
Supplementary Material for “The Composition Theorem for Dif-
ferential Privacy”

5 Proof of Theorem 3.3

We first propose a simple mechanism and prove that the proposed mechanism dominates over
all (ε, δ)-differentially private mechanisms. Analyzing the privacy region achieved by the k-fold
composition of the proposed mechanism, we get a bound on the privacy region under the adaptive
composition. This gives an exact characterization of privacy under composition, since we show
both converse and achievability. We prove that no other family of mechanisms can achieve ‘more
degraded’ privacy (converse), and that there is a mechanism that we propose which achieves the
privacy region (achievability).

5.1 Achievability

We propose the following simple mechanism M̃i at the i-th step in the composition. Null hypothesis
(b=0) outcomesXi,0 = Mi(D

i,0, qi)’s which are independent and identically distributed as a discrete
random variable X̃0 ∼ P̃0(·), where

P(X̃0 = x) = P̃0(x) ≡





δ for x = 0 ,
(1−δ) eε

1+eε for x = 1 ,
1−δ
1+eε for x = 2 ,

0 for x = 3 .

(12)

Alternative hypothesis (b=1) outcomes Xi,1 = Mi(D
i,1, qi)’s are independent and identically dis-

tributed as a discrete random variable X̃1 ∼ P̃1(·), where

P(X̃1 = x) = P̃1(x) ≡





0 for x = 0 ,
1−δ
1+eε for x = 1 ,

(1−δ) eε
1+eε for x = 2 ,

δ for x = 3 .

(13)

In particular, the output of this mechanism does not depend on the database Di,b or the query qi,
and only depends on the hypothesis b. The privacy region of a single access to this mechanism
is R(ε, δ) in Figure 1. Hence, by Theorem 2.5, all (ε, δ)-differentially private mechanisms are
dominated by this mechanism.

In general, the privacy regionR(M,D0, D1) of any mechanism can be represented as an intersec-
tion of multiple {(ε̃j , δ̃j)} privacy regions for j ∈ {1, 2, . . .}. For a mechanism M , we can compute
the (ε̃j , δ̃j) pairs representing the privacy region as follows. Given a null hypothesis database D0,
an alternative hypothesis database D1, and a mechanism M whose output space is X , let P0 and P1

denote the probability density function of the outputs M(D0) and M(D1) respectively. To simplify
notations we assume that P0 and P1 are symmetric, i.e. there exists a permutation π over X such
that P0(x) = P1(π(x)) and P1(x) = P0(π(x)). This ensures that we get a symmetric privacy region.

The privacy region R(M,D0, D1) can be described by its boundaries. Since it is a convex set,
a tangent line on the boundary with slope −eε̃j can be represented by the smallest δ̃j such that

PFA ≥ −eε̃jPMD + 1− δ̃j , (14)
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for all rejection sets (cf. Figure 3). Letting S denote the complement of a rejection set, such that
PFA = 1−P0(S) and PMD = P1(S), the minimum shift δ̃j that still ensures that the privacy region
is above the line (14) is defined as δ̃j = dε̃j (P0, P1) where

dε̃(P0, P1) ≡ max
S⊆X

{
P0(S)− eε̃ P1(S)

}
.

The privacy region of a mechanism is completely described by the set of slopes and shifts, {(ε̃j , δ̃j) :
ε̃j ∈ E and δ̃j = dε̃j (P0, P1)}, where

E ≡ { 0 ≤ ε̃ <∞ : P0(x) = eε̃ P1(x) for some x ∈ X} .

Any ε̃ /∈ E does not contribute to the boundary of the privacy region. For the above example
distributions P̃0 and P̃1, E = {ε} and dε(P̃0, P̃1) = δ.

Remark 5.1. For a database access mechanism M over a output space X and a pair of neighboring
databases D0 and D1, let P0 and P1 denote the probability density function for random variables
M(D0) and M(D1) respectively. Assume there exists a permutation π over X such that P0(x) =
P1(π(x)). Then, the privacy region is

R(M,D0, D1 ) =
⋂

ε̃∈E
R
(
ε̃, dε̃(P0, P1)

)
,

where R(M,D,D′) and R(ε̃, δ̃) are defined as in (3) and (2).

The symmetry assumption is to simplify notations, and the analysis can be easily generalized
to deal with non-symmetric distributions.

