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1 Description of Expectation Propagation

PESC computes a Gaussian approximation to the NFCPD (main text, Eq. (11)) using Expectation Propagation
(EP) (Minka, 2001). EP is a method for approximating a product of factors (often a single prior factor and multiple
likelihood factors) with a tractable distribution, for example a Gaussian. EP generates a Gaussian approximation
by approximating each individual factor with a Gaussian. The product all these Gaussians results in a single
Gaussian distribution that approximates the product of all the exact factors. This is in contrast to the Laplace
approximation which fits a single Gaussian distribution to the whole posterior. EP can be intuitively understood
as fitting the individual Gaussian approximations by minimizing the Kullback-Leibler (KL) divergences between
each exact factor and its corresponding Gaussian approximation. This would correspond to matching first and
second moments between exact and approximate factors. However, EP does this moment matching in the context
of all the other approximate factors, since we are ultimately interested in having a good approximation in regions
where the overall posterior probability is high. Concretely, assume we wish to approximate the distribution

N
q(x) = [] an()
n=1
with the approximate distribution
N
ix) =[] an(x), (1)
n=1

where each ¢, (x) is Gaussian with specific parameters. Consider now that we wish to tune the parameters of a
particular approximate factor g, (x). Then, we define the cavity distribution §\"(x) as
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Instead of matching the moments of ¢, (x) and ¢, (x), EP matches the moments (minimizes the KL divergence)
of ¢,,(x)G\"(x) and G, (x)G\"(x) = ¢(x). This causes the approximation quality to be higher in places where the

* Authors contributed equally.



entire distribution §(x) is high, at the expense of approximation quality in less relevant regions where ¢(x) is close

to zero. To compute the moments of ¢, (x)G'\"(x) we use Egs. (5.12) and (5.13) in Minka (2001), which give the

first and second moments of a distribution p(x)N (x| m, V) in terms of the derivatives of its log partition function.
Thus, given some initial value for the parameters of all the g, (x), the steps performed by EP are

1. Choose an n.
2. Compute the cavity distribution §\"(x) given by Eq. (2) using the formula for dividing Gaussians.

3. Compute the first and second moments of ¢, (x)§\"(x) using Egs. (5.12) and (5.13) in Minka (2001). This
yields an updated Gaussian approximation ¢(x) to ¢(x) with mean and variance given by these moments.

4. Update g, (x) as the ratio between G(x) and §\"(x), using the formula for dividing Gaussians.
5. Repeat steps 1 to 4 until convergence.

The EP updates for all the ¢, (x) maybe be done in parallel by performing steps 1 to 4 forn = 1,..., N using the
same G(x) for each n. After his, the new ¢(x) is computed, according to Eq. (1), as the product of all the newly
updated ¢, (x). For these latter computations, one uses the formula for multiplying Gaussians.

2 The Gaussian approximation to the NFCPD

In this section we fill in the details of computing a Gaussian approximation to ¢(f, cy, ..., ck), given by Eq. (12)
of the main text. Recall that f = (f(x.), f(x1),..., f(xn)) and ¢ = (c(x4), c(x1),...,c(X,)), where k =
1,..., K, and the first element in these vectors is accessed with the index number 0 and the last one with the index
number n. The expression for ¢(f, ¢y, ..., cx) can be written as

1

K
g(f,ci,... cx) = Z—qN(f|m£red,Vgred) [HJ\/’(cMm;fed,V;r’;d)] x
k=1

N K K
H [{ e[ck,n]} O[fn — fo] + {1 - H @[Ck,n]}‘| ) (3)
n=1 k=1 k=1

K
l O[ck,0)
k=1

where mgred and Vgred are the mean and covariance matrix of the posterior distribution of f given the data in D/

and my},; and Vi are the mean and covariance matrix of the posterior distribution of ¢, given the data in Dk, In

particular, from Rasmussen & Williams (2006) Egs. 2.22-2.24, we have that

my, = KK+~ ly/,

V;red = KI,* - KI(Kf + V]%H)il[KI]T )
where K7 is an (N + 1) x N matrix with the prior cross-covariances between elements of f and fi, ..., f, and
K/, isan (N + 1) x (N + 1) matrix with the prior covariances between elements of f and vy is the standard
deviation of the additive Gaussian noise in the evaluations of f. Similarly, we have that

k(pck 2T\ —1_ k
my, = KI(K"+yD) 'y,
k k(yek 21\ —1 gk T
V;rked = K*,* - K* (K + Vk]l) [K*] )
where K’j isan (N 4 1) x N matrix with the prior cross-covariances between elements of cj and Ch1s-+-1Chn

and K% isan (N 4 1) x (N + 1) matrix containing the prior covariances between the elements of ¢ and vy is
the standard deviation of the additive Gaussian noise in the evaluations of c¢;. We will refer to the non-Gaussian
factors in Eq. (3) as

