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APPENDIX A. REGRET BOUNDS FOR NON-GLM LIKELIHOODS
Recall Proposition [2.1] restated here for convenience:
Proposition. The Bayesian cumulative loss is bounded as
Lpayes(Z1) < Lo(Z1) + KL(Q||Fo)- (A1)

Proof of Theorem[2.]} Fix a choice of 8" and ¢ and write Q = Qg+ 4. Take a second-order Taylor
expansion of f, about z*, yielding

Fu(2) = £y + (=) (5 = 20 4 52— =) ) (= — =),

for some function ¢. Let z = (€x, 1) with 8 ~ Q and let 2* = E[z] = (§"x,1™). Hence,

E-[fy(2)] = fy(z") + f(z") 70 + g, [(z— 2T fl(¢(2) (2 — 27)]

2
* c * *
< fy(z )+§Ez [(z—2%)T(z—27)].
Defining
w é (m7 7"'U717 71)7

n’ times n’ times

we next observe that
(z—2)"(z—2)=w' (6 -6%)(0—-0")"w. (A.2)
Letting ¥ = Var[0], we thus have
E,[(z—2%)" (2 —2")] =w Eg[(6 — 0")(6 — ") "|w

< |lwl3|Ee[(6 — 67)(6 — 67) ]|

= (n'[lz])3 + ")

< (0" + "2
since it is assumed that ||z||; < 1. Noting that Lo(Zr) = >, Eg[fy, (€x¢,¢)] and Le- (Zr) = >, fy, (& x, ¥"),

we have
Te(n' +n")[X]

Lq(Zr) < Lo+ (Zr) + 5 (A.3)
Combining (A.1)) and (A.3]) yields the theorem. O
Proof of Theorem[2.3 Follows as a special case of Theorem by choosing n’ =1 and n” = 0. (]

A.1. Application to Multi-class Logistic Regression. For multi-class logistic regression (MLR)
y€{l,...,K} is one of K classes, the parameters are 6 = {G(k)}szl, and the likelihood is

exp(0W) - x)
Yo exp(0") - x)
In order to apply Theorem we require the following result:

Proposition A.1. Assumption (A1’) holds for the MLR likelihood with ¢ = 1/2.
1

p(y|0,z) = (A.4)



Proof. First note that
fy(2) = 2 + T e, (A.5)

where z; = 8%) . . and hence the Hessian of fy(z) is independent of y:

, Z#I e—"z-1+z71 _621+Zi . _ezliZK
(5 — —em A BT e E L PR
e = 55 2 (A.6)
Applying Gershgorin’s circle theorem, we find that
2e* Y. €%
#1
1y ()] < K72Z27 (A7)
Xk €%F)
where with loss of generality we have applied the theorem to the first row of the Hessian. Defining
a2 e >0and b=}, e* >0, we have |f,(2)] < %. Maximization over the positive orthant
occurs at a = b > 0, so || f,/(2)]| < /2. O

Reasoning similarly to Theorem one can easily prove:

Theorem A.2 (Hierarchical Gaussian regret, multi-class regression). If 0§1:K) ~N(0,%),j=1,...,n,
then using the MLR likelihood guarantees that R(Z,0") is bounded by

milr— * 1 K *(k ol * *
Rfmyer (2,07) & o5 T 107012 + 5305 Yy 67 — 6702

Bayes oy
P (14 K)o T e
2 o2 2 2o )0
where 42 £ Ko2 + o2.
Theorem follows as a special case of Theorem by taking o3 = 0.
APPENDIX B. PROOF OF THEOREM
: _ p(Y | X.0)po(6)
Since pr(0) = %,
pT(Q)}
KL(Prl||Py) = Ep, |In
(PrllFo) = Er, [1n 225
p(Y|X,0)
=Ep,. |[In ——F—+=
%{“mwX>
= Lpayes(Zr) — Lp.(Z71). (B.1)

Combining and (B.1)) with Theorem implies that with probability 1 — §, for all 0,

(Zp)+ B(0) +C(T) +1Inrx'/5'
- .

\L(Pr) — L(Pr, Z7)| < \/;¢L9(ZT) —Lp,

Observing that Lg«(Z1) < Lp,.(ZT), so Le=(Zr) — Lp,.(Z1) < 0, completes the proof.

