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1 Derivation of the gradients
In this section we derive the gradient of the logarithm of the marginal likelihood, that is, logZ, with respect to the
means and variances of the network weights in the Gaussian approximation q. In traditional backpropagation we
have, for each neuron j, one variable δj containing the gradient of the network error with respect to the input or
activation for neuron j. In PBP, the corresponding algorithm is very similar, with the difference that we now have
two variables for each neuron j instead of only one. We have one variable δmj that contains the gradient of logZ
with respect to the mean of the activation for neuron j. Additionally, there is another variable δvj that contains the
gradient of logZ with respect to the variance of the activation for neuron j.

The mean and variance of the output of unit j are defined as mz
j and vzj , respectively. The mean and variance

of the activation or input for unit j are defined as ma
j and vaj , respectively. We have that, becauseof the ReLU

activation function,

mz
j = Φ(αj)

[
ma
j +

√
vaj γj

]
, (1)

vzj = mz
j

[
ma
j +

√
vaj γj

]
Φ(−αj) + Φ(αj)v

a
j (1− γ2j − γjαj) , (2)

where γj = φ(αj)/Φ(αj), αj = ma
j /
√
vaj and φ and Φ denote the standard Gaussian pdf and cdf. For the single

neuron in the last layer we have that mz
j = ma

j and vzj = vaj .
We have that ma

j and vaj are given by

ma
j =

1√
|I(j)|

∑
i∈I(j)

mz
im

w
j,i , (3)

vaj =
1

|I(j)|
∑
i∈I(j)

{
[mz

i ]
2vwj,i + [vzi ][mw

j,i]
2 + vzi v

w
j,i

}
, (4)

where I(j) is the set of neurons whose output is the input to neuron j, mw
i,j and vwi,j are the mean and variances of

the weight connecting neurons i and j. Therefore,

∂ma
j

∂mz
i

=
1√
|I(j)|

mw
j,i ,

∂ma
j

∂vzi
= 0 , (5)

∂vaj
∂mz

i

=
2mz

i v
w
j,i

|I(j)|
,

∂vaj
∂vzi

=
[mw

j,i]
2 + vwj,i
|I(j)|

, (6)

and
∂ma

i

∂mw
i,j

=
mz
j√
|I(i)|

,
∂ma

i

∂vwi,j
= 0 , (7)

∂vai
∂mw

i,j

=
2vzjm

w
i,j

|I(i)|
,

∂vai
∂vwi,j

=
[mz

j ]
2 + vzj
|I(i)|

, (8)
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We now compute the gradient of γj and αj with respect to ma
j and vaj :

∂αj
∂ma

j

=
1√
vaj
,

∂αj
∂vaj

=
ma
j

2vaj
√
vaj
, (9)

∂γj
∂ma

j

= −
[
γjαj + γ2j

] ∂αj
∂ma

j

,
∂γj
∂vaj

= −
[
γjαj + γ2j

] ∂αj
∂vaj

. (10)

Then we obtain

∂mz
j

∂ma
j

=
∂αj
∂ma

j

φ(αj)
[
ma
j +

√
vaj γj

]
+ Φ(αj)

[
1 +

√
vaj

∂γj
∂ma

j

]
, (11)

∂mz
j

∂vaj
=
∂αj
∂vaj

φ(αj)
[
ma
j +

√
vaj γj

]
+ Φ(αj)

[
γj

2
√
vaj

+
√
vaj
∂γj
∂vaj

]
, (12)

∂vzj
∂ma

j

=
∂mz

j

∂ma
j

[
ma
j +

√
vaj γj

]
Φ(−αj) +mz

j

{[
1 +

√
vaj

∂γj
∂ma

j

]
Φ(−αj)−

[
ma
j +

√
vaj γj

]
φ(αj)

∂αj
∂ma

j

}
+

φ(αj)
∂αj
∂ma

j

vaj (1− γ2j − γjαj)− Φ(αj)v
a
j

{
2γj

∂γj
∂ma

j

+
∂γj
∂ma

j

αj + γj
∂αj
∂ma

j

}
, (13)

∂vzj
∂vaj

=
∂mz

j

∂vaj

[
ma
j +

√
vaj γj

]
Φ(−αj)+

mz
j

{[
1

2
√
vaj
γj +

∂γj
∂vaj

√
vaj

]
Φ(−αj)−

[
ma
j +

√
vaj γj

]
φ(αj)

∂αj
∂vaj

}
+

φ(αj)
∂αj
∂vaj

vaj (1− γ2j − γjαj)+

Φ(αj)

