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Abstract
Multi-task feature selection methods often make
the hypothesis that learning tasks share relevant
and irrelevant features. However, this hypothe-
sis may be too restrictive in practice. For exam-
ple, there may be a few tasks with specific rele-
vant and irrelevant features (outlier tasks). Sim-
ilarly, a few of the features may be relevant for
only some of the tasks (outlier features). To ac-
count for this, we propose a model for multi-task
feature selection based on a robust prior distri-
bution that introduces a set of binary latent vari-
ables to identify outlier tasks and outlier features.
Expectation propagation can be used for efficient
approximate inference under the proposed prior.
Several experiments show that a model based on
the new robust prior provides better predictive
performance than other benchmark methods.

1. Introduction
When the number of samples is smaller or equal to the
number of attributes or features, regression problems are
under-determined. In this case, a linear model is too com-
plex to explain the observed data since an infinite number
of model coefficients perfectly fit the data. In this context,
sparsity, i.e., the assumption of zeros in the model coeffi-
cients, plays a strong regularization role that can be use-
ful to obtain estimates with good generalization properties.
Sparsity can be favored by using sparsity enforcing priors
in probabilistic models or by optimizing a loss function pe-
nalized by a sparsity inducing norm (Carvalho et al., 2009;
Jalali et al., 2010; Vogt & Roth, 2010). The assumption of
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zeros in the model coefficients is equivalent to the assump-
tion of only a few of relevant features for prediction.

Multi-task feature selection methods are used to improve
the process of inferring the model coefficients from the ob-
served data under the sparsity assumption (Vogt & Roth,
2010; Hernández-Lobato et al., 2010; Obozinski et al.,
2009; Xiong et al., 2007; Zhang et al., 2008). In these
methods several tasks that have a common feature space are
solved simultaneously, often under the assumption that the
tasks share relevant and irrelevant features, as illustrated by
Figure 2 (top). However, in some situations this hypothesis
may be too restrictive (Jalali et al., 2010). As illustrated by
Figure 2 (bottom), a few of the tasks may have specific rel-
evant / irrelevant features (outlier tasks), and a few of the
features may be arbitrarily relevant / irrelevant across tasks
(outlier features). In this situation, traditional multi-task
feature selection methods are expected to perform poorly.

In this paper we propose a multi-task feature selection
model, based on a robust prior distribution, that is expected
to have better properties in the presence of diverse tasks,
i.e., data with the properties described above. Exact infer-
ence is intractable in such a model. However, expectation
propagation can be used for efficient approximate inference
(Minka, 2001). Several experiments involving the recon-
struction of gene regulatory networks, the denoising of nat-
ural images and the prediction of drug sensitivity from mi-
croarray data illustrate the benefits of the model proposed.
Specifically, it has better prediction properties than other
methods from the literature and it can be used to success-
fully identify relevant attributes for prediction, alongside
with outlier tasks and features, which may be useful to bet-
ter understand the characteristics of the observed data.

2. Dirty Multi-task Feature Selection
Assume K regression tasks with data {X(k),y(k)}Kk=1,
where X(k) and y(k) are the design matrix and the vector
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of targets for task k, respectively. All tasks share the same
d attributes or features, but feature values can be different
across tasks. A linear model is considered for each task,
i.e., y(k) = X(k)w(k) + ε(k), where w(k) ∈ Rd is the vec-
tor of model coefficients for task k and ε(k) ∼ N (0, Iσ2

(k))

is Gaussian noise with variance σ2
(k). Let W be a K × d

matrix whose k-th row is w(k) and Y a matrix whose k-th
row is y(k). Define X = {X(k)}Kk=1 and σ2 = {σ2

(k)}
K
k=1.

The likelihood for W and σ2 is:

p(Y|X ,W,σ2) =

K∏
k=1

N (y(k)|X(k)w(k), Iσ2
(k)) . (1)

Moreover, feature selection for each task, or equivalently,
sparsity in each w(k) is expected to be beneficial. We also
assume that the K tasks share relevant and irrelevant fea-
tures, but we allow for small deviations from this hypothe-
sis. All this prior knowledge is introduced in the model by
a robust prior for W described in the next section.

2.1. Robust prior distribution

The prior considered is based on the discrete mixture prior
introduced in (Carvalho et al., 2009). Thus, we first de-
scribe and motivate the use of that prior to favor sparse so-
lutions. Then, we show how it can be extended to perform
feature selection across several tasks in a robust way.