Now consider a k-fold composition experiment, where at each sequential access M̃i, we re-
ceive a random output Xi,b independent and identically distributed as X̃b. We can explicitly
characterize the distribution of k-fold composition of the outcomes: P(X1,b = x1, . . . , X

k,b =
xk) =

∏k
x=1 P̃b(xi). It follows form the structure of these two discrete distributions that, E =

{e(k−2bk/2c)ε, e(k+2−2bk/2c)ε, . . . , e(k−2)ε, ekε}. After some algebra, it also follows that

d(k−2i)ε

(
(P̃0)k, (P̃1)k

)
= 1− (1− δ)k + (1− δ)k

∑i−1
`=0

(
k
`

)(
eε(k−`) − eε(k−2i+`)

)

(1 + eε)k
.

for i ∈ {0, . . . , bk/2c}. From Remark 5.1, it follows that the privacy region is R({εi, δi}) =⋂bk/2c
i=0 R

(
εi, δi

)
, where εi = (k − 2i)ε and δi’s are defined as in (6). Figure 2 shows this privacy

region for k = 1, . . . , 5 and for ε = 0.4 and for two values of δ = 0 and δ = 0.1.

5.2 Converse

We will now prove that this region is the largest region achievable under k-fold adaptive composition
of any (ε, δ)-differentially private mechanisms.

From Corollary 2.3, any mechanism whose privacy region is included in R({εi, δi}) satisfies
(ε̃, δ̃)-differential privacy. We are left to prove that for the family of all (ε, δ)-differentially private
mechanisms, the privacy region of the k-fold composition experiment is included inside R({εi, δi}).
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To this end, consider the following composition experiment, which reproduces the view of the
adversary from the original composition experiment.

At each time step i, we generate a random variable Xi,b distributed as X̃b independent of
any other random events, and call this the output of a database access mechanism M̃i such that
M̃i(D

i,b, qi) = Xi,b. Since, Xi,b only depends on b, and is independent of the actual database or
the query, we use M̃i(b) to denote this outcome.

We know that M̃i(b) has privacy regionR(ε, δ) for any choices of Di,0, Di,1 and qi. Now consider
the mechanism Mi from the original experiment. Since it is (ε, δ)-differentially private, we know
from Corollary 2.1 that R(Mi, D

i,0, Di,1) ⊆ R(ε, δ) for any choice of neighboring databases Di,0,
Di,1. Hence, from the converse of data processing inequality (Theorem 2.5), we know that there
exists a mechanism Ti that takes as input Xi,b, qi, D

i,0, Di,1, and an (ε, δ)-differentially private
mechanism Mi, and produces an output Y i,b which is distributed as Mi(D

i,b, qi) for all b ∈ {0, 1}.
Hence, Y i,b is independent of the past conditioned on Xi,b, Di,0, Di,1, qi,Mi. Precisely we have the
following Markov chain:

(b, R, {X`,b, D`,0, D`,1, q`,M`}`∈[i−1])–(Xi,b, Di,0, Di,1, qi,Mi)–Y
i,b ,

where R is any internal randomness of the adversary A. Since, (X,Y )–Z–W implies X–(Y,Z)-W ,
we have

b–(R, {X`,b, D`,0, D`,1, q`,M`}`∈[i])–Y
i,b .

Notice that if we know R and the outcomes {Y `,b}`∈[i], then we can reproduce the original exper-
iment until time i. This is because the choices of Di,0, Di,1, qi,Mi are exactly specified by R and
{Y `,b}`∈[i]. Hence, we can simplify the Markov chain as

b–(R,Xi,b, {X`,b, Y `,b}`∈[i−1])–Y
i,b . (15)

Further, since Xi,b is independent of the past conditioned on b, we have

Xi,b–b–(R, {X`,b, Y `,b}`∈[i−1]) . (16)

It follows that

P(b, r, x1 . . . , xk, y1, . . . , yk) = P(b, r, x1, . . . , xk, y1, . . . , yk−1)P(yk|r, x1, . . . , xk, y1, . . . , yk−1)

