A Proofs

Lemma 6. Let 7 and (8 be two behavioural strategies, 11
and B two mixed strategies that are realization equivalent
to mand B, and A1, Ay € R>q with Ay + Ay = 1. Then for
each information state u € U,

Aozg(oy)
Mzr(oy) + Xexp(oy)

(B(u) = m(u))

defines a behavioural strategy | at u and p is realization
equivalent to the mixed strategy M = M1+ Ao B.

Proof. The realization plan of M = A\ Il + Ay B is

xp(oy) = Man(ow) + Aexp(oy), Yu elU.

and due to realization-equivalence, (0, ) = (0, ) and
xp(oy) = zp(0y) Yu € U. This realization plan induces a
realization equivalent behavioural strategy

xp(oya)

xM(O'u)

_ Mzr(oua) + Aozg(oua)
Mxq(oy) + Aexg(oy)

_ Mxr(oy)m(u, a) + Xezg(o,)B(u, a)
MZr(0y) + Aezs(ow)
Aowg(ow)(B(u, a) — m(u,a))

Max(ow) + Aazp(on)

n(u, a) =

=m(u,a)+

O

Theorem 7. Let m, be an initial behavioural strategy pro-
file. The extensive-form process

5§+1 € bit+1(7rt_i)7
Oét+1$/3;?+1(0u) (B 41 (u) — 7i(w))

(1 - at+1)x7rti (Ju) + Oét+1$52+1 (O—u)

i1 (u) = 7 (u)

for all players i € N and all their information states
w e U, witho, — 0and ¢, — 0ast — oo, and
Zfi 1 Q¢ = 00, Is realization-equivalent to a generalised
weakened fictitious play in the normal-form and therefore
the average strategy profile converges to a Nash equilib-
rium in all games with the fictitious play property.

Proof. By induction. Assume 7; and II; are realization
equivalent and 3,41 € b, (m) is an €, 1-best response
to m;. By Kuhn’s Theorem, let B;,; be any mixed strat-
egy that is realization equivalent to 3;41. Then By is an
€1+1-best response to II; in the normal-form. By Lemma
6, the update in behavioural policies, 71, is realization
equivalent to the following update in mixed strategies

My = (1 — o)y + 1 By

and thus follows a generalised weakened fictitious
play. O

B Algorithms

Algorithm 3 FSP with FQI and simple counting model
Instantiate functions FICTITIOUSSELFPLAY and GEN-
ERATEDATA as in algorithm 2

function UPDATERLMEMORY (M, , D?)
T <+ Extract from D" episodes that consist of transi-
tions (u¢, ag, r¢41,urr1) from player i’s point of view.
Add T to M, replacing oldest data if the memory
is full.
return M%,

end function

function UPDATESLMEMORY (MY, DY)
Dj; <« Extract all episodes from D" where player ¢
chose their approximate best response strategy.
B < Extract from Dé data that consist of pairs
(ug, pt), where iy is player ¢’s strategy at information
state u; at the time of sampling the respective episode.
return B

end function

function REINFORCEMENTLEARNING (M%)
Initialize FQI with previous iteration’s )-values.
B FQUM, ;)
return 3

end function

function SUPERVISEDLEARNING (MY )
Initialize counting model from previous iteration.
for each (uy, p11) in M do
Va € A(uy) : N(ug,a) < N(ug,a) + pe(a)

Va € A(uy) : m(ug, a) %
end for
return 7

end function

C River Poker

In our experiments, one instance of River poker im-
plements a Texas Hold’em scenario, where the first
player called a raise preflop, check/raised on the flop
and bet the turn. The community cards were set to
KhTc7d5sJh.  The players’ distributions assume that
player 1 likely holds one combination of “K4s-K2s,KTo-
K30,QT0-Q90,J90+,T90,T70,980,960” with probability
0.99 and a uniform random holding with probabil-
ity 0.01.  Similarly, player 2 is likely to hold one
combination of ”QQ-JJ,99-88,66,AQs-A5s,K6s,K4s-
K2s,QTs,Q7s,JTs,J7s,T8s+,T6s-T25,97s,87s,72s+,AQ0-
A50,K60,K40-K20,QTo,Q70,JTo,J70,T80+,T60-
T40,970,870,750+”.