K K
hn(fnavacl,na .. '7Ck,n) = {H © [Ck,n]} S [.fn - fO} + {1 - H S} [Ck,n}} 4)
k=1

k=1



(this is called ¥(x,,,X,,f,c1,...,ck) in the main text) and

9k (cr,0) = Olero], ©)

such that Eq. (3) can be written as

K
Q(fa C1,--- 7CK) X N(f ‘ mgred’ V;red) [H N(Ck | m;rked7 Vl():rked)‘|
k=1

N K
[H hn(fnaf0acl,na~'-,ck,n)‘| l]:[ gk(Ck,o)] . (6)
k=1

n=1

We then approximate the exact non-Gaussian factors by, (fy, fo,¢1.n,-- -, Ckn) and gx(ck,0) with corresponding
Gaussian approximate factors h, ( fn, fo, ¢1.ns - - - Ck,n) and gx(ck o), respectively. By the assumed independence
of the objective and constraints, these approximate factors take the form

Bn(ffu an Clny--- ack,n) X exp {_;[fn fO]Ahn [fn fO]T + [fn fO]bhn}

s 1
H exp {—2%”6?” + bhan,n} @)
k=1
and
] 1,
gr(cr,0) o< exp ~5%x%%k,0 +bg.Cro ¢ s ®)

where Ay, , by, ,an,,bn,, a4, and by, are the natural parameters of the respective Gaussian distributions.
The right-hand side of Eq. (6) is then approximated by

K
Q(f,er, o) <N (Flmlg, Vi) [HN (e m;fed,vg:ed)]

k=1
N K
[H hn(fn7f0acl7n7~--7ck7n)] [H gk(@«:ﬁ)] . (9)
n=1 k=1
Because the ﬁn( frs fosCins- -+, Cln) and Gg(ck o) are Gaussian, they can be combined with the Gaussian terms
in the first line of Eq. (9) and written as
K
q(f,c1,...,cx) o< N(f[m, V¥) [H Ney, | m°k,V°k>] : (10)
k=1
where, by applying the formula for products of Gaussians, we obtain
-1 =t -1 .
Vf = [(Vgred) + Vf} ’ mf = Vf [(Vgred) mgred + mf] )
—-1 . -1 -1 .
Ver = [(V;@d) - Vc’“} : m® = Vo [(V;;;d) My + mﬂ , (11)

with the following definitions for V, mf, V*, and m®*:
e Vfisan (N 4 1) x (N + 1) precision matrix with entries given by

- i}f = [Ahn]Ll forn = 1’ o "N’

~f _~f _
- Von = Uno = [Ahn]1,2 forn=1,...,N,



- N
= US,O = Zn:l [Ahn]2,2’

— and all other entries are zero.
e mf is an (N + 1)-dimensional vector with entries given by
- my, = [by,], forn=1,...,N,
= 25:1 [bn,]o-

e Vetisa (N + 1) x (N + 1) diagonal precision matrix with entries given by

N
o I

— %k — —
ok, = ap, forn=1,..., N,
5Ck

~ Yo,0 = Cgs-

e m° is an (N + 1)-dimensional vector such that

o _

- mgk =bp, forn=1,...,N,
ok

- my* = by,.

In the next section we explain how to actually obtain the values of Ay, , by, ,an,, by, ,ag, and by, by running EP.

3 The EP approximation to /,, and g;

In this section we explain how to iteratively refine the approximate Gaussian factors h., and gy, with EP.