= P(b, r, x1, . . . , xk−1, y1, . . . , yk−1)P(xk|b)P(yk|r, x1, . . . , xk, y1, . . . , yk−1) ,

where we used (15) in the first equality and (16) in the second. By induction, we get a decom-
position of P(b, r, x1, . . . , xk, y1, . . . , yk) = P(b|r, x1, . . . , xk)P(y1, . . . , yk, r, x1, . . . , xk). From the
construction of the experiment, it also follows that the internal randomness R is independent of
the hypothesis b and the outcomes Xi,b’s: P(b|r, x1, . . . , xk) = P(b|x1, . . . , xk). Then, marginalizing
over R, we get P(b, x1, . . . , xk, y1, . . . , yk) = P(b|x1, . . . , xk)P(y1, . . . , yk, x1, . . . , xk). This implies
the following Markov chain:

b–({Xi,b}i∈[k])–({Y i,b}i∈[k]) , (17)

and it follows that a set of mechanisms (M1, . . . ,Mk) dominates (M̃1, . . . , M̃k) for two databases
{Di,0}i∈[k] and {Di,1}i∈[k]. By the data processing inequality for differential privacy (Theorem 2.4),
this implies that

R
(
{Mi}i∈[k], {Di,0}i∈[k], {Di,1}i∈[k]

)
⊆ R

(
{M̃i}i∈[k], {Di,0}i∈[k], {Di,1}i∈[k]

)
= R

(
{εi, δi}

)
.
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This finishes the proof of the desired claim.
Alternatively, one can prove (17), using a probabilistic graphical model. Precisely, the following

Bayesian network describes the dependencies among various random quantities of the experiment
described above. Since the set of nodes (X1,b, X2,b, X3,b, X4,b) d-separates node b from the rest of
the bayesian network, it follows immediately from the Markov property of this Bayesian network
that (17) is true (cf. [Lau96]).

b R

X1,b

X2,b

X3,b

X4,b

Y 1,b

Y 2,b

Y 3,b

Y 4,b

D1,0, D1,1, q1,M1

D2,0, D2,1, q2,M2

D3,0, D3,1, q3,M3

D4,0, D4,1, q4,M4

Figure 4: Bayesian network representation of the composition experiment. The subset of nodes
(X1,b, X2,b, X3,b, X4,b) d-separates node b from the rest of the network.

6 Proof of Theorem 3.4

We need to provide an outer bound on the privacy region achieved by X̃0 and X̃1 defined in (12)
and (13) under k-fold composition. Let P0 denote the probability mass function of X̃0 and P1

denote the PMF of X̃1. Also, let P k0 and P k1 denote the joint PMF of k i.i.d. copies of X̃0 and X̃1

respectively. Also, for a set S ⊆ X k, we let P k0 (S) =
∑

x∈S P
k
0 (x). In our example, X = {1, 2, 3, 4},

and

P0 =
[
δ (1−δ)eε

1+eε
1−δ
1+eε 0

]
,

P1 =
[
0 1−δ

1+eε
(1−δ)eε

1+eε δ
]
,

P 2
0 =




δ2 δ (1−δ)eε
1+eε δ (1−δ)

1+eε 0

δ (1−δ)eε
1+eε

(
(1−δ)eε

1+eε

)2 (
1−δ
1+eε

)2
eε 0

δ 1−δ
1+eε

(
1−δ
1+eε

)2
eε

(
1−δ
1+eε

)2
0

0 0 0 0



, etc.
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We can compute the privacy region from P k0 and P k1 directly, by computing the line tangent to
the boundary. A tangent line with slope −eε̃ can be represented as

PFA = −eε̃PMD + 1− dε̃(P k0 , P k1 ) . (18)

To find the tangent line, we need to maximize the shift, which is equivalent to moving the line
downward until it is tangent to the boundary of the privacy region (cf. Figure 3).

dε̃(P
k
0 , P

k
1 ) ≡ max

S⊆Xk
P k0 (S)− eε̃P k1 (S) .

Notice that the maximum is achieved by a set B ≡ {x ∈ X k |P k0 (x) ≥ eε̃P k1 (x)}. Then,

dε̃(P
k
0 , P

k
1 ) = P k0 (B)− eε̃P k1 (B) .

For the purpose of proving the bound of the form (7), we separate the analysis of the above
formula into two parts: one where either P k0 (x) or P k1 (x) is zero and the other when both are
positive. Effectively, this separation allows us to treat the effects of (ε, 0)-differential privacy and
(0, δ)-differential privacy separately. In previous work [DRV10], they required heavy machinery
from dense subsets of pseudorandom sets [RTTV08] to separate the analysis in a similar way. Here
we provide a simple proof technique. Further, all the proof techniques we use naturally generalize
to compositions of general (ε, δ)-differentially private mechanisms other than the specific example
of X̃0 and X̃1 we consider in this section.

