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Abstract

Peak detection is a central problem in genomic
data analysis, and current algorithms for this task
are unsupervised and mostly effective for a single
data type and pattern (e.g. H3K4me3 data with a
sharp peak pattern). We propose PeakSeg, a new
constrained maximum likelihood segmentation
model for peak detection with an efficient infer-
ence algorithm: constrained dynamic program-
ming. We investigate unsupervised and super-
vised learning of penalties for the critical model
selection problem. We show that the supervised
method has state-of-the-art peak detection across
all data sets in a benchmark that includes both
sharp H3K4me3 and broad H3K36me3 patterns.

1. Introduction
1.1. Peak detection in ChIP-seq data

Chromatin immunoprecipitation sequencing (ChIP-seq) is
a biological experiment for genome-wide profiling of hi-
stone modifications and transcription factor binding sites,
with many experimental and computational steps (Bailey
et al., 2013). Briefly, each experiment yields a set of se-
quence reads which are aligned to a reference genome, and
then the number of aligned reads are counted at each ge-
nomic position (Figure 1). Although these read counts can
be interpreted as quantitative data, they are most often in-
terpreted using one of the many available peak detection al-
gorithms (Wilibanks and Facciotti, 2010; Rye et al., 2010;
Szalkowski and Schmid, 2011). A peak detection algo-
rithm is a binary classifier for each genomic position. The
positive class is enriched (peaks) and the negative class is
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background noise. Importantly, peaks and background oc-
cur in long contiguous segments across the genome.

More concretely, a single ChIP-seq profile on a genomic
region with d base pairs can be represented as a vector
y = [ Y1 Yd ] € Zi of counts of aligned se-
quence reads. A peak detection algorithm is a function
¢ : 24 — {0,1} which returns 0 for background noise
and 1 for a peak.

1.2. Unsupervised versus supervised peak detection

There are several different kinds of peak patterns that have
been observed in different ChIP-seq data sets. For exam-
ple, Figure 1 shows H3K4me3 data with a sharp peak pat-
tern, and H3K36me3 data with a broad peak pattern. Cur-
rent state-of-the-art peak detectors from the bioinformat-
ics literature are unsupervised learning algorithms that are
designed for specific patterns. For example, the MACS
algorithm was initially designed for the sharp pattern in
H3K4me3 data (Zhang et al., 2008). Another example is
HMCan (Ashoor et al., 2013), whose authors suggest fixed
pattern-specific mergeDistance parameters: H3K4me3 =
200, H3K36me3 = 1000. In fact, each unsupervised peak
detection algorithm has several numeric parameters, each
with defaults that may or may not be optimal for a particu-
lar data set. Rather than taking an unsupervised model and
default parameters for granted, we propose a new super-
vised peak detection model that can be efficiently trained
to recognize different peak patterns.

In supervised peak detection, there are n labeled samples,
and each sample i € {1,...,n} hasaprofiley; € Zi and a
set of annotated region labels R; (“noPeaks,” “peaks,” etc.
as in Figures 1 and 2). These labels define a non-convex
annotation error function

Ele(yi), Ri] = FPle(yi), Ri] + FN[c(y:), Ri] (1)

which counts the number of false positive (FP) and false
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negative (FN) regions, so it takes values in the non-negative
integers. The goal of learning is to find a peak caller ¢ with
minimal error on some test profiles:

minimize Z Elc(yi), Ri]. )
¢ i€test
More specifically, we suppose that the training data and the
test data exhibit the same pattern type.

1.3. Contributions

The main contribution of this paper is PeakSeg, a peak de-
tection model that can be trained using supervised learning,
and is effective for several pattern types (sharp and broad
peaks). Rather than taking unsupervised model parame-
ters for granted, we propose to train model parameters us-
ing labeled data of the same pattern type. Importantly, and
in contrast to existing unsupervised approaches which can
only be trained using grid search, we propose efficient dis-
crete and convex optimization algorithms for model train-
ing. Our method is the first peak detector with an effi-
cient supervised learning algorithm, and the first method
that achieves state-of-the-art peak detection across several
patterns in the benchmark of Hocking et al. (2014).

A second contribution of this paper is a detailed study of
the peak detection accuracy of several unsupervised and su-
pervised penalty function learning methods. The two main
results are that the oracle penalty of Cleynen and Lebarbier
(2014) is more accurate than asymptotic penalties like the
AIC/BIC, and that supervised penalty learning can be used
to further increase peak detection accuracy.