{
(1− γ2j − γjαj) + vaj

{
−2γj

∂γj
∂vaj
− ∂γj
∂vaj

αj − γj
∂αj
∂vaj

)

}}
. (14)

We now define the variables δmj and δvj to be

δmj =
∂ logZ

∂ma
j

=
∑

k∈O(j)

{
∂ logZ

∂ma
k

∂ma
k

∂ma
j

+
∂ logZ

∂vak

∂vak
∂ma

j

}
, (15)

δvj =
∂ logZ

∂vaj
=

∑
k∈O(j)

{
∂ logZ

∂ma
k

∂ma
k

∂vaj
+
∂ logZ

∂vak

∂vak
∂vaj

}
, (16)

where the sum is over each neuron k to which neuron j sends signals. The above rules can be recursively written
as follows:

δmj =
∂ logZ

∂ma
j

=
∑

k∈O(j)

{
δmk

∂ma
k

∂ma
j

+ δvk
∂vak
∂ma

j

}
, (17)

δvj =
∂ logZ

∂vaj
=

∑
k∈O(j)

{
δmk

∂ma
k

∂vaj
+ δvk

∂vak
∂vaj

}
, (18)

We can then write the required terms ∂ma
k

∂ma
j

, ∂vak
∂ma

j
, ∂m

a
k

∂vaj
and ∂vak

∂vaj
as follows:

∂ma
k

∂ma
j

=
∂ma

k

∂mz
j

∂mz
j

∂ma
j

+
∂ma

k

∂vzj

∂vzj
∂ma

j

,
∂vak
∂ma

j

=
∂vak
∂mz

j

∂mz
j

∂ma
j

+
∂vak
∂vzj

∂vzj
∂ma

j

, (19)

∂ma
k

∂vaj
=
∂ma

k

∂mz
j

∂mz
j

∂vaj
+
∂ma

k

∂vzj

∂vzj
∂vaj

,
∂vak
∂vaj

=
∂vak
∂mz

j

∂mz
j

∂vaj
+
∂vak
∂vzj

∂vzj
∂vaj

. (20)

2



Table 1: Average Test RMSE in the experiments with deep neural networks.
Dataset BP1 BP2 BP3 BP4 PBP1 PBP2 PBP3 PBP4

Boston 3.228±0.1951 3.185±0.2365 3.019±0.1848 2.874±0.1570 3.014±0.1800 2.795±0.1590 2.938±0.1645 3.088±0.1519
Concrete 5.977±0.2207 5.396±0.1273 5.568±0.1271 5.530±0.1390 5.667±0.0933 5.241±0.1164 5.732±0.1075 5.956±0.1597
Energy 1.185±0.1242 0.676±0.0367 0.628±0.0278 0.667±0.0321 1.804±0.0481 0.903±0.0482 1.237±0.0592 1.176±0.0552
Kin8nm 0.091±0.0015 0.073±0.0009 0.071±0.0006 0.071±0.0009 0.098±0.0007 0.071±0.0005 0.073±0.0007 0.075±0.0008
Naval 0.001±0.0001 0.001±0.0000 0.001±0.0001 0.001±0.0001 0.006±0.0000 0.003±0.0001 0.010±0.0013 0.004±0.0011
Power Plant 4.182±0.0402 4.220±0.0744 4.112±0.0378 4.184±0.0591 4.124±0.0345 4.028±0.0347 4.065±0.0382 4.075±0.0366
Protein 4.539±0.0288 4.188±0.0313 4.014±0.0326 3.960±0.0110 4.688±0.0115 4.251±0.0153 4.094±0.0285 3.970±0.0376
Wine 0.645±0.0098 0.651±0.0108 0.652±0.0101 0.650±0.0158 0.635±0.0079 0.643±0.0077 0.641±0.0086 0.637±0.0079
Yacht 1.182±0.1645 1.542±0.1920 1.107±0.0863 1.265±0.1287 1.015±0.0542 0.848±0.0495 0.893±0.0991 1.711±0.2288
Year 8.932±NA 8.976±NA 8.933±NA 9.045±NA 8.869± NA 8.918±NA 8.874±NA 8.934±NA

Finally, we have that

∂ logZ

∂mw
i,j

= δmj
∂ma

i

∂mw
i,j

+ δvj
∂vai
∂mw

i,j

, (21)

∂ logZ

∂vwi,j
= δmj

∂ma
i

∂vwi,j
+ δvj

∂vai
∂vwi,j

. (22)

2 Results with neural networks including more than one hidden layer
We repeated the experiments from Section 5.1 in the main document for the methods BP and PBP, using neural
networks with 2, 3 and 4 hidden layers. We used networks with 50 units in each hidden layer, except in the datasets
Year and Protein, where we used 100. Table 1 shows the average test RMSE and the corresponding standard errors
obtained by PBPx and BPx, where x is the number of hidden layers in the network. PBP has the best overall
predictive performance, with PBP2 achieving the best results in 5 datasest. Note that the optimal number of hidden
layers in PBP is problem dependent. In datasets such as Wine and Year one single hidden layer is optimal, while
in Protein we find that 4 hidden layers is better.