Let X̃k
0 denote a k-dimensional random vector whose entries are independent copies of X̃0.

We partition B into two sets: B = B0
⋃
B1 and B0

⋂
B1 = ∅. Let B0 ≡ {x ∈ X k : P k0 (x) ≥

eε̃P k1 (x), and P k1 (x) = 0} and B1 ≡ {x ∈ X k : P k0 (x) ≥ eε̃P k1 (x), and P k1 (x) > 0}. Then, it is not
hard to see that P k0 (B0) = 1−P(X̃k

0 ∈ {1, 2, 3}k) = 1−(1−δ)k, P k1 (B0) = 0, P k0 (B1) = P k0 (B1|X̃k
0 ∈

{1, 2}k)P(X̃k
0 ∈ {1, 2}k) = (1 − δ)k P k0 (B1|X̃k

0 ∈ {1, 2}k), and P k1 (B1) = (1 − δ)k P k1 (B1|X̃k
1 ∈

{1, 2}k). It follows that

P k0 (B0)− eε̃P k1 (B0) = 1− (1− δ)k , and

P k0 (B1)− eε̃P k1 (B1) = (1− δ)k
(
P k0 (B1|X̃k

0 ∈ {1, 2}k)− eε̃P k1 (B1|X̃k
1 ∈ {1, 2}k)

)
.

Let P̃ k0 (x) ≡ P k0 (x|x ∈ {1, 2}k) and P̃ k1 (x) ≡ P k1 (x|x ∈ {1, 2}k). Then, we have

dε̃(P
k
0 , P

k
1 ) = P k0 (B0)− eε̃P k1 (B0) + P k0 (B1)− eε̃P k1 (B1)

= 1− (1− δ)k + (1− δ)k
(
P̃ k0 (B1)− eε̃P̃ k1 (B1)

)
. (19)

Now, we focus on upper bounding P̃ k0 (B1) − eε̃P̃ k1 (B1), using a variant of Chernoff’s tail bound.
Notice that

P̃ k0 (B1)− eε̃P̃ k1 (B1) = EP̃k0
[
I(

log(P̃k0 (X̃k)/P̃k1 (X̃k))≥ε̃
)]− eε̃EP̃k0

[
I(

log(P̃k0 (X̃k)/P̃k1 (X̃k))≥ε̃
) P̃ k1 (X̃k)

P̃ k0 (X̃k)

]

= EP̃k0
[
I(

log(P̃k0 (X̃k)/P̃k1 (X̃k))≥ε̃
)
(

1− eε̃ P̃
k
1 (X̃k)

P̃ k0 (X̃k)

)]

≤ E[eλZ−λε̃+λ log λ−(λ+1) log(λ+1)] , (20)
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where we use a random variable Z ≡ log(P̃ k0 (X̃k
0 )/P̃ k1 (X̃k

0 )) and the last line follows from I(x≥ε̃)(1−
eε̃−x) ≤ eλ(x−ε̃)+λ log λ−(λ+1) log(λ+1) for any λ ≥ 0. To show this inequality, notice that the right-
hand side is always non-negative. So it is sufficient to show that the inequality holds, without the
indicator on the left-hand side. Precisely, let f(x) = eλ(x−ε̃)+λ log λ−(λ+1) log(λ+1) + eε̃−x− 1. This is
a convex function with f(x∗) = 0 and f ′(x∗) = 0 at x∗ = ε̃+ log((λ+ 1)/λ). It follows that this is
a non-negative function.

Next, we give an upper bound on the moment generating function of Z.

EP̃0
[eλ log(P0(X)/P1(X))] =

eε

eε + 1
eλε +

1

eε + 1
e−λε

≤ e
eε−1
eε+1

λε+ 1
2
λ2ε2 ,

for any λ, which follows from the fact that pex + (1 − p)e−x ≤ e(2p−1)x+(1/2)x2 for any x ∈ R and

p ∈ [0, 1] [AS04, Lemma A.1.5]. Substituting this into (20) with a choice of λ = ε̃−kε(eε−1)/(eε+1)
kε2

,
we get

P̃ k0 (B1)− eε̃P̃ k1 (B1) ≤ exp
{eε − 1

eε + 1
λεk +

1

2
λ2ε2k − λε̃+ λ log λ− (λ+ 1) log(λ+ 1)

}

≤ exp
{
− 1

2kε2

(
ε̃− kεe

ε − 1

eε + 1

)2
− log(λ+ 1)

