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Abstract

We introduce a framework for sparsity structures
defined via graphs. Our approach is flexible
and generalizes several previously studied spar-
sity models. Moreover, we provide efficient pro-
jection algorithms for our sparsity model that run
in nearly-linear time. In the context of sparse re-
covery, we show that our framework achieves an
information-theoretically optimal sample com-
plexity for a wide range of parameters. We
complement our theoretical analysis with experi-
ments demonstrating that our algorithms also im-
prove on prior work in practice.

1. Introduction

Over the past decade, sparsity has emerged as an important
tool in several fields including signal processing, statistics,
and machine learning. In compressive sensing, sparsity re-
duces the sample complexity of measuring a signal, and
statistics utilizes sparsity for high-dimensional inference
tasks. In many settings, sparsity is a useful ingredient be-
cause it enables us to model structure in high-dimensional
data while still remaining a mathematically tractable con-
cept. For instance, natural images are often sparse when
represented in a wavelet basis, and objects in a classifica-
tion task usually belong to only a small number of classes.

Due to the success of sparsity, a natural question is how we
can refine the notion of sparsity in order to capture more
complex structures. There are many examples where such
an approach is applicable: (i) large wavelet coefficients
of natural images tend to form connected frees, (ii) active
genes can be arranged in functional groups, and (iii) ap-
proximate point sources in astronomical data often form
clusters. In such cases, exploiting this additional structure
can lead to improved compression ratio for images, bet-
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ter multi-label classification, or smaller sample complexity
in compressive sensing and statistics. Hence an important
question is the following: how can we model such sparsity
structures, and how can we make effective use of this addi-
tional information in a computationally efficient manner?

There has been a wide range of work addressing these ques-
tions, e.g., (Yuan & Lin, 2006; Jacob et al., 2009; He &
Carin, 2009; Kim & Xing, 2010; Bi & Kwok, 2011; Huang
et al., 2011; Duarte & Eldar, 2011; Bach et al., 2012b; Rao
et al.,, 2012; Negahban et al., 2012; Simon et al., 2013;
El Halabi & Cevher, 2015). Usually, the proposed solutions
offer a trade-off between the following conflicting goals:

Generality What range of sparsity structures does the ap-
proach apply to?

Statistical efficiency What statistical performance im-
provements does the use of structure enable?

Computational efficiency How fast are the resulting al-
gorithms?

In this paper, we introduce a framework for sparsity mod-
els defined through graphs, and we show that it achieves a
compelling trade-off between the goals outlined above. At
a high level, our approach applies to data with an under-
lying graph structure in which the large coefficients form
a small number of connected components (optionally with
additional constraints on the edges). Our approach offers
three main features: (i) Generality: the framework en-
compasses several previously studied sparsity models, e.g.,
tree sparsity and cluster sparsity. (ii) Statistical efficiency:
our sparsity model leads to reduced sample complexity
in sparse recovery and achieves the information-theoretic
optimum for a wide range of parameters. (iii) Computa-
tional efficiency: we give a nearly-linear time algorithm for
our sparsity model, significantly improving on prior work
both in theory and in practice. Due to the growing size
of data sets encountered in science and engineering, algo-
rithms with (nearly-)linear running time are becoming in-
creasingly important.

* Authors ordered alphabetically.
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We achieve these goals by connecting our sparsity model
to the prize collecting Steiner tree (PCST) problem, which
has been studied in combinatorial optimization and approx-
imation algorithms. To establish this connection, we intro-
duce a generalized version of the PCST problem and give
a nearly-linear time algorithm for our variant. We believe
that our sparsity model and the underlying algorithms are
useful beyond sparse recovery, and we have already ob-
tained results in this direction. To keep the presentation
in this paper coherent, we focus on our results for sparse
recovery and briefly mention further applications in Sec. 7.

Before we present our theoretical results in Sections 3 to 5,
we give an overview in Section 2. Section 6 complements
our theoretical results with an empirical evaluation on both
synthetic and real data (a background-subtracted image, an
angiogram, and an image of text). We defer proofs and
additional details to the supplementary material.

Basic notation Let [d] be the set {1,2,...,d}. We say
that a vector 3 € R is s-sparse if at most s of its coeffi-
cients are nonzero. The support of 5 contains the indices
corresponding to nonzero entries in 3, i.e., supp(8) = {i €
[d]|B; # 0}. Given a subset S C [d], we write g for
the restriction of § to indices in S: we have (8s); = i
fori € S and (Bs); = 0 otherwise. The ¢3-norm of 5 is

181 = /S i 57

Sparsity models In some cases, we have more informa-
tion about a vector than only “standard” s-sparsity. A natu-
ral way of encoding such additional structure is via sparsity
models (Baraniuk et al., 2010): let M be a family of sup-
ports, i.e., M = {S1,So,...,S5.} where S; C [d]. Then
the corresponding sparsity model M is the set of vectors
supported on one of the .S;:

M = {B e R?|supp(B) C S forsome S € M} . (1)

2. Our contributions

We state our main contributions in the context of sparse
recovery (see Section 7 for further applications). Our goal
is to estimate an unknown s-sparse vector 3 € R? from
observations of the form

y=Xp+e, (2)
where X € R"*4 is the design matrix, y € R™ are the ob-
servations, and e € R™ is an observation noise vector. By
imposing various assumptions on X and e, sparse recovery

encompasses problems such as sparse linear regression and
compressive sensing.