3 Error in the second approximation in equation (12) in the main text
In this section we evaluate the error in the second approximation performed in equation (12) in the main document.
This approximation consists in replacing the Student’s t density with a Gaussian density that has the same mean
and variance. This approximation becomes more and more accurate as the degrees of freedom in the Student’s t
density increase. This will often be the case as we iterate over the data and we reduce our uncertainty on the value
of the noise parameter γ. We evaluated the relative error in logZ caused by this approximation as PBP iterates over
the data of the Boston Housing dataset in the experiments of Section 5.1 in the main document. The left plot in
Figure 1 shows the error during the first 100 iterations of PBP over the individual datapoints. The right plot shows
the error during the last 100 iterations of the method. We can see that the error is very small in the second case. In
particular, at this stage we are highly confident on the value of the noise parameter γ and the parameters αγ and
βγ in the posterior approximation take relatively high values. This increases the number of degrees of freedom of
the Student’s t density in equation (12), what improves the quality of the Gaussian approximation.

4 List of approximations
In this section we list all the approximations performed by the method PBP. The list of approximations is

• We use expectation propagation (EP) to adjust a parametric approximation, given by equation (8) in the main
document, to the exact posterior distribution, given by equation (3) in the main document.

• In our implementation of EP, we refine the parameters αγ , βγ , αλ and βλ of the posterior approximation by
matching the first and second moments of λ and γ. The KL divergence would be minimized by matching the
expectation of the sufficient statistics of a Gamma distribution, but this does not have an analytical solution.
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Figure 1: Relative error in the approximation of logZ as PBP iterates over the data of the Boston Housing dataset.
in the experiments of Section 5.1 of the main paper. Left, relative error during the first 100 iterations of the
method over the individual datapoints. Right, relative error during the last 100 iterations of the method. We can
see that the error is very small during the last iterations. At this stage we are highly confident on the value of the
noise parameter γ, the parameters αγ and βγ in the posterior approximation take relatively high values and the
degrees of freedom of the Student’s t density in equation (12) are high, what increases the quality of the Gaussian
approximation.

• We approximate the normalization constants in equations (11) and (12) of the main document by replacing
a Student’s t density with a Gaussian density that has the same mean and variance.

• EP requires to keep in memory one approximate factor for each exact factor in the numerator of the posterior
distribution. With massive data the number of exact likelihood factors is very large and keeping in memory
all the corresponding approximate factors is inpractical. To avoid this, we do not keep these approximate
factors in memory and we do not remove them from the current approximation before processing each
datapoint. This is equivalent to doing multiple ADF passes through the data, treating each likelihood factor
as a novel example. A disadvantage of this approach is that it can lead to underestimation of the posterior
variance when too many iterations are done over the data.

5 Derivations of equations (9) and (10) in the main text
Let the Gamma density be defined as Gamma(x|α, β) = βαxα−1 exp{−xβ}Γ(α)−1. We denote the normalization
constant of f(x)Gamma(x|α, β) by H(α, β). In particular,

H(α, β) =

∫
f(x)Gamma(x|α, β) dx . (23)

Note that we explicitly write H as function of α and β. Then we have that the first and second moments of the
normalized version of f(x)Gamma(x|α, β) are given by

1

H(α, β)

∫
xf(x)Gamma(x|α, β) dx =

H(α+ 1, β)α

H(α, β)β
, (24)

1

H(α, β)

∫
x2Gamma(x|α, β) dx =

H(α+ 2, β)α(α+ 1)

H(α, β)β2
. (25)
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Thus, each moment can be easily approximated given a procedure to approximate the normalization constant
H(α, β). For this, we only have to substitute H(α, β), H(α + 1, β) and H(α + 2, β) in the previous expressions
with their corresponding approximations. Note that the mean and variance of Gamma(x|α, β) are given by α/β
and α/β2, respectively. We can then find the new parameters αnew and βnew of a Gamma distribution that has the
same mean and variance as the normalized version of f(x)Gamma(x|α, β) by solving the system of equations
given by

