect to these 2 hyperparameters in addition to the decomposition.

In contrast to existing literature in the BO community, we found that the UCB acquisitions outperformed GP-EI. One
possible reason may be that under a constrained budget, UCB is robust to imperfect maximisation (Theorem 5) whereas
GP-EI may not be. Another reason may be our choice of constants in UCB (Section 4.4).

C.1. Simulations on Synthetic Data

First we demonstrate our technique on a series of synthetic examples. For this we construct additive functions for different
values for the maximum group size d′ and the number of groups M ′. We use the prime to distinguish it from Add-GP-

1There are several global optimisation methods based on simulated annealing, cross entropy methods, genetic algorithms etc. We
choose DiRect since its easy to configure and known to work well in practice.

Additive Gaussian Process Optimisation and Bandits

0 200 400 600 800

10
0

10
1

10
2

Number of Queries (T)

S
T

(D,d’,M’) = (10,3,3)

RAND
DiRect
Add−*
GP−UCB
Add−1/10
Add−5/2
Add−3/4

(a)

0 200 400 600 800

10
0

10
1

10
2

Number of Queries (T)

S
T

(D,d’,M’) = (24,6,4)

RAND
DiRect
Add−*
GP−UCB
Add−1/24
Add−4/6
Add−6/4
Add−12/2

(b)

0 200 400 600 800

10
0

10
1

10
2

Number of Queries (T)

S
T

(D,d’,M’) = (24,11,2)

RAND
DiRect
Add−*
GP−UCB
Add−1/24
Add−3/8
Add−6/4
Add−12/2

(c)

0 200 400 600 800

10
1

10
2

R
T
/
T

Number of Queries (T)

(D,d’,M’) = (10,3,3)

(d)

0 200 400 600 800

10
2

R
T
/
T

Number of Queries (T)

(D,d’,M’) = (24,6,4)

(e)

0 200 400 600 800

10
1

10
2

R
T
/
T

Number of Queries (T)

(D,d’,M’) = (24,11,2)

(f)

0 200 400 600 800

10
1

10
2

Number of Queries (T)

S
T

(D,d’,M’) = (40,5,8)

RAND
DiRect
Add−*
GP−UCB
Add−1/40
Add−4/10
Add−10/4
Add−20/2

(g)

0 200 400 600 800

10
0

10
1

10
2

Number of Queries (T)

S
T

(D,d’,M’) = (40,18,2)

RAND
DiRect
Add−*
GP−UCB
Add−1/40
Add−4/10
Add−10/4
Add−20/2

(h)

0 200 400 600 800

10
0

10
1

10
2

Number of Queries (T)

S
T

(D,d’,M’) = (40,35,1)

RAND
DiRect
Add−*
GP−UCB
Add−1/40
Add−4/10
Add−10/4
Add−20/2

(i)

0 200 400 600 800

10
2

R
T
/
T

Number of Queries (T)

(D,d’,M’) = (40,5,8)

(j)

0 200 400 600 800

10
2

R
T
/
T

Number of Queries (T)

(D,d’,M’) = (40,18,2)

(k)

0 200 400 600 800

10
2

R
T
/
T

Number of Queries (T)

(D,d’,M’) = (40,35,1)

(l)

Figure 5. Results on the synthetic datasets. In all images the x-axis is the number of queries and the y-axis is the regret
in log scale. We have indexed each experiment by their (D, d′,M ′) values. The first row is ST for the experiments with
(D, d′,M ′) set to (10, 3, 3), (24, 6, 4), (24, 11, 2) and the second row is RT /T for the same experiments. The third row is ST for
(40, 5, 8), (40, 18, 2), (40, 35, 1) and the fourth row is the corresponding RT . In some figures, the error bars are not visible since they
are small and hidden by the bullets. All figures were produced by averaging over 20 runs.