2.1.1. DISCRETE MIXTURE PRIOR

This is a spike and slab prior in which the i-th coefficient
of task k satisfies w(k)

i ∼ (1− ρ)δ0 + ρπ(w
(k)
i ), where ρ is

the prior inclusion probability, δ0 is a point of probability
mass at zero, and π(·) is a density that specifies the distri-
bution of the coefficients that are not zero. Each w(k)

i is a
priori zero with probability (1 − ρ). In (Carvalho et al.,
2009) it is suggested for π(·) the Strawderman-Berger dis-
tribution (Strawderman, 1971; Berger, 1980), which has
Cauchy-like tails and yet allows for a closed form convolu-
tion with a Gaussian likelihood. This distribution is a scale
mixture of Gaussians (Armagan et al., 2011) defined as:

π
(
w

(k)
i

)
=

∫
N (w

(k)
i |0, λ

2
i )

λi

(λ2i + 1)
3
2

dλi

=
1√
2π

(
1− |w(k)

i |
Φ(−|w(k)

i |)
N (w

(k)
i |0, 1)

)
, (2)

where | · | denotes absolute value, Φ(·) is the cdf of a stan-
dard Gaussian distribution, N (·|0, 1) is the standard Gaus-
sian density, and λi/(λ2i + 1)

3
2 is the density assumed for

λi. Figure 1 (left and middle) compares the discrete mix-
ture prior with other priors from the literature (an arrow
means a point of probability mass). We observe that the
discrete mixture has heavy tails to explain coefficients that

significantly differ from zero. It also has a point mass at
zero that allows for exact zeros in the coefficients.

Let σ2
(k) = 1 and X(k) = I, and define κi = 1/(1 + λ2i ).

Carvalho et al. (2009) shows that the posterior mean for
w

(k)
i is in this case (1 − κi)y

(k)
i , where κi is a random

shrinkage coefficient. Figure 1 (right) displays the prior
density for κi that results from each prior for w(k)

i . The
prior for κi is obtained by applying the change of variables
κi = 1/(1+λ2i ) to the prior for λi, which in the case of the
discrete-mixture prior is a mixture between the distribution
for λi assumed in (2) and a point mass at zero. Figure 1
(right) shows that under the discrete-mixture prior a priori
we expect to observe κi = 1 as a consequence of the point
mass at one in the prior for κi. Furthermore, we also expect
to observe κi ≈ 0 as a consequence of the density tending
to infinity at zero. These two values for κi correspond re-
spectively to total shrinkage (zero values) and no shrinkage
at all (non-zero values) for w(k)

i . By contrast, under the
other priors for w(k)

i the density for κi tends to zero at zero
(Laplace) or tends to zero at one (Student’s T). This means
that these priors will shrink relevant coefficients and will
not shrink irrelevant coefficients, respectively. Thus, the
discrete mixture prior can be considered as a golden stan-
dard for learning under sparsity (Carvalho et al., 2009).

2.1.2. EXTENSION OF THE DISCRETE-MIXTURE PRIOR

The previous prior is extended to perform feature selection
across several tasks. We assume that the tasks share in gen-
eral relevant and irrelevant features, but we consider a few
outlier tasks with specific relevant / irrelevant features and
a few outlier features that may be arbitrarily relevant / irrel-
evant for each task. This is illustrated in Figure 2 (bottom).
Tasks 4 and 8 are outlier tasks and features 19 and 21 are
outlier features. All other tasks and features share the hy-
pothesis of jointly relevant / irrelevant features across tasks.

To model this type of prior knowledge we introduce the
following binary latent variables:

zi Indicates whether feature i is an outlier (zi = 1) or not
(zi = 0). If it is an outlier it can be independently relevant
or irrelevant for each task.

ωk Indicates whether task k is an outlier (ωk = 1) or not
(ωk = 0). If it is an outlier it can have specific relevant
and irrelevant features for prediction.

γi Indicates whether the non-outlier feature i is relevant (γi =
1) for prediction or not (γi = 0) in all tasks that are not
outliers, i.e., those tasks for which ωk = 0.

τ
(k)
i Indicates whether, given that task k is an outlier task, i.e.,

ωk = 1, feature i for that task is relevant (τ (k)i = 1) or
irrelevant (τ (k)i = 0) for prediction.

η
(k)
i Indicates whether, given that feature i is an outlier feature,
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Figure 1. (left) Density of different priors. Note the spike of the discrete mixture at the origin. (middle) Tails of the different priors.
(right) Prior density of the shrinkage parameter κi for the discrete mixture prior and for other priors from the literature.
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Figure 2. (top) Traditional multi-task feature selection: All tasks
share relevant and irrelevant features (model coefficients). (bot-
tom) Dirty multi-task feature selection: Most tasks share relevant
and irrelevant features, but we allow for outlier tasks (tasks 4 and
8) and for outlier features (dimensions 19 and 21). White squares
represent irrelevant coefficients that are equal to zero. Colored
squares represent relevant coefficients with non-zero values.

that particular feature is relevant for prediction in task k

(η(k)i = 1) or not (η(k)i = 0).

