
A Proofs
Lemma 6. Let π and β be two behavioural strategies, Π
and B two mixed strategies that are realization equivalent
to π and β, and λ1, λ2 ∈ R≥0 with λ1 + λ2 = 1. Then for
each information state u ∈ U ,

µ(u) = π(u) +
λ2xβ(σu)

λ1xπ(σu) + λ2xβ(σu)
(β(u)− π(u))

defines a behavioural strategy µ at u and µ is realization
equivalent to the mixed strategy M = λ1Π + λ2B.

Proof. The realization plan of M = λ1Π + λ2B is

xM (σu) = λ1xΠ(σu) + λ2xB(σu), ∀u ∈ U .

and due to realization-equivalence, xΠ(σu) = xπ(σu) and
xB(σu) = xβ(σu) ∀u ∈ U . This realization plan induces a
realization equivalent behavioural strategy

µ(u, a) =
xM (σua)

xM (σu)

=
λ1xπ(σua) + λ2xβ(σua)

λ1xπ(σu) + λ2xβ(σu)

=
λ1xπ(σu)π(u, a) + λ2xβ(σu)β(u, a)

λ1xπ(σu) + λ2xβ(σu)

= π(u, a) +
λ2xβ(σu)(β(u, a)− π(u, a))

λ1xπ(σu) + λ2xβ(σu)
.

Theorem 7. Let π1 be an initial behavioural strategy pro-
file. The extensive-form process

βit+1 ∈ biεt+1
(π−it ),

πit+1(u) = πit(u) +
αt+1xβi

t+1
(σu)

(
βit+1(u)− πit(u)

)
(1− αt+1)xπi

t
(σu) + αt+1xβi

t+1
(σu)

for all players i ∈ N and all their information states
u ∈ U i, with αt → 0 and εt → 0 as t → ∞, and∑∞
t=1 αt = ∞, is realization-equivalent to a generalised

weakened fictitious play in the normal-form and therefore
the average strategy profile converges to a Nash equilib-
rium in all games with the fictitious play property.

Proof. By induction. Assume πt and Πt are realization
equivalent and βt+1 ∈ bεt+1(πt) is an εt+1-best response
to πt. By Kuhn’s Theorem, let Bt+1 be any mixed strat-
egy that is realization equivalent to βt+1. Then Bt+1 is an
εt+1-best response to Πt in the normal-form. By Lemma
6, the update in behavioural policies, πt+1, is realization
equivalent to the following update in mixed strategies

Πt+1 = (1− αt+1)Πt + αt+1Bt+1

and thus follows a generalised weakened fictitious
play.

B Algorithms

Algorithm 3 FSP with FQI and simple counting model
Instantiate functions FICTITIOUSSELFPLAY and GEN-
ERATEDATA as in algorithm 2

function UPDATERLMEMORY
(
Mi

RL,Di
)

T ← Extract from Di episodes that consist of transi-
tions (ut, at, rt+1, ut+1) from player i’s point of view.
Add T toMi

RL, replacing oldest data if the memory
is full.
returnMi

RL

end function

function UPDATESLMEMORY
(
Mi

SL,Di
)

Diβ ← Extract all episodes from Di where player i
chose their approximate best response strategy.
B ← Extract from Diβ data that consist of pairs
(ut, µt), where µt is player i’s strategy at information
state ut at the time of sampling the respective episode.
return B

end function

function REINFORCEMENTLEARNING
(
Mi

RL

)
Initialize FQI with previous iteration’s Q-values.
β ← FQI(Mi

RL)
return β

end function

function SUPERVISEDLEARNING
(
Mi

SL

)
Initialize counting model from previous iteration.
for each (ut, µt) inMi

SL do
∀a ∈ A(ut) : N(ut, a)← N(ut, a) + µt(a)

∀a ∈ A(ut) : π(ut, a)← N(ut,a)
N(ut)

end for
return π

end function

C River Poker
In our experiments, one instance of River poker im-
plements a Texas Hold’em scenario, where the first
player called a raise preflop, check/raised on the flop
and bet the turn. The community cards were set to
KhTc7d5sJh. The players’ distributions assume that
player 1 likely holds one combination of ”K4s-K2s,KTo-
K3o,QTo-Q9o,J9o+,T9o,T7o,98o,96o” with probability
0.99 and a uniform random holding with probabil-
ity 0.01. Similarly, player 2 is likely to hold one
combination of ”QQ-JJ,99-88,66,AQs-A5s,K6s,K4s-
K2s,QTs,Q7s,JTs,J7s,T8s+,T6s-T2s,97s,87s,72s+,AQo-
A5o,K6o,K4o-K2o,QTo,Q7o,JTo,J7o,T8o+,T6o-
T4o,97o,87o,75o+”.