APPENDIX C. KL DIVERGENCE DERIVATIONS
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C.1. Multivariate Gaussians. Let D; = N(u;,%;),7 = 1,2, where dim(u;) = n. Then

b)) _ _
KL(D1ID) = 3B, 10122 = (o =) 25 o = ) + (o = ) 550 — )|
1 |32 T
— {2 By [ T = )T )+ TS ) (o )]
1 by
— g { TR + B, (1055 0T - 2T+ )] |
1 _
=3 {ln IZ?: n+Ep, [Tr(S;"' (22 — 227 po +,u;u2))]}
1
= i e T - 2+ )|
1

> _ _
= g ] ) - )T )

C.2. Gaussian and t¢-Distribution. Let D; = N(u1,%1) and Do = T, (uz2, X2), where dim(p;) = k.
Then

LW\ k 1 k 1
KL(D,||D3) = ( IE(2 )—|—2lnﬂ'—|—2ln|22|—2ln27re—2ln|21|
+

(14 )55 - ) |
(r((2 m) m:;j:—gl 2¢

s kEDl {m (1 + ;(m — o) 85 (x — m))] .

2

For the first term, if k£ is even, then
F(%)Vk/z vk/2

v+k = v ’

D(5h) ()2

where y2 = y(y — 1)...(y — n + 1) is the descending factorial. Now assume k is odd. By Gautschi’s

inequality, F(a-i(ral)/2) < (2““)1/2. Choosing a = v/2 yields

2a?

F(%)l/k/Q B F(%)UI/QU(k—l)ﬂ (V+1)1/2V(k71)/2

T(4E) (il (eth)E=b/2 = (gy1/2(vthyk=1)/2”

Now, bounding the expectation gives
1 _
o, I (1420~ ) 55 (0 - ) )|
1 _
<t (14 2 Ep, [0~ 1) 757" (o - )]

1 1 B
=In (1 + = Te(3, 5 4 (= p2) Ty (i - uz))
Tr(X; 1)

v+ (p1 — p2) TS5 (i — p2)
1 _ 1 _
<t (14 5 0= )57 - ) )+ THE5)

where the second inequality follows from the fact that In(a + b) < In(a) + b/a. Combining everything
yields

1 _
<In <1 + ;(Hl — p2) "5 (i — Hz)) +

|E2| k
|21| 2

KL(D1||Ds) <InA, + (251%)

v+ k

1 _
+ In <1 + ;(m —p2) "85 — M2)> )
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where

k/2 . .
W if k is even

Au,k = sa1)1/2,(k=1)/2 . .
(()T/lz)(ww if k is odd.
C.3. Gaussian and Laplace. Let D; = N(u,0?) and Dy = Lap(3). Then

KL(D:||D2) = In(28) + lIE:Dl [|lz]] — 1111(27rec72)

g
=1n(28) + uErf <f0> 2\/\/:0 exp{—Q’fQH — %ln(27rea2)
1282 1 22\ 2V2 2 1
< §hr1£2 — |,u|\/1 —exp{—7r/;2} + :ﬁ;aexp{—;ﬂ}] - §ln(7re).

ApPPENDIX D. PROOF OF THEOREM [4.1]
Choose Qg+ 5 = N(0", ¢*I). With Py = T,(0,0%I), we have (Appendix |C.2))

o? v+n)e?  v+n 1 *
KL(Qo ol ) <10 A + im0y — Binge 4 "M O0, m@+mﬁwnﬁ,

92 2 2u o2 2
where
/2 . .
@ lf T 1S even
Ay,n = (3+1)1/2y(71—1)/2 . .
—(Z)l/z(@)(n,wz if n is odd.
Note that if n is even then 2 s < 1 and if n is odd the < . Since VarQew> [6:] = ¢?, we have

Tep?> n 1/+1 n,. o n n(1/+n)¢2 v+n 1 9
Lpayes(Z) <inf Lg«(Z -1 l——— _— In({1+—|6"
Bayes(2) S 1pfLo-(Z) + ==+ gl = 2 2 oty (el

Choosing ¢? = yields the theorem.