Let Ω be the collection of all these latent variables, i.e.
Ω = {z,ω,γ, {τ (k)}Kk=1, {η(k)}Kk=1}. Given the latent
variables we can specify the prior distribution for W:

p(W|Ω) =

d∏
i=1

K∏
k=1

p(w
(k)
i |Ω) , (3)

where p(w(k)
i |Ω) = {π(w

(k)
i )η

(k)
i δ

1−η(k)
i

0 }zi{[π(w
(k)
i )τ

(k)
i

δ
1−τ(k)

i
0 ]ωk [π(w

(k)
i )γiδ1−γi0 ]1−ωk}1−zi . Under this prior a

coefficient w(k)
i is different from zero if (i) it corresponds

to an outlier feature (zi = 1) relevant for task k (η(k)i = 1);
or (ii) it does not correspond to an outlier feature (zi =
0), but it corresponds to an outlier task (ωk = 1) and the
feature is relevant for that task (τ (k)i = 1); or (iii) it does
not correspond to an outlier feature (zi = 0), nor an outlier
task (ωk = 0), but the feature is relevant for prediction
across tasks (γi = 1). Otherwise, the coefficient is zero.

The hyper-priors for the latent variables are Bernoullis with
parameters ρz , ρω , ργ , ρτ and ρη , i.e., we set p(z|ρz) =∏d
i=1 Bern(zi|ρz), p(ω|ρω) =

∏K
k=1 Bern(ωk|ρω),

p(γ|ργ) =
∏d
i=1 Bern(γk|ργ), p({τ (k)}Kk=1|ρτ ) =∏K

k=1

∏d
i=1 Bern(τ

(k)
i |ρτ ) and finally p({η(k)}Kk=1|ρη) =∏K

k=1

∏d
i=1 Bern(η

(k)
i |ρη). The hyper-prior for each ρz ,

ρω , ργ , ρτ and ρη is a beta distribution with parameters a0
and b0, e.g., p(ρz) = Beta(ρz|a0, b0) for the case of ρz .
Furthermore, we set a0 = 1 and b0 = 1 which leads to a
uniform distribution so that no particular hyper-parameter
value is favored a priori. These uniform priors allow to
identify each hyper-parameter value from the training data.

Last, we set the hyper-prior for the noise of each task
to be an inverse gamma distribution, i.e., p(σ2) =∏K
k=1 InvGam(σ2

(k)|α0, β0), where we specify α0 = 5 and
β0 = 5. These parameter values are equivalent to the prior
observation in each task of 10 data instances with noise
variance equal to 1. Furthermore, they also produce high
variance in the prior distribution which allows for the iden-
tification of the correct level of noise of each task using the
training data only. An alternative formulation of the prior
that assumes the same level of noise for each task is also
considered. Namely, we set p(σ2) = InvGam(σ2|α0, β0),
where each entry in σ2 is constrained to be equal to σ2.

2.2. Prediction and identification of relevant features

Define ρ = {ρz, ρω, ργ , ρτ , ρη}. The joint probability of
the targets Y and the latent variables W, Ω, ρ and σ2 is:

p(Y,W,Ω,ρ,σ2|X ) = p(Y|X ,W,σ2)p(W|Ω)×
× p(Ω|ρ)p(ρ)p(σ2) , (4)
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where p(Y|X ,W,σ2) is given by (1), p(W|Ω) is
given by (3), p(Ω|ρ) = p(z|ρz)p(ω|ρω)p(γ|ργ)
p({τ (k)}Kk=1|ρτ )p({η(k)}Kk=1|ρη) and p(ρ) = p(ρz)
p(ρω)p(ργ)p(ρτ )p(ρη). This joint distribution is normal-
ized with respect to W, Ω, ρ and σ2 to get a posterior:

p(W,Ω,ρ,σ2|Y,X ) =
p(Y,W,Ω,ρ,σ2|X )

p(Y|X )
. (5)

The posterior is used to compute predictions for
the target value ynew of a new un-observed in-
stance xnew of task k. Namely, p(ynew|xnew) =∑

Ω

∫
N (ynew|xT

neww(k), σ2
(k))p(W,Ω,ρ,σ2|Y,X )dW

dρdσ2. The probability that a particular w(k)
i is differ-

ent from zero can be computed similarly. For this, we
eliminate variables in (5) and sum the posterior probabil-
ities of the three events described in Section 2.1.2, i.e.,
p(w

(k)
i 6= 0|Y,X ) = p({zi = 1 ∩ η

(k)
i = 1} ∪ {zi =

0 ∩ ωk = 1 ∩ τ
(k)
i = 1} ∪ {zi = 0 ∩ ωk = 0 ∩ γi =

1}|Y,X ). Finally, the probability that task k is an outlier,
p(ωk = 1|Y,X ), or the probability that feature i is an
outlier, p(zi = 1|Y,X ), are computed in a similar way.