2. Related work

Our work is based on and inspired by roughly three types of
related work: unsupervised ChIP-seq peak detectors from

the bioinformatics literature, maximum likelihood segmen-
tation models, and criteria for model selection.

2.1. Unsupervised ChIP-seq peak detectors

There are literally dozens of unsupervised algorithms for
peak detection in ChIP-seq data sets, and the bioinformat-
ics literature contains several published comparison stud-
ies (Wilibanks and Facciotti, 2010; Rye et al., 2010; Sza-
Ikowski and Schmid, 2011). Hocking et al. (2014) pro-
posed a benchmark of labeled ChIP-seq data sets, with
two different histone mark types: H3K4me3 (sharp peak
pattern) and H3K36me3 (broad peak pattern). The best
peak detection algorithm in these H3K4me3 data was macs
(Zhang et al., 2008), and the best for H3K36me3 was HM-
Can (Ashoor et al., 2013). Both of these algorithms are
unsupervised, but were calibrated via grid search using the
annotated region labels to choose the best scalar signifi-
cance threshold hyperparameter. Others have proposed to
train the hyperparameters of unsupervised peak detectors
(Micsinai et al., 2012; Kumar et al., 2013). In contrast,
we propose the supervised PeakSeg model which can be
efficiently trained using discrete and convex optimization
algorithms (Sections 4 and 5).

2.2. Maximum likelihood segmentation models

The PeakSeg model we propose in this paper is a con-
strained version of the Poisson segmentation model of
Cleynen et al. (2014). Their unconstrained model can be
computed using a dynamic programming algorithm (DPA)
(Bellman, 1961), or a pruned dynamic programming algo-
rithm (pDPA) (Rigaill, 2010). Both algorithms are guar-
anteed to recover the exact solution to the unconstrained
model, but there are two important differences. The pDPA
is more complicated to implement, but is also computa-
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Figure 1. Different ChIP-seq data types have peaks with different patterns. Positions classified as peaks are drawn as line segments for
a good peak model with zero errors and a bad peak model with 7 incorrect regions. The goal of supervised peak detection is to learn

the data set-specific peak pattern encoded in the annotated region labels ( peakStart /- mean there should be exactly 1 peak

start/end somewhere in the region, and noPeaks means there should be no overlapping peaks).
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tionally faster than the DPA. For segmenting a sequence of
d data points, the pDPA takes on average O(d log d) time
whereas the DPA takes O(d?) time.

Relative to the unconstrained segmentation model of Cley-
nen et al. (2014), our proposed PeakSeg model has an
additional constraint. Rather than searching all possible
change-points to find the most likely model with s seg-
ments, we propose to constrain the possible change-points
to the subset of models that can be interpreted as peaks
(with segment means that change up, down, up, etc, see
Section 3.2).

Due to the simplicity of its implementation, we propose a
constrained dynamic programming algorithm (cDPA) that
requires a small modification to the standard DPA solver.
Although the DPA is an exact solver for the unconstrained
problem, we show that the cDPA is a heuristic that is not
guaranteed to solve the constrained problem (Section 4.3).
However, we show that it is still very useful and accurate in
practice on real data (Section 6).

2.3. Model selection criteria

For each segmentation problem, the proposed cDPA returns
a sequence of models with s € {1,3,..., Smax | segments.
The model selection problem is choosing a sample-specific
number of segments s that maximizes the number of true
positive peak detections while minimizing the number of
false positives. For example, in Figure 2, an ideal model se-
lection procedure would choose s € {3, 5} segments, since
those models have zero errors with respect to the labels (1).

There are many unsupervised penalty functions that select
the number of segments without using the labels. For ex-
ample, the classical AIC (Akaike, 1973) and BIC (Schwarz,
1978) are based on theoretical asymptotic arguments. Sev-
eral attempts have been made to adapt the BIC for segmen-
tation problems (Yao, 1988; Zhang and Siegmund, 2007),
and the non-asymptotic model selection theory of Cleynen
and Lebarbier (2014) suggests another penalty function.

In the supervised setting of this paper, there is a training
data set of segmentation problems i € {1,...,n}, with
labeled regions R; that can be used to compute the annota-
tion error (1). Thus, rather than taking a particular unsuper-
vised penalty function for granted, we can use the training
data to learn the penalty function with minimum error. In
particular in Section 5.3 we propose using the max margin
interval regression algorithm of Rigaill et al. (2013), which
was originally proposed for learning a penalty function for
optimal change-point detection.

