
type patch size/
stride

output
size depth #1×1

#3×3
reduce #3×3

double #3×3
reduce

double
#3×3

Pool +proj

convolution* 7×7/2 112×112×64 1
max pool 3×3/2 56×56×64 0
convolution 3×3/1 56×56×192 1 64 192
max pool 3×3/2 28×28×192 0
inception (3a) 28×28×256 3 64 64 64 64 96 avg + 32
inception (3b) 28×28×320 3 64 64 96 64 96 avg + 64
inception (3c) stride 2 28×28×576 3 0 128 160 64 96 max + pass through
inception (4a) 14×14×576 3 224 64 96 96 128 avg + 128
inception (4b) 14×14×576 3 192 96 128 96 128 avg + 128
inception (4c) 14×14×576 3 160 128 160 128 160 avg + 96
inception (4d) 14×14×576 3 96 128 192 160 192 avg + 128
inception (4e) stride 2 14×14×1024 3 0 128 192 192 256 max + pass through
inception (5a) 7×7×1024 3 352 192 320 160 224 avg + 128
inception (5b) 7×7×1024 3 352 192 320 192 224 max + 128
avg pool 7×7/1 1×1×1024 0

Figure 1: Inception architecture

Variant of the Inception Model Used
Figure 1 documents the changes that were performed compared to the architecture with respect to the GoogleNet archictecture. For the
interpretation of this table, please consult [1]. The notable architecture changes compared to the GoogLeNet model include:

• The 5×5 convolutional layers are replaced by two consecutive 3×3 convolutional layers. This increases the maximum depth of
the network by 9 weight layers. Also it increases the number of parameters by 25% and the computational cost is increased by
about 30%.

• The number 28×28 inception modules is increased from 2 to 3.

• Inside the modules, sometimes average, sometimes maximum-pooling is employed. This is indicated in the entries corresponding
to the pooling layers of the table.

• There are no across the board pooling layers between any two Inception modules, but stride-2 convolution/pooling layers are
employed before the filter concatenation in the modules 3c, 4e.

• There is a single side tower on top of the module 4c: it is followed by a 5×5 average pooling with 128 filters with stride 3. This
is followed by a 768 nodes bottleneck layer before the 1000 way linear classifier with softmax loss. The weight of this classifier
in the final objective is 0.4. The weight of the main classifier is 1.

Our model employed separable convolution with depth multiplier 8 on the first convolutional layer. This reduces the computational cost
while increasing the memory consumption at training time.

References
[1] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with

convolutions. CoRR, abs/1409.4842, 2014. 1

1