The computation of all the expressions described in this
section, except (4), is intractable for typical problems.
Thus, we have to resort to approximate inference methods.

3. Expectation propagation (EP)
EP is an efficient mechanism for approximate inference
(Minka, 2001). EP approximates each factor in (4) that
is not inside a particular exponential family F of distribu-
tions with an un-normalized factor that is inside F . We
set F to be the product of Gaussian distributions on W,
Bernoulli distributions on Ω, beta distributions on ρ and in-
verse gamma distributions on σ2. F is closed under prod-
uct and division operations. The only factors in (4) that
are not in F are those of the likelihood (1), p(W|Ω) and
p(Ω|ρ). The hyper-prior for ρ is beta, and the hyper-prior
for σ2 is inverse gamma so they need not be approximated.

In EP each likelihood factor corresponding to the
n-th instance of the k-th task (x

(k)
n , y

(k)
n ) is ap-

proximated as p(y
(k)
n |w(k),x

(k)
n , σ2

(k)) = N (y
(k)
n |

(x
(k)
n )Tw(k), σ2

(k)) ≈ f̃
(k)
n (w(k), σ2

(k)) = c̃
(k)
n

N ((x
(k)
n )Tw(k)|m̃(k)

n , ṽ
(k)
n )InvGam(σ2

(k)|ã
(k)
n , b̃

(k)
n ).

The approximation of each factor p(w
(k)
i |Ω)

that appears in p(W|Ω) in (3) is p(w
(k)
i |Ω) ≈

g̃
(k)
i (wi, zi, ωk, γi, τ

(k)
i , η

(k)
i ) = s̃

(k)
i N (wi|m̃(k)

i , σ̃2
(i,k))

Bern(zi|p̃(i,k)z )Bern(ωk|p̃(i,k)ω )Bern(γi|p̃(i,k)γ )Bern(τ
(k)
i

|p̃(i,k)τ )Bern(η
(k)
i |p̃

(i,k)
η ). Finally, each factor in

p(Ω|ρ) is approximated following a similar princi-
ple. For example, for p(zi|ρz) the approximation is

Bern(zi|ρz) ≈ h̃
(i)
z (zi, ρz) = κ̃

(i)
z Bern(zi|p̃(i)z )Beta(ρz|

ã
(i)
z , b̃

(i)
z ). The approximation of the other factors in

p(Ω|ρ) is equivalent to this one. All the parameters with
the superscript˜are adjusted by EP, as described below.

The EP approximation of the joint distribution (4) replaces
each exact factor by the corresponding approximate one.
Denote by q̃ this approximation. After normalization, the
joint distribution (4) becomes the exact posterior (5). Sim-
ilarly, after normalization q̃ becomes the EP posterior ap-
proximation q:

q(W,Ω,ρ,σ2) =
q̃(W,Ω,ρ,σ2)

Zq
, (6)

which is inside of F because F is closed under the product
operation. The parameters of q are obtained from the prod-
uct of all the factors in q̃ and Zq can be readily computed
because q̃ is an un-normalized parametric distribution in-
side of F . Given q, all the expressions in Section 2.2 can
be approximated by replacing the exact posterior with q.

EP refines until convergence each approximate factor f̃ .
For this, qold ∝ q/f̃ is computed. qold has the same form as
q because q, f̃ ∈ F . Then, an updated posterior approxima-
tion qnew is obtained by minimizing the Kullback-Leibler
divergence between fqold and qnew, KL(fqold||qnew), where
f denotes the exact factor associated to f̃ . The updated
approximate factor is f̃ = Zfq

new/qold, where Zf is the
normalization constant of fqold. This guarantees that f̃
is similar to the exact factor in regions of high posterior
probability, as estimated by qold. The minimization of
KL(fqold||qnew) with respect to qnew has a global optimum
found by matching expected sufficient statistics between
fqold and qnew (Bishop, 2006). These expectations can be
obtained from the derivatives of logZf with respect to the
(natural) parameters of qold, as indicated by Seeger (2006).

A contribution of this paper is the computation of Zf for
the factors in p(W|Ω). In that case, Zf is a probabilis-
tic mixture of the convolution of the Strawderman-Berger
prior π(·) with a Gaussian distribution, i.e., the posterior
distribution for w(k)

i under qold, and the convolution of
the point probability mass at the origin, δ0, with the same
Gaussian. Fortunately, the Strawderman-Berger prior has
a closed form convolution with the Gaussian distribution.
Johnstone & Silverman (2005) provide the analytic solu-
tion when the variance of the Gaussian is one. We provide
the solution when this is not the case. The complete details
about EP are found in the supplementary material, along-
side with an R implementation of the proposed method.