αnew

βnew =
H(α+ 1, β)α

H(α, β)β
,

αnew

[βnew]2
=
H(α+ 2, β)α(α+ 1)

H(α, β)β2
−
{
H(α+ 1, β)α

H(α, β)β

}2

, (26)

Let Z = H(α, β), Z1 = H(α+ 1, β) and Z2 = H(α+ 2, β). Then

αnew =
[
ZZ2Z

−2
1 (α+1)/α− 1.0

]−1
, (27)

βnew =
[
Z2Z

−1
1 (α+1)/β − Z1Z

−1α/β
]−1

. (28)

6 EP updates for the approximate factors corresponding to the prior
The only prior factors that need to be processed multiple times using expectation propagation are the factors in
equation (2) in the main document. The other Gamma priors on λ and γ have the same functional form as the
posterior approximation q. This means that they need to be incorporated only once into q since any removal and
posterior re-incorporation of these factors would not produce any improvement in q.

We re-write here the expression for the prior factors than need to be processed multiple times, that is, equation
(2) from the main document:

p(W|λ) =

L∏
l=1

Vl∏
i=1

Vl−1+1∏
j=1

N (wij,l|0, λ−1) . (29)

We also re-write here the expression for the posterior approximation q:

q(W, γ, λ) =

 L∏
l=1

Vl∏
i=1

Vl−1+1∏
j=1

N (wij,l|mij,l, vij,l)

Gamma(γ|αγ , βγ)Gamma(λ|αλ, βλ) . (30)

We denote each exact factor in (29) by

fij,l(wij,l, λ) = N (wij,l|0, λ−1) . (31)

Each of these exact factors is approximated by a corresponding approximate factor given by

f̃ij,l(wij,l, λ) = N (wij,l|m̃ij,l, ṽij,l)Gamma(λ|α̃ij,l, β̃ij,l) , (32)

Initialliy all the f̃ij,l are uniform, that is, m̃ij,l = 0, ṽij,l =∞, α̃ij,l = 1 and β̃ij,l = 0. EP starts to incorporate all
the fij,l into q once it has already incorporated the Gamma priors for λ and γ. The first time fij,l is incorporated
into q we update f̃ij,l and q as follows:

m̃ij,l = 0 , ṽij,l = βλ0 /(α
λ
0 − 1) , (33)

mij,l = 0 , vij,l = βλ0 /(α
λ
0 − 1) , (34)

where αλ0 and βλ0 are the parameters of the Gamma prior on λ. These rules guarantee the matching of means
and variances on wij,l after approximating the Student’s t density in equation (11) in the main document with a
Gaussian that has the same mean and variance.
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On successive iterations, we refine f̃ij,l by first removing this approximate factor from q to obtain a cavity
distribution. This cavity is computed as the ratio of q and f̃ij,l. The cavity marginal distribuion on wij,l and λ is
therefore

q\ij,l(wij,l, λ) = N (wij,l|m\ij,l, v\ij,l)Gamma(λ|α\ij,lλ , β
\ij,l
λ ) , (35)

where

v\ij,l =
[
v−1ij,l − ṽ

−1
ij,l

]−1
, m\ij,l = v\ij,l

[
mij,lv

−1
ij,l − m̃ij,lṽ

−1
ij,l

]
, (36)

α
\ij,l
λ = αλ − α̃ij,l + 1 , β

\ij,l
λ = βλ − β̃ij,l , (37)

After this, we update the parameters of q to match moments between q(wij,l, λ) and the normalized version of
f(wij,l, λ)q\ij,l(wij,l, λ). For this, we use expression (11) in the main text to approximate the normalization
constant of f(wij,l, λ)q\ij,l(wij,l, λ). This last step is obtained by replacing q in equation (11) in the main text
with the cavity distribution. Equations (6), (7), (9) and (10) from the main document are then used to obtain the
new parameters mij,l, vij,l, αλ and βλ for the posterior aproximation. Finally, we update the parameters for the
approximate factor f̃ij,l using

ṽij,l =
[
v−1ij,l − [v\ij,l]−1

]−1
, m̃ij,l = ṽij,l

[
mij,lv

−1
ij,l −m

\ij,l[v\ij,l]−1
]
, (38)

α̃ij,l = αλ − α\ij,lλ + 1 , β̃ij,l = βλ − β\ij,lλ . (39)
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