3. From unconstrained to constrained
maximum likelihoood segmentation

In this section we discuss Poisson maximum likelihood
segmentation models for count data. First, we discuss an
existing unconstrained model, and then we propose a con-
straint that makes the model suitable for peak detection.

3.1. Unconstrained maximum likelihood segmentation

For a sequence of d data points y &€ Zi to segment, we
fix a maximum number of segments Sy.x < d. The un-
constrained maximum likelihood segmentation model is
defined as the most likely mean vector m € R? with

s €{1,2,..., Smax} piecewise constant segments:
m’(y) = argmin p(m,y) (3)
meR?
such that Segments(m) = s,

where the Poisson loss function is
d

p(m,y) = m; —y;logm;. 4)

j=1

The model complexity is the number of piecewise constant
segments

d

Segments(m) =1+ Z I(mj # m;_1), ®)
j=2

where [ is the indicator function.

Although it is a non-convex optimization problem, the
sequence of segmentations m'(y),..., m*=(y) can be
computed in O(Spaxd?) time using dynamic program-
ming (Bellman, 1961), or in O(smaxdlogd) time using
pruned dynamic programming (Rigaill, 2010; Cleynen
etal., 2014).

We refer to (3) as the “unconstrained” model since m*(y)
is the most likely segmentation of all possible models with
s piecewise constant segments (s — 1 change-points). Sev-
eral unconstrained models are shown on the left of Fig-
ure 2, and for example the second segment of the model
with s = 3 segments appears to capture the peak in the
data. To construct a peak detector ¢, we first define the
peak indicator at base j € {2,...,d} as

j
Pj(m) = sign(my, — my_1), 6)

k=2
where P; (m) = 0 by convention. P;(m) is the cumulative

sum of signs of changes up to point j in the piecewise con-
stant vector m. We define the vector of peak indicators as

P[m| = [ P;(m) P;(m) } . @)
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3.2. PeakSeg: constrained maximum likelihood

In general for the unconstrained model P;(m) € Z, which
is problematic since we want to use it as a peak detector
with binary outputs P;(m) € {0,1}.

For example, if m = [ 1.1 1.1 2 2 4 4 3 ],

with two changes up followed by one change down, then
Pm)=[0 0 1 1 2 2 1].

) € {0,1},

Thus we constrain the peak indicator P;(m
which results in the constrained problem

(PeakSeg)

such that Segments(m) = s,
Vied{l,...,d}, Pj(m) € {0,1}.

m’(y) = argmin p(m,y)
meR4

Note that one must specify the number of segments s or,
equivalently, the number of peaks p = (s — 1)/2. Another
way to interpret the constrained PeakSeg problem is that
the sequence of changes in the segment means m must be-
gin with a positive change and then alternate: up, down, up,
down, ... (and not up, up, down). Thus the even-numbered
segments may be interpreted as peaks P;(m) = 1, and the
odd-numbered segments may be interpreted as background

For example, the good peaks in Figure 1 are the second
and fourth segments of the PeakSeg solution for s = 5
segments.

Figure 2 shows a profile where the constraint is necessary
for the even-numbered segments to be interpreted as peaks.
In particular, it is clear that unconstrained models with s €
{5, 7} segments do not satisfy P;[1h*(y)] € {0, 1} for all
positions 5 € {1,...,d} (since they have up, up, down
changes).

4. Algorithms

In this section we first review the existing standard dynamic
programming algorithm (DPA) for segmentation, then pro-
pose a new constrained dynamic programming algorithm
(cDPA). We also give a counter-example which shows that
the cDPA is a heuristic for solving the PeakSeg optimiza-
tion problem.