Additive Gaussian Process Optimisation and Bandits

0 200 400 600 800

10
2

10
3

Number of Queries (T)

S
T

(D,d’,M’) = (96,5,19)

RAND
DiRect
Add−*
GP−UCB
Add−4/24
Add−8/12
Add−16/6
Add−32/3

(a)

0 200 400 600 800

10
1

10
2

10
3

Number of Queries (T)

S
T

(D,d’,M’) = (96,29,3)

RAND
DiRect
Add−*
GP−UCB
Add−4/24
Add−8/12
Add−32/3

(b)

0 200 400 600 800

10
2

10
3

Number of Queries (T)

S
T

(D,d’,M’) = (120,55,2)

RAND
DiRect
Add−*
GP−UCB
Add−8/15
Add−15/8
Add−30/4

(c)

0 200 400 600 800

10
3

R
T
/
T

Number of Queries (T)

(D,d’,M’) = (96,5,19)

(d)

0 200 400 600 800

10
3

R
T
/
T

Number of Queries (T)

(D,d’,M’) = (96,29,3)

(e)

0 200 400 600 800

10
3

R
T
/
T

Number of Queries (T)

(D,d’,M’) = (120,55,2)

(f)

Figure 6. More results on synthetic experiments. The simple regret ST (first row) and cumulative regret RT /T (second row) for
functions with (D, d′,M ′) set to (96, 5, 19), (96, 29, 3), (120, 55, 2) respectively. Read the caption under Figure 5 for more details.

UCB instantiations with different combinations of (d,M) values. The d′ dimensional function fd′ is,

fd(x) = log

(
0.1

1

hd
′
d′

exp

(
‖x− v1‖2

2h2
d′

)
+ 0.1

1

hd
′
d′

exp

(
‖x− v2‖2

2h2
d′

)
+ 0.8

1

hd
′
d′

exp

(
‖x− v3‖2

2h2
d′

))
(14)

where v1, v2, v3 are fixed d′ dimensional vectors and hd′ = 0.01d′
0.1. Then we create M ′ groups of coordinates by

randomly adding d′ coordinates into each group. On each such group we use fd′ and then add them up to obtain the
composite function f . Precisely,

f(x) = fd′(x
(1)) + · · ·+ fd′(x

(M))

The remaining D − d′M ′ coordinates do not contribute to the function. Since fd′ has 3 modes, f will have 3M
′

modes.
We have illustrated fd′ for d′ = 2 in Figure 4. In the synthetic experiments we use an instantiation of Add-GP-UCB that
knows the decomposition–i.e. (d,M) = (d′,M ′) and the grouping of coordinates. We refer to this as Add-?. For the rest
we use a (d,M) decomposition by creating M groups of size at most d and find a good grouping by partially maximising
the marginal likelihood (Section 4.4). We refer to them as Add-d/M .

For GP-UCB we allocate a budget of min(5000, 100D) DiRect function evaluations to optimise the acquisition function.
For all Add-d/M methods we set it to 90% of this amount2 to account for the additional overhead in posterior inference
for each f (j). Therefore, in our 10D problem we maximise ϕt with βt = 2 log(2t) with 1000 DiRect evaluations whereas
for Add-2/5 we maximise each ϕ̃(j)

t with βt = 0.4 log(2t) with 180 evaluations.

The results are given in Figures 5 and 6. We refer to each example by the configuration of the additive function–its
(D, d′,M ′) values. In the (10, 3, 3) example Add-? does best since it knows the correct model and the acquisition function
can be maximised within the budget. However Add-3/4 and Add-5/2 models do well too and outperform GP-UCB.
Add-1/10 performs poorly since it is statistically not expressive enough to capture the true function. In the (24, 11, 2),
(40, 18, 2), (40, 35, 1), (96, 29, 3) and (120, 55, 2) examples Add-? outperforms GP-UCB. However, it is not competitive

2While the 90% seems arbitrary, in our experiments this was hardly a factor as the cost was dominated by the inversion of ∆.

Additive Gaussian Process Optimisation and Bandits

with the Add-d/M for small d. Even though Add-? knew the correct decomposition, there are two possible failure modes
since d′ is large. The kernel is complex and the estimation error is very high in the absence of sufficient data points. In
addition, optimising the acquisition is also difficult. This illustrates our previous argument that using an additive kernel
can be advantageous even if the function is not additive or the decomposition is not known. In the (24, 6, 4), (40, 5, 8) and
(96, 5, 19) examples Add-? performs best as d′ is small enough. But again, almost all Add-d/M instantiations outperform
GP-UCB. In contrast to the small D examples, for large D, GP-UCB and Add-d/M with large d perform worse than
DiRect. This is probably because our budget for maximising ϕt is inadequate to optimise the acquisition function to
sufficient accuracy. For some of the large D examples the cumulative regret is low for Add-GP-UCB and Add-d/M with
large d. This is probably since they have already started exploiting where as the Add-d/M with small d methods are still
exploring. We posit that if we run for more iterations we will be able to see the improvements.