ro-n
Tcvo2+(v+n)n
APPENDIX E. MORE ON HIERARCHICAL PRIORS FOR

SHARING STATISTICAL STRENGTH
E.1. Multiple Simultaneous Observations. The Bayesian learner receives K input-output pairs
{(z (k),ygk))}szl at each time step. Each output is predicted using a separate weight vector %), so

the k-th likelihood is p(y |0® - @), k = 1,..., K. Write Z® 2 {(@* 4T Instead of using

independent Gaussian priors on 0(1), ceey O(K), place a prior over the means of the K priors. For each
dimension j =1,...,n, let
pi log ~N(0,03) (E.1)
and
k
Mg, 0% ~N(uj,02), k=1,... K, (E.2)
and write OE-LK) = (9](-1), .. ,9§-K)). Integrating out p; yields
67" | o3, 0” ~ N(0,3), (E:3)
where, with 1 denoting the K x K all-ones matrix,
2
a2 2 24 2 2 a0
The Bayesian learner uses this hlerarchlcal prior to simultaneously predict y( )7 . ,ng). For the fol-

lowing theorem, we must replace (A2)) with an appropriately modified assumption for the simultaneous
prediction task:

||m,§k)||2 <1 forallt,k. (A2)
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Theorem E.1 (Hierarchical Gaussian regret, simultaneous observations). If 05-1:1{) ~ N(0,%), j =
1,...,n, and (A2’) holds in lieu of (A2 M, then R(Z,0%) is bounded by

o2 * *
RUCG s™(2,07) 2 S 0" 4+ 5 5, 0 - 702

Bayes - 2 P
K nk 2 Tco?
00 n nkK, (1_% n co )
2 2 n

+21n<

It is instructive to compare the upper bound given in (E.5) to Zk R yes(Z (k),O*(k)) with prior
variance 5% = o3 4 0%. To do so, we find A(0") = 37, RE,,..(Z), 6+ — RES . (Z,07):
(K - 1)02 K w(k o2 «(k %0
ngo > 1072 = 57or Dok 1O ) — g2

2 o2
nz(1-28)+Tes® | n <[ Kvﬂ 2K>
2K

— —1In
For example, setting o¢ = o, so the correlation p is 1/2, and K = 2, we find that if

(E.5)

where v? & Ko2 + o2.

A(0%) =

nk
— —1n
2

n + Tcs? 2

n+Tcs

16" — 0*)||2 + 657n1
[ I+ 6s7nin (=0

) < 10"V 12 + 16*P||? + 0.863sn,

then the hierarchical model has a smaller regret bound than the non-hierarchical modelﬂ As long as
Tcs® > 2n, the condition becomes 4[|6*() —9*2)12 < [6*V||24||0*?)||2+ Cs2n for some 0 < C' < 0.863.
In this case there are two important observations about the benefits of the hierarchical model. First,
noting that the expected magnitude of ||@*||2 and ||6*® |2 is o2n, as long as [|6*V||2 and ||0*?||? are
only a constant fraction C/4 of their expected magnitudes, the hierarchical model will always have smaller
regret bound. Second, even if the previous condition does not hold, the difference in [|*®) — || must
be significantly larger than the expected magnitudes of [|[@*(]|2 and ||8*(®||2 for the hicrarchical model
to have a larger regret bound than the non-hierarchical model. Thus, the use of the hierarchical model
has potentially significantly reduced regret compared to the non-hierarchical model.

E.2. Two-level Prior. In this section we derive bounds for the two-level prior in the case of sequential
observations. Recall that the prior is

B~ N(0,021) (E.6)
u® ~N(B, 1) s=1,...,8 (E.7)
0" ~ N(u*) | o21) k=1,..., K. (E.8)
Integrating out B, we immediately obtain:
p ~N(0,3,), (E.9)
where ¥, £ 031g + o71. Writing p, = ugl 9 and 0, = 051:K), we have
(g) ~N(0,), »a (Ezfe %:) . (E.10)
Hence,
0 |y ~ NS5, i, S0 — S5, So). (E.11)

Define the matrix P such that Pys = 1{s = s;}. We therefore have ZHQE_lp,i = Pp,; and hence
2;';0 = P, and furthermore Xy — ZIGZngMQ = 031 and hence %y = 031 + PZMPT.
Hence, the prior on 6; is Py = N(0, ). Choose Qg ¢ = N(6;,diag ¢), yielding