4.1. The standard DPA

The unconstrained model (3) can be computed exactly us-
ing a dynamic programming algorithm (DPA). Let ¢,t’ be
indices such that 0 < ¢’ < ¢ < d, and let the interval (¢, t]
denote a segment. Then oy 4 = Z;:t, 41 Y; 1s the cumu-
lative sum and My ) = oy 47/(t — ') is the mean over
the segment (¢',¢]. The optimal Poisson loss (4) for that
segment is

C(er) = 0,4 [1 — log (M) - (®)

Let L, ; be the optimal Poisson loss of the model with s
segments up to data point ¢, and let 7 ; be the correspond-
ing optimal last change. The key idea behind the DPA is
that if we consider an optimal segmentation in s up to ¢
and consider the subsegmentation obtained by discarding
the last segment (7 ¢, ¢] then the resulting segmentation is
also optimal in the sense that its loss is equal to L1 7; , .
This can be formally written as a search for the best change-
point ¢’

Lsr=minLs 14 + 4 )
<t

meaning that the best loss in s segments can be written in
terms of the best loss in s — 1 segments. Using this update
rule iteratively for all s from 2 to Syax and for all ¢ from
2 to d we recover the best segmentations in 1 to Syax in
O(8maxd?) time.

unconstrained model constrained model (PeakSeg cDPA)
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Figure 2. Example profile y (grey), with green horizontal lines for the segmentation mean m, and green vertical lines to emphasize
change-points. For this particular profile y, the unconstrained and contrained models are equivalent th°(y) = m°(y) for s € {1,3}
segments but not for s € {5, 7}. For the constrained models, the even-numbered segments are interpreted as peaks, whose accuracy can
be quantified using the annotated region labels (peaks means there should be at least 1 overlapping peak).
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4.2. cDPA: a simple modification

In order to force the segmentation to obey the constraints of
the PeakSeg model, we introduce a simple modification of
the previous update rule (9). Up to now we considered all
possible change-points ¢’ smaller than the current ¢. Here
we propose to consider only those such that the resulting
segmentation can be interpreted as a succession of peaks.
To make this idea more precise we introduce the notation
&5+ which is the last empirical mean of the best segmenta-
tion in s segments up to ¢.

Then if s is even (peak segment) the mean of segment (¢', ¢|
should be larger than the previous one and in the update rule
we only consider ¢’ such that

t'<t]| &1 < My g (10)

On the contrary, if s is odd (background segment) the mean
of segment (¢, ¢] should be smaller than the previous one
and we consider only ¢’ such that

<t | 5571# > M(t’,t]~ (11D

In the end we get the following algorithm:!

Algorithm 1 Constrained dynamic programming (cDPA)

Require: y € Z%, spox € {2,...,d}.
1: For (s = 2 t0 spax) do and For (¢t = s to d) do

2:  switch (s)
3: caseeven: T <« {t' <t|&_ 1 < My g}
4: case odd: T < {t' <t|&_1v > My g}
5. if T == () then
6: Ly + 00
7:  else
8: Top < t" < argmin L1 4 + ¢y
t'eT
9: £s7t — Esfl,t* + C(t* t]
10: 857,5 — M(t*,t]
11:  endif

12: End for and End for
13: return sm,x X d matrix 7 ; of optimal change points.

Note that we do not need to precompute the d(d — 1)/2
values of c(y 4 and My 4. That is because the optimal cost
¢(w,+) and empirical mean My 4 are simple functions of
O = Z;:t,H y; which can be computed in O(1) given
the cumulative sum of the data-points, Z;Zl y;. Hence the

computational requirements of the cDPA are the same as
the DPA: O(8maxd) memory and O(spmaxd?) time.

Note also that for both the even and odd update the set of
possible changes 1" might very well be empty. This means

"Tmplemented as C code in the R package
https://github.com/tdhock/PeakSegDP

that no segmentation in s segments to point ¢ satistifying
the PeakSeg model constraint was found, so we simply set
ES t = OQ.

Hence the cDPA is not guaranteed to recover a segmen-
tation. In particular for an ever increasing series of data
y; < -+ < yq, for example y = [ 1 2 3 ] the con-
strained optimal segmentation m?(y) is undefined, and the
cDPA thus returns no model.

4.3. The cDPA is a heuristic

In this section we give a simple counter-example which
shows that the cDPA is not guaranteed to recover a valid
PeakSeg model even if there is one. This is mostly a theo-
retical issue, since the cDPA is empirically able to compute
PeakSeg models in the vast majority of real data sets (Sec-
tion 6.1).

The cDPA is a heuristic since it is not guaranteed to com-
pute the PeakSeg model. We illustrate this using the fol-
lowing example withy = [ 1 10 14 13 | € Z4. For
s = 3 segments there are only 3 possible segmentations:
[1][10][14, 13], [1][10, 14][13] and [1, 10][14][13]. If we use
max-likelihood estimates for each segment mean, then only
the last segmentation obeys the PeakSeg model constraints.
However the cDPA will not recover it.