3.1 EP update operations for B

EP adjusts each ha, by minimizing the KL divergence between

hn(fn7 f07 Cliny---s Ck7n>q\n(f7 Ciy... 7CK) (12)
and

iLTL(fTLz f07 Clnye--y Ck,n)(j\n(fa [ P 7CK) ) (13)
where we define the cavity distribution §\"(f, ¢y, ..., cx) as

q(f
q\n(facla"';cK): 7 q( 701’ 7CK) .
hn(fn7 .fo; Cl,nv e 7Ck,n)

Because ¢(f,cy,...,cx) and izn(fn, fo,¢1m, ..., Cky) are both Gaussian, G\"(f,cy1,...,ck) is also Gaussian.
If we marginalize out all variables except those which h,, depends on, namely f,,, fo,¢1.n,- .-,k n, then we have

that G\"(fn, fo, Cins - - - » Ck.n) takes the form

K
0V (fas for €1 cxn) N (ol el VI [H/\/ (ck7n|m3f(’)’lh,vzlj(’)]a)] . a4
k=1
where, by applying the formula for dividing Gaussians, we obtain
-1 —1
Vi ={Vh..] - A} (15)
fnsfo _ fnsfi f -1 f
m, 5 = Vi id {[an,fo} mp . — bhn} ) (16)
Ck,n _ c, 171 hnp -1
Un,old - [Un,n] - ack,n ) (17)
Ck,n Cck Cr -1 -1
Motaia = Lt (V] = bnap (18)



where V?m 1, 18 the 2 x 2 covariance matrix obtained by taking the entries corresponding to f,, and fy from Vi,
and mf[m #, 18 the corresponding 2-dimensional mean vector. Similarly, v*, is the variance for ¢y, in ¢ and mzk
is the corresponding mean.

To minimize the KL divergence between Eqs. (12) and (13), we match the first and second moments of these
two distributions. The moments of Eq. (12) can be obtained from the derivatives of its normalization constant.
This normalization constant is given by

Z:/hn(fnavacl,ny---ack,n)(j\n(fnafO;Cl,nw-~7ck,n)dfn7df07dcl,n7---;dck,n

where of = m /. JoEr and o, = [1, —l]mf""fU/\/[l, —1JV/mJol1 1T, We follow Egs. (5.12) and

n,old n,old n,old n,old

Ck,n
n,old

rather than first partial derivative with respect to v_*:, for numerical robustness. These derivatives are given by

(5.13) Minka (2001) to update ap,, and by, ; however, we use the second partial derivatives with respect to m

n?

dlogZ (Z - l)gb(aﬁ)

57 _ 7 (20)
k,n Ck,n
amn,old Z(b(afl) ’Unlj(ﬂd
k. (Z=1)¢(ak)
Plogz __(Z-1olab) [oh+ s @n
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where ¢ and ® are the standard Gaussian pdf and cdf, respectively. The update equations for the parameters ap,,
and by, of the approximate factor / are then

-1

-1

new 82 lOg Z _|_ Ck,n
a = — P —— v, . B

fin a[mn}joild]z mold

logz | dlogZ
ck 0g 0g

bHEW — m k,n _ = = aHSW 22
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We now perform the analogous operations to update A and by, . We need to compute

dlogZ {Hszl @[aﬁ]}qﬁ(an) )

o — , —1],
o 7w
K k
_1 Pl ¢ o)y,
Olog Z _ _1[17 T, _1]{ch1 [ ]} (an) ’
ovindo 2 Zs
where
s=[-11VIul 11", (23)

We then compute the optimal mean and variance (those that minimize the KL-divergence) of the product in Eq. (13)
by using Egs. (5.12) and (5.13) from Minka (2001):

T
[ngfo]new _ mefo 7mef0 810gZ ( 810gZ ) _9 810gZ an,fo

n,old n,old s f Forfi Frsf n,old
8mn,old0 amn,oldo 8Vn,old0
dlog Z
[, goJnew = M+ Vi (24)
mn,old



Next we need to divide the Gaussian with parameters given by Eq. (24) by the Gaussian cavity distribution
(j\"( fn,> fosC1ns -+, Cln). Therefore the new parameters Ay, and by, of the approximate factor h are obtained
using the formula for the ratio of two Gaussians:

(A = [V, )~ [VEGE]

new n,old

£ £ -1 s o] !
B, " = [0, 1] (V5,5 =l [VEE] (25)