When d > Nk, whereNk is the number of instances of task
k and d is the number of features, the covariance matrix of
the likelihood of each task in (1) is low rank. EP is able to
exploit this and it has a cost that scales likeO(

∑K
k=1N

2
kd).
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4. Related work
There are several works in the literature focusing on feature
selection within a multi-task learning setting. In this sec-
tion they are described. For example, Hernández-Lobato
et al. (2010) propose a model based on the spike-and-slab
prior (Mitchell & Beauchamp, 1988) to determine whether
a feature is either relevant or irrelevant across all tasks. The
spike-and-slab prior is also used in (Jebara, 2004), where
a multi-task feature selection method is derived using the
maximum entropy discrimination formalism. In (Obozin-
ski et al., 2009; Vogt & Roth, 2010) the group LASSO is
considered as an efficient estimator that selects common
features across tasks by penalizing a mixed norm of the
model coefficients. The work presented by Argyriou et al.
(2007) is based on a similar approach. Finally, in (Xiong
et al., 2007) a set of common relevant features across tasks
is found using the automatic relevance determination prin-
ciple. In summary, all these works assume jointly relevant
and irrelevant features across tasks, as e.g. in Figure 2 (top),
and are hence expected to perform poorly when this hy-
pothesis is not fully satisfied, as e.g. in Figure 2 (bottom).

There are other methods that have been proposed to re-
lax the hypothesis of jointly relevant and irrelevant features
across all tasks. In (Jalali et al., 2010) a dirty model consid-
ers a mixed norm to penalize the model coefficients of sev-
eral tasks. Specifically, W = P + Q where P is penalized
with the `1 norm and Q with the the `1,∞ norm. A simi-
lar model can be derived using the `1,2 norm instead (Vogt
& Roth, 2010). The estimator employed selects a common
subset of relevant features for all the tasks, but it allows for
tasks with additional specific relevant features. The result
is a generalization of the group LASSO (Obozinski et al.,
2009; Vogt & Roth, 2010), which is expected to be more
robust to outlier tasks in the learning process, but not to
be as flexible as the model proposed in this paper. Another
method introduced for this purpose is found in (Gong et al.,
2012). This robust multi-task feature learning model also
defines W = P + Q and estimates the model coefficients
W by penalizing both P and QT with the `1,2 norm. The
intuition behind this idea is that if the k-th row of Q is not
zero after the estimation, task k is an outlier task with all
features relevant for prediction. However, again this a less
flexible assumption than the one we make. In particular,
the two works just described assume that all tasks share a
few relevant features, although they allow for some arbi-
trary tasks to have extra relevant features. This means that
they cannot model outlier tasks, (e.g., tasks 4 and 8 in Fig-
ure 2 (bottom)), unlike the approach proposed in this work.

Hernández-Lobato & Hernández-Lobato (2013) consider
that tasks do not share common relevant and irrelevant fea-
tures for prediction, but common dependencies in the fea-
ture selection process. These dependencies are induced

from the data using a generalization of the horseshoe prior
for feature selection (Carvalho et al., 2009). The princi-
ple they follow is hence more flexible than the assumption
made by the models described in the first paragraph of this
section. However, such an approach is expected to be sub-
optimal when most tasks actually share relevant and irrel-
evant features for prediction, which is the hypothesis we
assume and the one that is displayed in Figure 2 (bottom).

Finally, some works in the literature also consider modeling
outlier tasks in multi-task learning, e.g., (Xue et al., 2007;
Passos et al., 2012). However, they do not consider sparsity
in the model coefficients and are hence expected to perform
poorly when this hypothesis is actually satisfied in practice.

5. Experiments
We compare the proposed model for dirty multi-task fea-
ture selection (DMFS) with single task learning (STL) and
with a model for multi-task feature selection (MFS) that
assumes relevant and irrelevant features shared across all
tasks. STL and MFS are particular cases of DMFS with all
tasks being outliers (STL) and with no outlier tasks nor out-
lier features (MFS). We also compare results with the meth-
ods described in Section 4. That is, the dirty model (DM)
of Jalali et al. (2010), the robust multi-task feature learn-
ing method (RMFL) of Gong et al. (2012) and the model
for learning feature selection dependencies (MFSDep) of
Hernández-Lobato & Hernández-Lobato (2013). In DM
and RMFL we choose hyper-parameters using a grid search
guided by an inner cross-validation method. In MFSDep we
use type-II maximum likelihood for this (Bishop, 2006).
DMFS, STL and MFS need not fix any hyper-parameters
since they infer them from the data using hyper-priors. Un-
less stated differently, in all probabilistic models we as-
sume different levels of noise for each task when training.
All methods described are implemented in the R language.