That is because the best segmentation recovered by the
cDPA for s = 2 segments up to point 3 is [1][10, 14].
For s = 3 the cDPA will then consider the segmentations
[1][10][14, 13] and [1][10, 14][13] and discard them since
they do not satisfy the PeakSeg model constraints. The
cDPA will thus report that it didn’t find a valid peak model
in s = 3. However there is one: [1, 10][14][13].

Note that if we run the constrained DP in the backward
direction, y = [ 13 14 10 1 ] € Z%, we would re-
cover the best solution [13][14][10, 1].

S. Penalty function learning methods

For a profile y € Zi and a penalty constant A € R, the
optimal number of segments is

s* A\ y) = p [ (y),y] + h(s,d)A, (12)

arg min
s€{1,3,...,Smax }
where h(s, d) is a model complexity function that is given.
In this paper we consider two types of model complexity i
functions: AIC/BIC and oracle (Table 1).

For each training sample ¢ € {1,...,n}, we have a fea-
ture vector x; € R"™ (details in Section 5.3). We learn
a penalty function f(x;) = log \; that predicts a sample-
specific number of segments s*(\;, y;) with minimum train
error.

After learning a penalty function f on the training data, we
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use the following method to make a prediction on a test
sample with profile y and features x. We compute the pre-
dicted penalty A = exp f(x), the predicted number of seg-
ments § = s*(), y), and the predicted peaks P [m*(y)].

5.1. Unsupervised penalty functions

There are several unsupervised penalty functions that are
based on theoretical assumptions about the data (distribu-
tion, independence) which may or may not be true in prac-
tice. One can use asymptotic arguments to get a penalty
such as the AIC (Akaike, 1973), BIC (Schwarz, 1978), or
mBIC (Zhang and Siegmund, 2007). For example, the AIC
corresponds to a constant penalty of A = exp f(x) = 2
and a model complexity of h(s,d) = s. More recently,
Cleynen and Lebarbier (2014) applied finite sample model
selection theory to obtain a more complicated model com-
plexity function h (Table 1) and a heuristic for computing
the penalty \. All of these penalty functions are completely
unsupervised since they ignore the annotated region labels
in the training data set.

In Table 1 and Figure 3, these models are named *.0 since
they do not learn any parameters using the training data.

5.2. Supervised single-parameter penalty learning

Cleynen and Lebarbier (2014) proposed to use the un-
supervised heuristic of Arlot and Massart (2009) for cali-
brating the penalty constant /3 in equation (6) of their pa-
per. Instead, we propose to use the annotated region labels
as a supervised method for calibrating the penalty constant
(. This corresponds to learning a constant penalty function
exp f(x;) = = \; for all samples i.

More specifically, we defined a grid of 200 S penalty con-
stants evenly spaced on the log scale between 10~2 and
104, then used grid search to select the value that minimizes
the annotation error (1) on the train set.

In Table 1 and Figure 3, these models are named *.1 since
they each learn 1 parameter using the training data.

5.3. Supervised multi-parameter penalty learning

For supervised learning of multi-parameter penalties, we
define sample-specific penalty values log \; = f(x;) =
B+ wTx;, which is an affine function with parameters 3 €
R, w € R"™ that will be learned. As shown in Table 1, we
considered learning models with 3 and 41 parameters:

e 3: we used an m = 2-dimensional feature vector
X; = [ logmaxy; logd; ] where y; € fo_’i is one
sample ¢ of count data to segment. This corresponds
to a penalty \; = e’ (maxy;)*1d}">. We fit the model
by solving the un-regularized interval regression prob-

lem of Rigaill et al. (2013).

e 41: we defined m = 40 features using transforms
(z,log z,log[z 4+ 1],loglog ), where z are features
such as quartiles of y;, mean of y;, and number of
data points d;. We fit the model by solving the L1-
regularized problem of Rigaill et al. (2013).