3.2 EP approximation to g;

We now show how to refine the {gi }. We adjust each g by minimizing the KL divergence between

gk(ckvo)d\k(f, C1,...,CK) (26)
and

Gr(cr0)d"* (£,c1,. . k) @7)
where -

QN (E,cr,. .. cx) = w
gr(cr0)

Because §(f, c1, ..., cx) and i (cy,0) are both Gaussian, §\¥(f, cy, ..., cx) is also Gaussian. Furthermore, if we
marginalize out all variables except those which g depends on, namely cy, o, then q\k(f ,C1,...,Ck) takes the

form ¢\¥(cp0) = N (ck70 |y v,i'f(’)ﬂi), where, by applying the formula for the ratio of Gaussians, m;";j; and

n

" are given b
k,old g Yy
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Similarly as in Section 3.1, to minimize the KL divergence between Egs. (26) and (27), we match the first and
second moments of these two distributions. The moments of Eq. (26) can be obtained from the derivatives of its

normalization constant. This normalization constant is given by Z = ®(«) where o = m;’%’ﬁi v;"'(;ﬁi. Then, the

derivatives are

dlogZ ola]
Ck,n Chon
IMiiia Do Vol
0?log Z
oes ___ gl . {a 1 ool } (29)
Almy ol Vg oa®la] ®[a]
The update rules for ag4, and by, are then
_ ~1
dlog Z
new _ Ck,n
[agk] - [amzkoia + Uk,old
—1
. 0%log Z dlog Z new
[bg ™" = mtn — e = ¢ lag.] - (30)
. Fold 0 [m;’:)ldp amk),céld "

Once EP has converged we can approximate the NFCPD using Eq. (14) in the main text:

p(Z|D,X,X*) ~ /p(ZO|f)p(Zl ‘Cl)”'p(ZK‘CK)(j(faclv"'acK)

K K
({H @[ck(x)]} O[f(x) — fo] + {1 -1I @[ck(x)]}> df dey -+ deg, 31
k=1 k=1



where z = (f(x),c1(X),...,ck(x)), the first element in z is accessed using the index 0 and we have used the
assumed independence of the objective and constraints to split p(z | f, cy, ..., cx) into the product of the factors

p(f(x)|f) and p(cy (%) [€1), .., plex (x) [ex ).
4 Performing the integration in Eq. (31)

Because the constraint factor on the right-hand side of Eq. (31) only depends on f; out of all the integration
variables, we can rewrite Eq. (31) as

p(z|Df,D1,...,D ,xx(m)> /({H@zk} [20 — fol + {1H@zk}>

</ (20 | ) p(z1|c1) - plzk | ck) q(f,c1,...,cx) dfi---dfy dcy - "dCK) dfo , (32)

where Z is a normalization constant.

We now compute the inner integral in Eq. (32) analytically. This is possible because the marginal posterior
predictive distributions on z are Gaussian and we also have a Gaussian approximation ¢(f,c1,...,cx). We first
rewrite the inner integral in Eq. (32) by using the definition of ¢ in Eq. (10):

N

/p(zo|f)p(z1|cl)-~-p(zK|cK) (f|mf, vF) H (cg |mS*  V)dfy - -dfy dey - - - deg (33)

For each ¢y, the product of the conditional Gaussian distribution p(cy(x) | ¢ ) with the Gaussian N (cy, | my, Vi)
is an (N + 2)-dimensional multivariate Gaussian distribution. All variables in ¢y are then integrated out leaving
only a univariate Gaussian on ¢ (x) with mean and variance m), and vj, respectively. For the variables f(x) and
f, the product of p(f(x) | £) and N (f | mg, V) yields an (N + 2)-dimensional multivariate Gaussian distribution.
The variables f1, ..., fny are integrated out leaving only a bivariate Gaussian on the two-dimensional vector ' =
(f(x), fo) with mean vector m{ and covariance matrix V. Thus, the result of the inner integral in Eq. (32) is

K
/P(Zo|f)P(Z1|Cl)"'P(2K|CK) (f|mo, Vo) [[ V(e [my, Vi)dfs - dfy dey - - dek
k=1
K
N (£ | mg, V) H x) [ mp, vy,) (34)

where, using Egs. (3.22) and (3.24) of Rasmussen & Williams (2006) for the means and variances respectively, we
have the definitions