5.1. Experiments with synthetic data

We generate 12 tasks where the model coefficients are sam-
pled from a Student’s distribution with 5 degrees of free-
dom. Each task k has d = 2000 attributes and Nk = 150
samples. The sparsity pattern employed for the model coef-
ficients across tasks is displayed in Figure 2 (bottom). All
model coefficients above dimension 26 are equal to zero.
The targets are added Gaussian noise with variance 1/2 and
each entry of the design matrix X(k) of task k is standard
Gaussian. We use 90% of the instances for training and
10% for testing. The reported estimates are averaged over
100 repetitions. We report the test root mean squared error
(RMSE) and the average reconstruction error of the model
coefficients, i.e., 1/K

∑K
k=1 ||w(k) − ŵ(k)||2, where ŵ(k)

is either the posterior mean (only in the probabilistic mod-
els), or a point estimate of w(k) (only in DM and RMFL).
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Table 1. Avg. test RMSE, reconstruction error and running time
in minutes of each method on the synthetic experiments.

Method Test RMSE Rec. Error Training Time
MFS 0.81±0.06 0.37±0.04 6.41±1.57
DMFS 0.73 ±0.04 0.22±0.02 21.87±0.18
DM 0.86±0.05 0.50±0.03 150.35±10.0
MFSDEP 0.77±0.06 0.32±0.04 2 · 103±4 · 102
RMFL 0.90±0.05 0.56±0.03 95.42±5.0
STL 0.78±0.08 0.33±0.06 5.14±0.39

The results obtained are displayed in Table 1. The best
method in terms of the reconstruction error and the RMSE
is DMFS, followed by MFSDep and STL. MFS performs
worse than STL. DM and RMFL perform poorly. The
differences of DMFS with respect to the other methods
are statistically significant (p-value < 5% using a paired
Student’s T test). In terms of training time, the fastest
method is STL closely followed by MFS and DMFS. DM
and RMFL take longer training times due to the expensive
grid search procedure that is used to fix their two hyper-
parameters. This process demands re-training each method
many times. If the optimal hyper-parameters were given,
they would be the fastest methods. The training time of
MFSDep is very high for the same reason. By contrast, un-
like these methods, DMFS uses Bayesian inference to infer
hyper-parameters and does not require any re-training.

The better results obtained by DMFS are also explained
by Figure 3, which shows the average posterior probability
that each task and each feature is an outlier, as estimated
by DMFS. DMFS successfully identifies tasks 4 and 8 as
outlier tasks and features 19 and 21 as outlier features. We
note that features 1, 3 and 24 have also a small probability
of being outliers. This makes sense because according to
Figure 2 (bottom) they are relevant only for a few tasks.
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Figure 3. Avg. posterior probability for ωk = 1 (task k is an out-
lier) and zi = 1 (feature i is an outlier) in DMFS, in the synthetic
data. The last prob. is only displayed for the first 32 features.

Figure 4 also sheds light on the better performance of
DMFS. It shows in a gray scale the average probability
that each of the 26 first model coefficients of each task is
zero, as estimated by each method. These probabilities are
obtained from the approximate posterior in the probabilis-
tic models. In DM and RMFL we report the fraction of
times that a coefficient is different from zero across exper-
iments. We note that DMFS, MFSDep and STL find pat-

terns that agree the most with those of Figure 2 (bottom).
However, STL does not exploit the multi-task setting and
is less confident about the non-zeroness of coefficients 6 to
16 for non-outlier tasks. DMFS is also more confident than
MFSDep about irrelevant coefficients. On the other hand,
MFS, RMFL and DM give high probability of being differ-
ent from zero to coefficients 6 to 16 for tasks 4 and 8. The
reason is that they assume a few relevant features shared
across all tasks and cannot model outlier tasks. Further-
more, they also find to be non-zero across all tasks some
coefficients corresponding to features that are in fact only
relevant for a few tasks (e.g., the coefficients corresponding
to features 1, 3, 19, 21 and 24). DM and RMFL can in prin-
ciple model some of these coefficients (note that they give
higher probabilities of being not zero to some of them), but
to avoid their joint selection, these methods would have to
shrink non-zero coefficients shared by all non-outlier tasks,
producing worse results. In particular, the norms that they
use cannot provide very sparse solutions and not shrink rel-
evant coefficients (Hernández-Lobato et al., 2013).
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Figure 4. Average probability for each method across the 100 rep-
etitions that each of the 26 first model coefficients of each task is
different from zero in a gray scale (0 = white and 1 = black).