6. Results: state-of-the-art peak detection for
two patterns

We downloaded 7 benchmark data sets, which included
a total of 12,826 manually annotated regions across
2,752 separate segmentation problems.” Data sets span
two different data/pattern types (sharp H3K4me3, broad
H3K36me3), four annotators (AM, TDH, PGP, XJ), and
two cell type groups (immune, other). Annotators are the
PhD students and post-docs who created the labels via vi-
sual inspection of genome browser plots such as Figure 1.
Each data set contains labels grouped into windows of
nearby regions (from 4 to 30 windows per data set). For
each data set, we performed 6 random splits of windows
into half train, half test. We considered 3 kinds of model
training:?

e Unsupervised uses the default parameters of each al-
gorithm, ignoring the labeled data in the train set.

e Grid search learns a scalar parameter with minimal
annotation error on the train set.

o Interval regression is the multi-parameter penalty
learning algorithm of Rigaill et al. (2013).

6.1. Effectiveness of heuristic cDPA

To run the cDPA on the benchmark data set, we first set
the maximum number of segments sp,x = 19, meaning a
maximum of 9 peaks. Running the cDPA on all of the data
sets in the benchmark took a total of about 6.5 days. For the
largest segmentation problem we considered (d = 263, 169
data points), the cDPA took about 155 minutes.

As discussed in Section 4.3, the cDPA is a heuristic for
computing the PeakSeg model. To assess whether or not
this is a problem in real data sets, we checked for how many
segmentation problems the cDPA returned the complete
sequence of 10 models m!(y), m3(y),...,m'"(y). For
the vast majority of segmentation problems (2738/2752 =
99.5%), the constrained DP returned all 10 models. For
the other 14 problems, the algorithm did not return at least
one of the ten models. Of these 14 problems with missing

http://cbio.ensmp. fr/~thocking/
chip-seg-chunk-db/

3Source code for computing models and benchmarks at
https://github.com/tdhock/PeakSeg-paper
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models, 11 problems still had at least one perfect peak de-
tection model with zero annotation error (1). We concluded
that although the cDPA is technically a heuristic algorithm
for solving PeakSeg, it is still a useful peak detector in the
vast majority of real data sets.

6.2. Comparison of unsupervised methods

In a previous study of this benchmark data set (Hocking
et al., 2014), the macs algorithm was found to be the most
accurate peak detector for H3K4me3 data, whereas hm-
can.broad was best for H3K36me3 data.

Figure 3 shows that in three H3K36me3 data sets (broad
peak pattern), hmcan.broad.0 is clearly more accurate than
macs.0. Furthermore, it is clear that the oracle.0 model is
at least as accurate as hmcan.broad.0.

For the four H3K4me3 data sets (sharp peak pattern), ora-

cle.0 is about as accurate as macs.0, which is clearly more
accurate than hmcan.broad.0.

Finally, the unsupervised AIC/BIC.0 method is clearly the
least accurate of all methods, since it always picks the
model with the most peaks (same as no penalty, for both
AIC and BIC). We also tried the modified BIC of Zhang
and Siegmund (2007), but obtained the same high false pos-
itive rates.

6.3. Supervised learning of 1 parameter increases peak
detection accuracy

Does training a single scalar parameter using grid search
increase peak detection accuracy relative to unsupervised
default models? Yes, in the vast majority of cases. Figure 3
shows that supervised *.1 models have generally lower test
error than the corresponding unsupervised *.0 models.

. name smoothing \; parameters learning algorithm
name model complexity h(s, di) *0 AIC=2, BIC=logd; none unsupervised
AIC/BIC* s ) * 1 8 BeRy grid search
oracle.* s (1 +44/1.1+ log(di/s)) *3 ePdt (maxy, )2 B,wi,ws € R interval regression

* 41 exp(fB + wTx;) B eR,we R regularized int. reg.

Table 1. Penalties for model selection (12) are of the form h(s, d;)A; for data to segment y; € Zﬂlr"’ and models with s segments. Names
show model complexity (s, d;) (left) and number of parameters to learn in \; (right). For example, the AIC/BIC.41 model has a penalty
of sexp(B + wTx;), where the parameters 3, w are learned using regularized interval regression on a training data set.

learning interval grid s :
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Figure 3. Test error of peak detection algorithms on seven labeled data sets (each point shows one of six randomly selected train/test
splits, the shaded circle is the mean test error, and the vertical black line is the mean of the best algorithm for each data set). Data set
names show data/pattern type (e.g. H3K36me3), annotator (AM), and cell types (immune). Colors show how the training data were
used to learn model parameters.
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Among models with only 1 parameter trained using grid
search, it is clear that oracle.l is the most accurate.
It achieves close to state-of-the-art peak detection accu-
racy on every data set. In contrast, the baseline macs.1
is only effective for H3K4me3 data, and the baseline
hmcan.broad.1 is only effective for H3K36me3 data.