}

≤ 1

1 + ε̃−kε(eε−1)/(eε+1)
kε2

exp
{
− 1

2kε2

(
ε̃− kεe

ε − 1

eε + 1

)2 }

=
1

1 +

√
2kε2 log(e+(

√
kε2/δ̃))

kε2

1

e+
√
kε2

δ̃

≤ 1
√
kε2 +

√
2 log(e+ (

√
kε2/δ̃))

δ̃
eδ̃√
kε2

+ 1
,

for our choice of ε̃ = kε(eε − 1)/(eε + 1) + ε

√
2k log(e+ (

√
kε2/δ̃)). The right-hand side is always

less than δ̃.
Similarly, one can show that the right-hand side is less than δ̃ for the choice of ε̃ = kε(eε −

1)/(eε+1)+ε
√

2k log(1/δ̃). We get that the k-fold composition is (ε̃, 1−(1−δ)k(1−δ̃))-differentially
private.

7 Proof of Theorem 3.5

In this section, we closely follow the proof of Theorem 3.4 in Section 6 carefully keeping the
dependence on `, the index of the composition step. For brevity, we omit the details which overlap
with the proof of Theorem 3.4. By the same argument as in the proof of Theorem 3.3, we only

need to provide an outer bound on the privacy region achieved by X̃
(`)
0 and X̃

(`)
1 under k-fold
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composition, defined as

P(X̃
(`)
0 = x) = P̃

(`)
0 (x) ≡





δ` for x = 0 ,
(1−δ`) eε`

1+eε` for x = 1 ,
1−δ`
1+eε` for x = 2 ,

0 for x = 3 .

, and

P(X̃
(`)
1 = x) = P̃

(`)
1 (x) ≡





0 for x = 0 ,
1−δ`
1+eε` for x = 1 ,

(1−δ`) eε`
1+eε` for x = 2 ,

δ` for x = 3 .

Using the similar notations as Section 6, it follows that under k-fold composition,

dε̃(P
k
0 , P

k
1 ) = 1−

k∏

`=1

(1− δ`) +
(
P̃ k0 (B1)− eε̃P̃ k1 (B1)

) k∏

`=1

(1− δ`) . (21)

Now, we focus on upper bounding P̃ k0 (B1) − eε̃P̃ k1 (B1), using a variant of Chernoff’s tail bound.
We know that

P̃ k0 (B1)− eε̃P̃ k1 (B1) = EP̃k0
[
I(

log(P̃k0 (X̃k)/P̃k1 (X̃k))≥ε̃
)]− eε̃EP̃k0

[
I(

log(P̃k0 (X̃k)/P̃k1 (X̃k))≥ε̃
) P̃ k1 (X̃k)

P̃ k0 (X̃k)

]

= EP̃k0
[
I(

log(P̃k0 (X̃k)/P̃k1 (X̃k))≥ε̃
)
(

1− eε̃ P̃
k
1 (X̃k)

P̃ k0 (X̃k)

)]

≤ E[eλZ−λε̃+λ log λ−(λ+1) log(λ+1)] , (22)

where we use a random variable Z ≡ log(P̃ k0 (X̃k
0 )/P̃ k1 (X̃k

0 )) and the last line follows from the fact
that I(x≥ε̃)(1− eε̃−x) ≤ eλ(x−ε̃)+λ log λ−(λ+1) log(λ+1) for any λ ≥ 0.

Next, we give an upper bounds on the moment generating function of Z. From the definition

of P̃
(`)
0 and P̃

(`)
1 , E[eλZ ] =

(
E
P̃

(`)
0

[eλ log(P̃
(`)
0 (X̃

(`)
0 )/P̃

(`)
1 (X̃

(`)
0 ))]

)k
. Let ε̃ =

∑k
`=1(eε` − 1)ε`/(e

ε` +

1) +

√
2
∑k

`=1 ε
2
` log

(
e+ (

√∑k
`=1 ε

2
`/δ̃)

)
. Next we show that the k-fold composition is (ε̃, 1− (1−

δ̃)
∏
`∈[k](1− δ`) )-differentially private.