C.2. SDSS Astrophysical Dataset

Here we used Galaxy data from the Sloan Digital Sky Survey (SDSS). The task is to find the maximum likelihood esti-
mators for a simulation based astrophysical likelihood model. Data and software for computing the likelihood are taken
from Tegmark et al (2006). The software itself takes in only 9 parameters but we augment this to 20 dimensions to emulate
the fact that in practical astrophysical problems we may not know the true parameters on which the problem is dependent.
This also allows us to effectively demonstrate the superiority of our methods over alternatives. Each query to this likeli-
hood function takes about 2-5 seconds. In order to be wall clock time competitive with RAND and DiRectwe use only 500
evaluations for GP-UCB, GP-EI and REMBO and 450 for Add-d/M to maximise the acquisition function.

We have shown the Maximum value obtained over 400 iterations of each algorithm in Figure 3(a). Note that RAND
outperforms DiRect here since a random query strategy is effectively searching in 9 dimensions. Despite this advantage
to RAND all BO methods do better. Moreover, despite the fact that the function may not be additive, all Add-d/M
methods outperform GP-UCB. Since the function only depends on 9 parameters we use REMBO with a 9 dimensional
projection. Despite this advantage to REMBO it is not competitive with the Add-d/M methods. Possible reasons for
this may include the scaling of the parameter space by

√
d in REMBO and the imperfect optimisation of the acquisition

function. Here Add-5/4 performs slightly better than the rest since it seems to have the best tradeoff between being
statistically expressive enough to capture the function while at the same time be easy enough to optimise the acquisition
function within the allocated budget.

C.3. Viola & Jones Face Detection

The Viola & Jones (VJ) Cascade Classifier (Viola & Jones, 2001) is a popular method for face detection in computer
vision based on the Adaboost algorithm. The K-cascade has K weak classifiers which outputs a score for any given
image. When we wish to classify an image we pass that image through each classifier. If at any point the score falls below
a certain threshold the image is classified as negative. If the image passes through all classifiers then it is classified as
positive. The threshold values at each stage are usually pre-set based on prior knowledge. There is no reason to believe
that these threshold values are optimal. In this experiment we wish to find an optimal set of values for these thresholds by
optimising the classification accuracy over a training set.

For this task, we use 1000 images from the Viola & Jones face dataset containing both face and non-face images. We
use the implementation of the VJ classifier that comes with OpenCV (Bradski & Kaehler, 2008) which uses a 22-stage
cascade and modify it to take in the threshold values as a parameter. As our domain X we choose a neighbourhood around
the configuration given in OpenCV. Each function call takes about 30-40 seconds and is therefore the dominant cost in
this experiment. We use 1000 DiRect evaluations to optimise the acquisition function for GP-UCB, GP-EI and REMBO
and 900 for the Add-d/M instantiations. Since we do not know the structure of the function we use REMBO with a
5 dimensional projection. The results are given in Figure 3(b). Not surprisingly, REMBO performs worst as it is only
searching on a 5 dimensional space. Barring Add-1/22 all other instantiations perform better than GP-UCB with Add-
6/4 performing the best. Interestingly, we also find a value for the thresholds that outperform the configuration used in the
OpenCV implementation.

Additive Gaussian Process Optimisation and Bandits

0 100 200 300 400
−10

3

−10
2

−10
1

Number of Queries (T)

M
a
x
i
m
u
m

V
a
l
u
e

RAND
DiRect
GP−EI
REMBO−9
GP−UCB
Add−1/20
Add−2/10
Add−4/5
Add−5/4
Add−10/2

(a)

0 100 200 300

65

70

75

80

85

90

95

Number of Queries (T)

C
l
a
s
s
i
f
i
c
a
t
i
o
n

A
c
c
u
r
a
c
y

OpenCV
RAND
DiRect
GP−EI
REMBO−5
GP−UCB
Add−1/22
Add−4/6
Add−6/4
Add−8/3
Add−11/2

(b)

Figure 7. Results on the Astrophysical experiment (a) and the Viola and Jones dataset (b). The x-axis is the number of queries and the
y-axis is the maximum value. (a) was produced by averaging over 20 runs and (b) over 11 runs.