6.4. Supervised learning of several parameters can
further increase peak detection accuracy

Does supervised multi-parameter model training improve
over single-parameter models? A little, if there are suffi-
cient training data. Figure 3 shows that multi-parameter
models (*.3 and *.41) tend to be at least as accurate as the
corresponding single-parameter *.1 model. The only ex-
ceptions are the H3K36me3_TDH data sets, for which there
are few training data (only 2 groups of labeled regions per
train set). For these data, the *.3 and *.41 models some-
times overfit relative to the corresponding *.1 model.

7. Discussion
7.1. Supervised versus unsupervised learning

Baseline unsupervised peak detectors in the bioinformat-
ics literature are each designed to recognize a specific peak
pattern. For example we observed that the macs algorithm
was effective for the sharp peak pattern in H3K4me3 data,
and the hmcan.broad algorithm was effective for the broad
peak pattern in H3K36me3.

In contrast, we propose a supervised learning approach for
peak detection. Rather than designing a specific model for
each pattern, we propose to use a database of labels with a
general peak detector that can be trained to recognize dif-
ferent patterns. We showed that supervised penalty learn-
ing with the PeakSeg model can be used for accurate peak
detection in both H3K4me3 and H3K36me3 data.

In general, it is clear that the supervised learning meth-
ods were more accurate than their unsupervised counter-
parts. The only exception is that sometimes when there are
few training data, the multi-parameter supervised learning
methods overfit (Figure 3, H3K36me _TDH data sets). So
when there are very few training data, we recommend us-
ing the oracle.1 supervised model which avoids overfitting
by learning just 1 parameter using grid search. However,
when there are many training data, we would recommend
using a multi-parameter supervised learning method such
as oracle.41.

7.2. Oracle penalty is more accurate than AIC/BIC

We tested the peak detection accuracy of two types of
model complexity h functions (Table 1). Among unsuper-
vised models, Figure 3 shows that the oracle.0 model is

always more accurate than the AIC/BIC.0 model. For the
supervised 1-parameter models, it is also clear that oracle.1
is more accurate than AIC/BIC.1. However, we obtained
similar test error rates when we used multi-parameter su-
pervised learning with AIC/BIC and oracle penalties.

In general, these data provide convincing evidence that the
model selection theory of Cleynen and Lebarbier (2014)
is useful for accurate peak detection in real ChIP-seq data
sets, especially when combined with supervised penalty
learning methods.

8. Conclusions and future work

We proposed the PeakSeg constrained maximum likeli-
hood segmentation model as a peak detector in ChIP-seq
count data. We proposed a constrained dynamic program-
ming algorithm that efficiently computes a sequence of
segmentations that satisfy the PeakSeg constraint. Fur-
thermore, we proposed to use annotated region labels as
supervision in a penalty learning problem. Whereas un-
supervised baseline methods are only effective for a sin-
gle data/pattern type, our approach yields state-of-the-art
peak detection in a benchmark that includes both sharp
H3K4me3 and broad H3K36me3 data/pattern types.

There are several modeling choices that could be explored
to increase peak detection accuracy. First, we could replace
the Poisson loss of the PeakSeg model with a negative bi-
nomial loss (Cleynen and Lebarbier, 2014), which has an
additional variance parameter. Also, a more accurate model
could possibly be obtained by engineering better features
X;, learning a non-linear smoothing function f, or learn-
ing model complexity functions h. For example the oracle
penalty of Cleynen and Lebarbier (2014) has an assumed
constant of 1.1 (Table 1), which could be learned instead.
Finally, we could explore convex relaxations similar to the
Fused Lasso (Hoefling, 2009), by replacing the sign func-
tion with the positive part function in (6).

The current implementation of PeakSeg using the cDPA
has several limitations. First, the O(d?) time complexity
for d data points could be easily reduced to O(dlogd) by
using a constrained version of pruned dynamic program-
ming (Rigaill, 2010; Cleynen et al., 2014). Second, we
showed that the cDPA is a heuristic for computing the
PeakSeg model (Section 4.3). On one hand, we would like
to know what optimization problem the cDPA solves. On
the other hand, we would like an efficient algorithm that
exactly computes the PeakSeg model.

Finally, we are interested in jointly segmenting multiple
samples at the same time, since peaks are often observed
in the same genomic location across several samples of the
same cell type.
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