5.2. Reconstruction of gene regulatory networks

Assume X is aN×dmatrix with columns denoting d genes
and rows containing N measurements of log mRNA con-
centration obtained under different steady state conditions.
Consider that X is contaminated with additive Gaussian
noise. Then, X ≈ XWT + σ2E, where the entries in E
are standard Gaussian, σ2 is the variance of the noise and
W is a sparse d × d regression matrix with zero diagonal
entries that links the expression level of each gene with that
of its transcriptional regulators (Hernández-Lobato et al.,
2015). When an entry of W is non-zero there is a regu-
latory dependency between the pair of genes it refers to.
These dependencies are described by gene regulatory net-
works in which there is a node per gene and two nodes are
connected with a directed edge if the first gene regulates
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the second. These networks are sparse (with many miss-
ing edges) and have hub nodes (transcription factors) that
regulate several genes. Figure 5 shows a sample network.

Figure 5. Sample gene regulatory network used in the experi-
ments. Nodes that are potential hubs have a diamond shape.

Table 2. Avg. area under the ROC curve for the network recon-
struction experiments and RMSE for the anticancer drug sensitiv-
ity experiments, for each of the different methods considered.

Method AUROC RMSE
MFS 0.73±0.05 0.733±0.053
DMFS 0.84±0.05 0.717±0.050
DM 0.76±0.06 0.703±0.050
MFSDEP 0.79±0.05 0.704±0.051
RMFL 0.79±0.05 0.703±0.050
STL 0.70±0.04 0.730±0.049

We formulate the problem of inducing W given X as a
multi-task problem with d tasks where the model coeffi-
cients of task k correspond to the k-th row of W. The
design matrix X(k) is given by the matrix X with column
k set to zero. The targets of task k are the entries in the
k-th column of X. To favor sparse networks we use the
proposed prior for W. This prior models the hub nodes in
the network by considering jointly relevant features across
tasks, but it allows for small deviations to consider genes
regulated, in addition, by a few extra genes (outlier fea-
tures), or genes regulated by very specific transcription fac-
tors (outlier tasks). The regulatory network can be induced
by computing the posterior probability pij that each entry
w

(j)
i in W is non-zero. The corresponding directed edge

j → i is predicted when pij exceeds a threshold ζ ∈ [0, 1].
Thus, these experiments evaluate the ability of each method
to discriminate between relevant and irrelevant coefficients.

We evaluate the different methods in the task of inferring
gene regulatory networks. The experimental protocol fol-
lows the DREAM 4 in silico challenge 2009. We generate
100 networks with 100 genes and sample 90 steady-state
measurements from each network using GeneNetWeaver
(Schaffter et al., 2011). The reconstruction performance
is measured in terms of the area under the ROC curve (AU-
ROC) (Fawcett, 2006), obtained when ζ varies between 0
and 1. In MFS, DM and RMFL, to induce the network, we

use the absolute values of the estimated entries of W nor-
malized to sum to one, instead of posterior probabilities.

Table 2 shows the average AUROC for each method.
The best method (higher is better) is DMFS followed by
MFSDep, RMFL, DM and MFS. The method with the low-
est performance is STL. The differences are statistically
significant (p-value < 5% using a paired Student’s T test).
This result shows that multi-task methods are beneficial in
this problem and that the hypothesis made by DMFS is
more adequate, probably because it is more flexible. In
DMFS several tasks have a significantly higher probability
of being outlier tasks, and the same is observed for several
features (results not shown). We have also evaluated here
the winning solution of the DREAM 4 challenge (Huynh-
Thu et al., 2010). This method uses tree-ensembles to iden-
tify relevant features, but does not exploit task relations.
The average AUROC obtained is 0.75, which is below the
one shown in Table 2 for DMFS, MFSDep and RMFL.

5.3. Denoising of natural images

We consider the problem of denoising the 256× 256 house
image used in (Titsias & Lázaro-Gredilla, 2011) when it
has been contaminated by Gaussian noise. Three levels
are considered for the standard deviation of the noise σ(k).
Namely, 25, 50 and 75, ∀k. Following that work, we parti-
tion the noisy image in 62, 001 overlapping blocks of 8× 8
pixels and regard each block as a different task. These tasks
are then grouped forming 64 groups of non-overlapping
blocks (i.e., one group of 32×32 blocks, 7 groups of 32×31
blocks, 7 groups of 31×32 blocks and 49 groups of 31×31
blocks) which are solved in parallel in a cluster using each
multi-task method (see the supplementary material). To de-
noise the image we set y(k) equal to each block and each
X(k) equal to an orthonormal basis corresponding to the
Haar wavelet. Thus, d = 64 and Nk = 64 for each task k.
It is well known that natural images have sparse represen-
tations under a wavelet basis. Thus, the learning process
involves finding the wavelet coefficients corresponding to
each block from the noisy observations. Using these coeffi-
cients the original image can be reconstructed by obtaining
their projection under the wavelet basis. We assume in all
probabilistic methods the same level of noise for each task.