Py) = {m o] P Z¢k 10*} (E.12)

KL(Qe; ¢

[T, o7

L For clarity, we have replaced 31n(4/3) with the bound 0.863.
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Straightforward calculations show that the regret is bounded by

n K k)
#\ T y—1 pg* n 1 CT( n
> (0%, +kZ:1§1n (2Tr(29 )+ — >+21n|29|. (E.13)

i=1

E.3. Proof of Theorem First take n = 1, which will later generalize to arbitrary n. Choose
Qo) 4 = N(O* ) $21) and note that

2
1
5] = 0K 2(KoZ +0%) = 0?52y and 7' = ——0 1,4 1.
o2y o
Thus (Appendix |C.1]
z . .
KL(QG*(l K) ¢||P0) {1 |§|Z52|I — K+ ¢2 TI‘(E_I) + (0*(1.K))TE—10*(1.K)}
_51 72/K _5 K(72_08)¢2
o »20 202/K 9 2022
1 & ol
= *(k) 0 x(k) _ px(€)
g 200 2 O 6O
k= k<t

Moving to the case of general n, since Varg,. ,[> Qj(.k)] = K¢?forall j =1,...,n, applying Theorem
gives

TKC¢2 nK o>y K
L a 68 * 71 o o/1c &
Bay 1; o+ ( 9 + 5 H¢202/K B
TLK( ) * 02 * *
P Z 6912+ 505 3™ o) — 6.
T e
Choosing ¢? = %2 yields the theorem.

n(y —02 V+Tco?y

E.4. Proof of Theorem The proof is similar to that for Theorem However, use separate
variances for each source:

QQ*(I:K)7¢ = HQG*(k),¢k = HN(Q*(’C), d)i)
k k

T(k)c¢i
2 )

a 2K .2
C g nK
LBayes(Z) < E Lgx(k)(Z(k)) + E ¢k + — 1 v

The error term from the Taylor expansion used in Theorem is Y,

- 2 o211, ¢2 I, qbk 2
* U * *
MY g D{TAGIas SO
k 1 k<t

no?~?
n(y 702)+T(k)coz 2

Choosing ¢7 = yields the theorem.

APPENDIX F. MORE ON FEATURE SELECTION

F.1. The Bayesian Lasso. For Bayesian model average learner we have:

Theorem F.1 (GLM Bayesian lasso regret). If 6; ~ Lap(6;,8), i =1,...,n, then

S e

2T202B4

(\/2712 + Tenf2m — \/W)z

6

(F.1)
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In the regime of Tcf? < n, ) becomes (approximately)

R(Z,0%) < 2Bzmm{,/ S ;)2,|9;|}+cn

for some constant C' independent of 8 and c. Hence, even for sparse 8, the regret bound is ©(n). The
inequalities used to prove the regret bound are all quite tight, so we conjecture that, up to constant
factors, there is a matching lower bound, as least in the Gaussian regression case.

F.2. Proof of Theorem Apply Theorem[2.2|with Qg » = N(8", $?I). Since po(68) = [, Lap(6;, 3),
we have (see Appendix |C.3)
1
n, 26 ) ) 2v2¢ (6;)
51 F—flnwe —|——Z 9|\/1—ex ¢2}+ \/Fexp ~ 202

<Zln2qbﬂ22—gln(ﬂe)+fn¢ Zm {F( 2 |9*|}

Since Varg,. ,[0i] = ¢,

KL(Qo+,¢l|Fo)

IN

Ted? 2 232
3o i g S (|5 ).
(\/2n2+Tcn62 7\/277,2)2

Choosing ¢? = TTE Ry gives the desired result.

Liayes(Z) < ipf Lo+(Z) +

F.3. Proof of Theorem Fix some 6". If 07 = 0, then let Q- 42 = do, s0 KL(Qpx ¢2||P0) = ln%.
If 07 = 0, then let Qpx 42 = N(0;, $?), so

KL(Qpr ¢2[|Po) = KL(Qp: 42|IN(0,07)) 4+ In 1

The rest of the proof of then closely follows earlier ones. To obtain , we observe that if p = ¢/,
then

and
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