E
P̃

(`)
0

[eλ log(P
(`)
0 (X)/P

(`)
1 (X))] ≤ e

eε`−1
eε`+1

λε`+
1
2
λ2ε`

2

,

for any λ. Substituting this into (22) with a choice of λ =
ε̃−∑`∈[k] ε`(e

ε`−1)/(eε`+1)∑
`∈[k] ε

2
`

, we get

P̃ k0 (B1)− eε̃P̃ k1 (B1) ≤ 1

1 +
ε̃−∑`∈[k] ε`(e

ε`−1)/(eε`+1)∑
`∈[k] ε

2
`

exp
{
− 1

2
∑

`∈[k] ε
2
`

(
ε̃−

∑

`∈[k]

ε`
eε` − 1

eε` + 1

)2 }

≤ .

Substituting ε̃, we get the desired bound.

Similarly, we can prove that with ε̃ =
∑k

`=1(eε` − 1)ε`/(e
ε` + 1) +

√
2
∑k

`=1 ε
2
` log

(
1/δ̃
)
, the

desired bound also holds.
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8 Proofs

8.1 Proof of Theorem 2.4

Consider hypothesis testing between D1 and D2. If there is a point (PMD, PFA) achieved by M ′

but not by M , then we claim that this is a contradiction to the assumption that D–X–Y form
a Markov chain. Consider a decision maker who have only access to the output of M . Under
the Markov chain assumption, he can simulate the output of M ′ by generating a random variable
Y conditioned on M(D) and achieve every point in the privacy region of M ′ (cf. Theorem 2.2).
Hence, the privacy region of M ′ must be included in the privacy region of M .

8.2 Proof of Theorem 2.1

First we prove that (ε, δ)-differential privacy implies (1). From the definition of differential privacy,
we know that for all rejection set S ⊆ X , P(M(D0) ∈ S̄) ≤ eεP(M(D1) ∈ S̄) + δ. This implies
1−PFA(D0, D1,M, S) ≤ eεPMD(D0, D1,M, S) + δ. This implies the first inequality of (1), and the
second one follows similarly.

The converse follows analogously. For any set S, we assume 1−PFA(D0, D1,M, S) ≤ eεPMD(D0, D1,M, S)+
δ. Then, it follows that P(M(D0) ∈ S̄) ≤ eεP(M(D1) ∈ S̄) + δ for all choices of S ⊆ X . Together
with the symmetric condition P(M(D1) ∈ S̄) ≤ eεP(M(D0) ∈ S̄)+δ , this implies (ε, δ)-differential
privacy.

8.3 Proof of Remark 2.2

We have a decision rule γ represented by a partition {Si}i∈{1,...,N} and corresponding accept prob-
abilities {pi}i∈{1,...,N}, such that if the output is in a set Si, we accept with probability pi. We
assume the subsets are sorted such that 1 ≥ p1 ≥ . . . ≥ pN ≥ 0. Then, the probability of false
alarm is

PFA(D0, D1,M, γ) =

N∑

i=1

pi P(M(D0) ∈ Si) = pN +

N∑

i=2

(pi−1 − pi)P(M(D0) ∈ ∪j<iSj) .

and similarly, PMD(D0, D1,M, γ) = (1 − p1) +
∑N

i=2(pi−1 − pi)P(M(D1) /∈ ∪j<iSj). Recall that
PFA(D0, D1,M, S) = P(M(D0) ∈ S) and PMD(D0, D1,M, S) = P(M(D1) ∈ S̄). So for any decision
rule γ, we can represent the pair (PMD, PFA) as a convex combination:

(
PMD(D0, D1,M, γ), PFA(D0, D1,M, γ)

)
=

N+1∑

i=1

(pi−1 − pi)
(
PMD(D0, D1,M,∪j<iSj), PFA(D0, D1,M,∪j<iSj)

)
,

where we used p0 = 1 and pN+1 = 0, and hence it is included in the convex hull of the privacy
region achieved by decision rules with hard thresholding.
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A Examples illustrating the strengths of graphical representation
of differential privacy

Remark A.1. The following statements are true.

(a) If a mechanism is (ε, δ)-differentially private, then it is (ε̃, δ̃)-differentially private for all pairs
of ε̃ and δ̃ ≥ δ satisfying

1− δ
1 + eε

≥ 1− δ̃
1 + eε̃

.

(b) For a pair of neighboring databases D and D′, and all (ε, δ)-differentially private mechanisms,
the total variation distance defined as ‖M(D) − M(D′)‖TV = maxS⊆X P(M(D′) ∈ S) −
P(M(D) ∈ S) is bounded by

sup
(ε, δ)-differentially private M

‖M(D)−M(D′)‖TV ≤ 1− 2(1− δ)
1 + eε

.