-1
[m;']l = kgnal(x)—r [KI,*] mfv

[mg], = [mf]

O b
[V;‘]l,l = kf(x7 X) - kgnal(x)—r { [KI,*} B + [K*{,*] B Vf [Kfy*] B } kgnal( )
[V/f]2,2 = [Vf]o 0
Vil = kp(x,x™) = k()T {IKS )7+ (KL VIKS ] R (™)

mh, = kb (0T [KE,] T m®
o = (%) = Ky () T { [KE] T [KEL] T Ve [KE] T bk (x),
and

e mf and VT are the posterior mean and posterior covariance matrix of f given by §.



o kI (x)isthe (N +
of f given by f(x4), f

dimensional vector with the prior cross-covariances between f(x) and the elements

1)-

(x1),. -, f(XN)-

. K,’:* isan (N + 1) x (N + 1) matrix with the prior covariances between elements of f.
)-

. kgnal (x,) is the (/N +1)-dimensional vector with the prior cross-covariances between f(x,) and the elements
of f.

e ki (x¥)is an (IV + 1) vector with the cross-covariances between cy(x) and the elements of c;, given by
Cr(Xy), cr(X1), - -y K (Xn).

e K/, isan (N 4 1) x (N + 1) covariance matrix with the prior covariances between the elements of cy.

‘We have now computed the inner integral in Eq. (31), leaving us with our next approximation of the NFCPD:

p(f(x),c1(%X), ..., cx(X) \Df,Dl,...,DK,X,x*) ~

%/ ({H @@(x)}} O[f(x) — fol + {1 -1Ie [ck<x>}}>

k=1

{ H N (er(x |mkavk)}/\/(f/|mi»‘vv/f) dfo . (35)

nk=1

Eq. (35) is the same as Eq. (15) in the main text. Note that the computations performed to obtain m/ , v},, mf, and
'V do not depend on x. In the following section we make a final Gaussian approximation to Eq. (35), which must
be performed for every x.

5 Final Gaussian approximation to the NFCPD, for each x

Because the right-hand side of Eq. (35) is not tractable, we approximate it with a product of Gaussians that have
the same marginal means and variances. In particular, we approximate it as

P (2] D,x, %) = N (f(x) |6 (%), 0P (x HN ek (%) | kP (%), 0P (%)

where u{IFCPD(x), vI{IFCPD(x) and pfgcpp (%) and vipepp(x) are the marginal means and marginal variances of
f(x) and ¢, (x) according to the right-hand-side of Eq. (35). Using Egs. (5.12) and (5.13) in Minka (2001) we can
compute these means and variances in terms of the derivatives of the normalization constant Z in Eq. (35), which

is given by
K K
= {H@[aa}@[aw{l ch[ak-]} (36)
k=1 k=1

s =[Vel 1+ [Vilao — 2[Vil o

where




Doing so yields

U?JFCPD(X) = [Vil,, — g (B+ a) ([V;]Ll - [Vlf]1,2)2
PP (x) = [mg], + ([Vi‘]m - WHM) %

AFP(x) = (o) +a)

NP () = 0y come (%) { [k ] 4B <0

where

P Z@(an)(z -,
?logZ _ Pu{on+Br}
a[m;c]z o .

5.1 [Initialization and convergence of EP

Initially EP sets the parameters of all the approximate factors to be zero. We use at the convergence criterion that
the absolute change in all parameters should be below 1074,

5.2 EP with damping

To improve convergence we use damping (Minka & Lafferty, 2002). If fL‘;fW is the minimizer of the KL-divergence,

damping entails using instead Z%™? as the new factor, as defined below:

e = (e 4 (38)

where h,, is the factor at the previous iteration. We do the same for g;. The parameter e controls the amount of
damping, with ¢ = 1 corresponding to no damping. We initialize ¢ to 1 and multiply it by a factor of 0.99 at each
iteration. Furthermore, the factors &, and g, are updated in parallel (i.e. without updating ¢ in between) in order
to speed up convergence (Gerven et al., 2009). During the execution of EP, some covariance matrices may become
non positive definite due to an excessively large step size (i.e. large €). If this issue is encountered during an EP
iteration, the damping parameter is reduced by half and the iteration is repeated. The EP algorithm is terminated
when the absolute change in all the parameters in § is less than 1074,
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