Proofs A

Lemma 6. Let π and β be two behavioural strategies, Π and B two mixed strategies that are realization equivalent to π and β , and $\lambda_1, \lambda_2 \in \mathbb{R}_{>0}$ with $\lambda_1 + \lambda_2 = 1$. Then for each information state $u \in \mathcal{U}$,

$$\mu(u) = \pi(u) + \frac{\lambda_2 x_\beta(\sigma_u)}{\lambda_1 x_\pi(\sigma_u) + \lambda_2 x_\beta(\sigma_u)} (\beta(u) - \pi(u))$$

defines a behavioural strategy μ at u and μ is realization equivalent to the mixed strategy $M = \lambda_1 \Pi + \lambda_2 B$.

Proof. The realization plan of $M = \lambda_1 \Pi + \lambda_2 B$ is

$$x_M(\sigma_u) = \lambda_1 x_\Pi(\sigma_u) + \lambda_2 x_B(\sigma_u), \quad \forall u \in \mathcal{U}.$$

and due to realization-equivalence, $x_{\Pi}(\sigma_u) = x_{\pi}(\sigma_u)$ and $x_B(\sigma_u) = x_\beta(\sigma_u) \ \forall u \in \mathcal{U}$. This realization plan induces a realization equivalent behavioural strategy

$$\mu(u, a) = \frac{x_M(\sigma_u a)}{x_M(\sigma_u)}$$

$$= \frac{\lambda_1 x_{\pi}(\sigma_u a) + \lambda_2 x_{\beta}(\sigma_u a)}{\lambda_1 x_{\pi}(\sigma_u) + \lambda_2 x_{\beta}(\sigma_u)}$$

$$= \frac{\lambda_1 x_{\pi}(\sigma_u) \pi(u, a) + \lambda_2 x_{\beta}(\sigma_u) \beta(u, a)}{\lambda_1 x_{\pi}(\sigma_u) + \lambda_2 x_{\beta}(\sigma_u)}$$

$$= \pi(u, a) + \frac{\lambda_2 x_{\beta}(\sigma_u) (\beta(u, a) - \pi(u, a))}{\lambda_1 x_{\pi}(\sigma_u) + \lambda_2 x_{\beta}(\sigma_u)}.$$

Theorem 7. Let π_1 be an initial behavioural strategy profile. The extensive-form process

$$\begin{split} \beta_{t+1}^i &\in b_{\epsilon_{t+1}}^i(\pi_t^{-i}), \\ \pi_{t+1}^i(u) &= \pi_t^i(u) + \frac{\alpha_{t+1} x_{\beta_{t+1}^i}(\sigma_u) \left(\beta_{t+1}^i(u) - \pi_t^i(u)\right)}{(1 - \alpha_{t+1}) x_{\pi_t^i}(\sigma_u) + \alpha_{t+1} x_{\beta_{t+1}^i}(\sigma_u)} \end{split}$$

for all players $i \in \mathcal{N}$ and all their information states $u \in \mathcal{U}^i$, with $\alpha_t \to 0$ and $\epsilon_t \to 0$ as $t \to \infty$, and $\sum_{t=1}^{\infty} \alpha_t = \infty$, is realization-equivalent to a generalised weakened fictitious play in the normal-form and therefore the average strategy profile converges to a Nash equilibrium in all games with the fictitious play property.

Proof. By induction. Assume π_t and Π_t are realization equivalent and $\beta_{t+1} \in b_{\epsilon_{t+1}}(\pi_t)$ is an ϵ_{t+1} -best response to π_t . By Kuhn's Theorem, let B_{t+1} be any mixed strategy that is realization equivalent to β_{t+1} . Then B_{t+1} is an ϵ_{t+1} -best response to Π_t in the normal-form. By Lemma 6, the update in behavioural policies, π_{t+1} , is realization equivalent to the following update in mixed strategies

$$\Pi_{t+1} = (1 - \alpha_{t+1})\Pi_t + \alpha_{t+1}B_{t+1}$$

and thus follows a generalised weakened fictitious play.

Algorithms B

```
Algorithm 3 FSP with FQI and simple counting model
   Instantiate functions FICTITIOUSSELFPLAY and GEN-
   ERATEDATA as in algorithm 2
   function UPDATERLMEMORY \left(\mathcal{M}_{RL}^{i},\mathcal{D}^{i}\right)
      \mathcal{T} \leftarrow \text{Extract from } \mathcal{D}^i \text{ episodes that consist of transi-}
```

Add \mathcal{T} to \mathcal{M}_{RL}^i , replacing oldest data if the memory

tions $(u_t, a_t, r_{t+1}, u_{t+1})$ from player i's point of view.

return \mathcal{M}_{RL}^i end function

function UPDATESLMEMORY $(\mathcal{M}_{SL}^i, \mathcal{D}^i)$

 $\mathcal{D}^i_\beta \leftarrow \text{Extract all episodes from } \mathcal{D}^i \text{ where player } i$ chose their approximate best response strategy.

 $\mathcal{B} \leftarrow \text{Extract from } \mathcal{D}_{\beta}^{i} \text{ data that consist of pairs}$ (u_t, μ_t) , where μ_t is player i's strategy at information state u_t at the time of sampling the respective episode.

return \mathcal{B} end function

```
function REINFORCEMENTLEARNING (\mathcal{M}_{RL}^i)
  Initialize FQI with previous iteration's Q-values.
```

 $\beta \leftarrow \text{FQI}(\mathcal{M}_{RL}^i)$ return β

end function

function SupervisedLearning (\mathcal{M}_{SL}^i)

Initialize counting model from previous iteration.

for each (u_t, μ_t) in \mathcal{M}_{SL}^i do

 $\forall a \in \mathcal{A}(u_t) : N(u_t, a) \leftarrow N(u_t, a) + \mu_t(a)$ $\forall a \in \mathcal{A}(u_t) : \pi(u_t, a) \leftarrow \frac{N(u_t, a)}{N(u_t)}$

end for

return π

end function

River Poker

In our experiments, one instance of River poker implements a Texas Hold'em scenario, where the first player called a raise preflop, check/raised on the flop and bet the turn. The community cards were set to The players' distributions assume that KhTc7d5sJh. player 1 likely holds one combination of "K4s-K2s,KTo-K3o,QTo-Q9o,J9o+,T9o,T7o,98o,96o" with probability 0.99 and a uniform random holding with probability 0.01. Similarly, player 2 is likely to hold one of "QQ-JJ,99-88,66,AQs-A5s,K6s,K4s-K2s,QTs,Q7s,JTs,J7s,T8s+,T6s-T2s,97s,87s,72s+,AQo-A5o,K6o,K4o-K2o,QTo,Q7o,JTo,J7o,T8o+,T6o-

T40,970,870,750+".