Proof. Proof of (a). From Figure 1, it is immediate that R(ε, δ) ⊆ R(ε̃, δ̃) when the conditions
are satisfied. Then, for a (ε, δ)-private M , it follows from R(M) ⊆ R(ε, δ) ⊆ R(ε̃, δ̃) that M is
(ε̃, δ̃)-differentially private.

Proof of (b). By definition, ‖M(D) −M(D′)‖TV = maxS⊆X P(M(D′) ∈ S) − P(M(D) ∈ S).
Letting S be the rejection region in our hypothesis testing setting, the total variation distance is
defined by the following optimization problem:

max
S

1− PMD(S)− PFA(S) (23)

subject to (PMD(S), PFA(S)) ∈ R(ε, δ), for all S ⊆ X .

From Figure 1 it follows immediately that the total variation distance cannot be larger than δ +
(1− δ)(eε − 1)/(eε + 1). �

B Analysis of the Gaussian mechanism in Theorem 4.3

Following the analysis in Section 6, we know that the privacy region of a composition of mechanisms
is described by a set of (ε, δ) pairs that satisfy the following:

δ = µk0(B)− eεµk1(B) ,

where µk0 and µk1 are probability measures of the mechanism under k-fold composition when the
data base is D0 and D1 respectively, and the subset B = arg maxS⊆Rk µ

k
0(S)− eεµk1(S).

In the case of Gaussian mechanisms, we can assume without loss of generality that D0 is such
that qi(D0) = 0 and D1 is such that qi(D1) = ∆ for all i ∈ {1, . . . , k}. When adding Gaussian noises
with variances σ2, we want to ask how small the variance can be and still ensure (ε, δ)-differential
privacy under k-fold composition.
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Let fk0 (x1, . . . , xk) =
∏k
i=1 f0(xi) = (1/

√
2πσ2)ke−

∑k
i=1 x

2
i /2σ

2
and fk1 (x1 . . . , xk) =

∏k
i=1 f1(xi) =

(1/
√

2πσ2)ke−
∑k
i=1(xi−∆)2/2σ2

be the probability density functions of Gaussians centered at zero
and ∆1k respectively. Using a similar technique as in (20), we know that

µk0(B)− eεµk1(B) = Eµk0
[
I(

log(fk0 (X̃k)/fk1 (X̃k))≥ε
)]− eεEµk0

[
I(

log(fk0 (X̃k)/fk1 (X̃k))≥ε
) fk1 (X̃k)

fk0 (X̃k)

]

= Eµk0
[
I(

log(fk0 (X̃k)/fk1 (X̃k))≥ε
)
(

1− eε f
k
1 (X̃k)

fk0 (X̃k)

)]

≤ E[eλZ−λε+λ log λ−(λ+1) log(λ+1)] , (24)

where X̃k is a random vector distributed according to µk0, Z ≡ log(fk0 (X̃k)/fk1 (X̃k)), and the last
line follows from I(x≥ε)(1− eε−x) ≤ eλ(x−ε)+λ log λ−(λ+1) log(λ+1) for any λ ≥ 0.

Next, we give an upper bound on the moment generating function of Z.

Eµ0 [eλ log(f0(X)/f1(X))] = E[e−λ∆X/σ2
]eλ∆2/2σ2

≤ e(∆2/2σ2)λ2+(∆2/2σ2)λ ,

for any λ ≥ 0. Substituting this into (24) with a choice of λ = σ2

k∆2

(
ε− k∆2

2σ2

)
, which is positive for

ε > k∆2/2σ2, we get

µk0(B)− eεµk1(B) ≤ exp
{

(k∆2/2σ2)λ2 + (k∆2/2σ2)λ− ελ+ λ log λ− (λ+ 1) log(λ+ 1)
}

≤ 1

1 + σ2

k∆2

(
ε− k∆2

2σ2

) exp
{
− σ2

2k∆2

(
ε− k∆2

2σ2

)2}

≤ 1

1 +

√
2σ2

k∆2 log(e+ 1
δ

√
k∆2

σ2 )

1

e+ 1
δ

√
k∆2

σ2

≤ 1√
k∆2

σ2 +
√

2 log(e+ (1/δ)
√
k∆2/σ2)

δ

eδ
√

σ2

k∆2 + 1
,

for our choice of σ2 such that ε ≥ k∆2/(2σ2) +
√

(2k∆2/σ2) log(e+ (1/δ)
√
k∆2/σ2). The right-

hand side is always less than δ.
With σ2 ≥ (4k∆2/ε2) log(e+ (ε/δ)) and σ2 ≥ k∆2/(4ε), this ensures that the above condition

is satisfied. This implies that we only need σ2 = O((k∆2/ε2) log(e+ (ε/δ))).