Table 3 shows the peak-signal-to-noise ratio obtained by
each method (higher is better) in the denoising process.
The best results are obtained by the proposed approach
DMFS, which improves the results of the other methods,
especially for high levels of noise, where multi-task meth-
ods show a clear advantage over single-task learning. As in
the previous experiments, DMFS also identifies here sev-
eral outlier tasks and features (results not shown). Figure
6 shows the original noisy images and the corresponding
denoised images obtained by DMFS for each value of σ(k).
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Figure 6. Noisy images and corresponding denoised images ob-
tained by DMFS, for each different value of σ(k) considered ∀k.

Table 3. Peak-signal-to-noise ratio for each method.
Method σ(k) = 25 σ(k) = 50 σ(k) = 75
MFS 25.90 23.89 23.87
DMFS 30.67 27.25 25.22
DM 28.50 25.91 24.24
MFSDEP 30.46 25.74 23.65
RMFL 28.35 25.56 24.09
STL 30.58 26.37 23.35

5.4. Anticancer drug sensitivity prediction

We consider the dataset described in (Barretina et al.,
2012). This dataset contains microarray gene expression
data from 479 human cancer cell lines with pharmacologi-
cal profiles for 24 anticancer drugs. After removing miss-
ing values 294 cell lines remain. We filter the data and
consider only the 1, 000 genes with the largest interquartile
distance. The task of interest is to predict each drug sensi-
tivity (measured in terms of the area over the dose-response
curve) from the microarray data for each cell line. Thus, in
these experiments d = 1, 000, K = 24 and Nk = 294
∀k. We use 90% of the data for training and 10% for test-
ing. The reported estimates are averaged over 100 repeti-
tions. We report the test root mean squared error (RMSE).
In these experiments assuming in all probabilistic methods
the same level of noise for each task also improves results.

Table 2 shows the results of the experiments. The best
methods are DM, RMFL and MFSDep. The solution of DM
reduces to the one of the group LASSO (i.e., one regular-
ization parameters is set always to zero). We believe the
better performance obtained by DM and RMFL is a conse-
quence of shrinking too much relevant coefficients, which
may be useful here to alleviate over-fitting since microarray
data is notoriously very noisy. DMFS performs worse than
these three methods, and the differences are statistically
significant according to a paired Wilcoxon test (p-value
< 5%). Nevertheless, DMFS improves over the baselines
STL and MFS, and the differences are also statistically sig-
nificant. Finally, Figure 7 shows the average probability
that each drug is an outlier task, as estimated by DMFS.

We observe that several drugs are marked as outlier tasks.
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Figure 7. Avg. posterior probability that each drug is an outlier
task, as estimated by DMFS, in the drug sensitivity experiments.

Last, we compare here the utility of DMFS to identify out-
lier tasks with that of RMFL. For this, we train the group
LASSO on the data when the tasks identified as outliers
by each method are removed (recall that the group LASSO
performs best). In DMFS we remove those tasks whose
probability of being an outlier is above 1%. In RMFL we
remove those tasks whose rows in Q are not zero. The re-
sults obtained indicate that when DMFS is used to remove
outlier tasks the RMSE of the group LASSO on the non-
outlier tasks is 0.667 ± 0.061, when the outlier tasks are
removed, and 0.671± 0.059 otherwise. This improvement
is statistically significant according to a paired Wilcoxon
test (p-value < 5%). By contrast, when RMFL is used to
remove outlier tasks the RMSE of the group LASSO on the
non-outlier tasks is 0.684±0.074, when the outlier tasks are
removed, and 0.686±0.069 otherwise. This other improve-
ment is not statistically significant (p-value > 5%), which
shows that DMFS is better for identifying outlier tasks.

6. Conclusions
Most methods for multi-task feature selection in the liter-
ature assume jointly relevant and irrelevant features across
tasks. This hypothesis may be too restrictive in practice.
In this paper, we have proposed a new prior distribution
that considers that most tasks share relevant and irrelevant
features, but that allows for some tasks to have different
relevant and irrelevant coefficients (outlier tasks), and for
some features to be arbitrarily relevant or irrelevant for
each task (outlier features). This is a more flexible assump-
tion. Unfortunately, exact inference is infeasible under
such a prior. Nevertheless, a quadrature-free expectation
propagation method can be used for approximate inference.
A model using our prior has been evaluated in several ex-
periments involving the reconstruction of gene regulatory
networks, the denoising of natural images and the predic-
tion of drug sensitivity from microarray data. These exper-
iments show gains in the prediction performance and in the
identification of relevant features. Such a prior is also use-
ful to better understand the data, since it allows to identify
outlier tasks and features. When outlier tasks are removed
from the training set, traditional multi-task feature selec-
tion methods obtain better results in the non-outlier tasks.
This confirms that removed tasks were indeed outlier tasks.
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