C Analysis of the geometric mechanism in Theorem 4.4

Theorem 4.4 follows directly from the proof of Theorem 3.3, once the appropriate associations are
made. Consider two databases D0 and D1, and a single query q such that q(D1) = q(D0) + 1.
The geometric mechanism produces two random outputs q(D0) + Z and q(D1) + Z where Z is
distributed accruing to the geometric distribution. Let P0 and P1 denote the distributions of the
random output respectively. For x ≤ q(D0), P0(x) = eεP1(x), and for x > q(D0), eεP0(x) = P1(x).
Then, it is not difficult to see that the privacy region achieved by the geometric mechanism is equal
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to the privacy region achieved by the canonical binary example of X̃0 and X̃1 in (12) and (13)
with δ = 0. This follows from the fact there is a stochastic transition from the pair X̃0 and X̃1

to q(D0) + Z and q(D1) + Z; further, the converse is also true. Hence, from the perspective of
hypothesis testing, those two (pairs of) outcomes are equivalent.

It now follows from the proof of Theorem 3.3 that the k-fold composition privacy region is
exactly the optimal privacy region described in (5) with δ = 0. We also know that this is the
largest possible privacy region achieved by a class of (ε, 0)-differentially private mechanisms.

D Analysis of Johnson-Lindenstrauss mechanism

For cut queries, Johnson-Lindenstrauss mechanism proceeds as follows:

Johnson-Lindenstrauss mechanism for cut queries [BBDS12]

Input: A n-node graph G, parameters ε, δ, η, ν > 0

Output: An approximate Laplacian of G: L̃

1: Set r = 8 log(2/ν)/ν2 and w =
√

32r log(2/δ) log(4r/δ)/ε
2: For every pair of nodes I 6= j, set new weights wi,j = w/n+ (1− w/n)wi,j
3: Randomly draw a matrix N of size r ×

(
n
2

)
, whose entries are i.i.d. samples of N (0, 1)

4: Output L̃ = (1/r)ETGN
TNEG,

where EG is an
(
n
2

)
× n matrix whose (i, j)-th row is

√
wi,j(ei − ej)

Here ei is the standard basis vector with one in the i-th entry. Given this synopsis of the sanitized
graph Laplacian, a cut query q(G,S) returns 1/(1− w/n)(1TS L̃1S − w|S|(n− |S|)/n), where 1S ∈
{0, 1}n is the indicator vector for the set S. If the matrix N is an identity matrix, this returns the
correct cut value of G.

We have the choice of w ∈ R and r ∈ Z to ensure that the resulting mechanism is (ε, δ)-
differentially private, and satisfy (η, τ, ν)-approximation guarantees of (9). We utilize the following
lemma from [BBDS12].

Lemma 1. With the choice of

w =
4

ε0
log(2/δ0) and r =

8 log(2/ν)

η2
,

each row of NEG satisfy (ε0, δ0)-differential privacy, and the resulting Johnson-Lindenstrauss mech-
anism satisfy (η, τ, ν)-approximation guarantee with

τ = 2|S| η w ,

where |S| is the size of the smaller partition S of the cut (S, S̄).

The error bound in (10) follows from choosing

ε0 =
ε√

4r log(2/δ)
and δ0 =

δ

2r
,

and applying Theorem 3.2 to ensure that the resulting mechanism with r-composition of the r rows
of MEG is (ε, δ)-differentially private. Here it is assumed that ε < 1.
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Now, with Theorem 3.3, we do not require ε0 to be as small, which in turn allows us to add
smaller noise w, giving us an improved error bound on τ . Precisely, using Theorem 3.4 it follows
that a choice of

ε0 =
ε√

4r log(e+ 2ε/δ)
and δ0 =

δ

2r
,

suffices to ensure that after r-composition we get (ε, δ)-differential privacy. Resulting noise is
bounded by w ≤ 4

√
4r log(e+ 2ε/δ) log(4r/δ)/ε, which gives the error bound in (11). The proof

follows analogously for the matrix variance queries.
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