2.1. Weighted graph model (WGM)

The core of our framework for structured sparsity is a
novel, general sparsity model which we call the weighted

(a) s-sparsity

(b) Cluster sparsity

Figure 1. Two examples of the weighted graph model. (a) In a
complete graph, any s-sparse support can be mapped to a single
tree (g = 1). (b) Using a grid graph, we can model a small number
of clusters in an image by setting g accordingly. For simplicity,
we use unit edge weights and set B = s — g in both examples.

graph model. In the WGM, we use an underlying graph
G = (V,E) defined on the coefficients of the unknown
vector 3, i.e., V = [d]. Moreover, the graph is weighted
and we denote the edge weights with w : F — N. We
identify supports S C [d] with subgraphs in G, in particular
forests (unions of individual trees). Intuitively, the WGM
captures sparsity structures with a small number of con-
nected components in G. In order to control the sparsity
patterns, the WGM offers three parameters:

e s, the total sparsity of S.

e ¢, the maximum number of connected components
formed by the forest F' corresponding to S.

e B, the bound on the total weight w(F’) of edges in the
forest F' corresponding to .S.

More formally, let v(H) be the number of connected com-
ponents in a graph . Then we can define the WGM:

Definition 1. The (G, s, g, B)-WGM is the set of supports

M={SCId]||S|=sandthereisa F C G

with Vg = S, v(F) = g, and w(F) < B} . ®)

Fig. 1 shows how two sparsity structures can be encoded
with the WGM. Since our sparsity model applies to arbi-
trary graphs G, it can describe a wide range of structures.
In particular, the model generalizes several previously stud-
ied sparsity models, including 1D-clusters, (wavelet) tree
hierarchies, the Earth Mover Distance (EMD) model, and
the unweighted graph model (see Table 1).

2.2. Recovery of vectors in the WGM

We analyze the statistical efficiency of our framework in
the context of sparse recovery. In particular, we prove that
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the sample complexity of recovering vectors in the WGM
is provably smaller than the sample complexity for “stan-
dard” s-sparse vectors. To formally state this result, we first
introduce a key property of graphs.

Definition 2. Let G = (V, E) be a weighted graph with
edge weights w : E — N. Then the weight-degree p(v) of
a node v is the largest number of adjacent nodes connected
by edges with the same weight, i.e.,

p(v) = max H(',v) € Elwl@' ,v)=0b}. ()

We define the weight-degree of G to be the maximum
weight-degree of any v € V.

Note that for graphs with uniform edge weights, the
weight-degree of G is the same as the maximum node de-
gree. Intuitively, the (weight) degree of a graph is an impor-
tant property for quantifying the sample complexity of the
WGM because the degree determines how restrictive the
bound on the number of components g is. In the extreme
case of a complete graph, any support can be formed with
only a single connected component (see Figure 1). Using
Definitions 1 and 2, we now state our sparse recovery result
(see Theorem 12 in Section 5 for a more general version):

Theorem 3. Let 3 € R? be in the (G, s, g, B)-WGM. Then

n= O(s (logp(G) + log f) +glog Z) )

i.i.d. Gaussian observations suffice to estimate 3. More
precisely, let e € R™ be an arbitrary noise vector and let
y € R" be defined as in Eq. 2 where X is an i.i.d. Gaussian
matrix. Then we can efficiently find an estimate (3 such that

18 =8| < Cllell, ©)

where C'is a constant independent of all variables above.

Note that in the noiseless case (e = 0), we are guaranteed to
recover [3 exactly. Moreover, our estimate B is in a slightly
enlarged WGM for any amount of noise, see Section 5.
Our bound (5) can be instantiated to recover previous sam-
ple complexity results, e.g., the n = O(slog g) bound for
“standard” sparse recovery, which is tight (Do Ba et al.,
2010).! For the image grid graph example in Figure 1,
Equation (5) becomes n = O(s + glog g), which matches
the information-theoretic optimum n = O(s) as long as the
number of clusters is not too large, i.e., g = O(s/logd).?

!To be precise, encoding s-sparsity with a complete graph as
in Figure 1 gives a bound of n = O(slog d). To match the log ¢
term, we can encode s-sparsity as g = s clusters of size one in a
fully disconnected graph with no edges.

2Optimality directly follows from a simple dimensionality ar-
gument: even if the s-sparse support of the vector 3 is known,
recovering the unknown coefficients requires solving a linear sys-
tem with s unknowns uniquely. For this, we need at least s linear
equations, i.e., s observations.

2.3. Efficient projection into the WGM

The algorithmic core of our sparsity framework is a
computationally efficient procedure for projecting arbi-
trary vectors into the WGM. More precisely, the model-
projection problem is the following: given a vector b € R?
and a WGM M, find the best approximation to b in M,
ie.,

Ppr(b) = argmin|b— b . (7
breM

If such a model-projection algorithm is available, one can
instantiate the framework of (Baraniuk et al., 2010) in order
to get an algorithm for sparse recovery with the respective
sparsity model.> However, solving Problem (7) exactly is
NP-hard for the WGM due to a reduction from the classi-
cal Steiner tree problem (Karp, 1972). To circumvent this
hardness result, we use the approximation-tolerant frame-
work of (Hegde et al., 2014a). Instead of solving (7) ex-
actly, the framework requires two algorithms with the fol-
lowing complementary approximation guarantees.

Tail approximation: Find an .S € M such that

_ < . 1 — / .
[b—bs| <ecr ;pelrﬁ\\b bs || (8)

Head approximation: Find an S € M such that

lbs]| = ez - max||bs|| - ©)

Here, cy > 1 and ¢y < 1 are arbitrary, fixed constants.
Note that a head approximation guarantee does not imply
a tail guarantee (and vice versa). In fact, stable recovery
is not possible with only one type of approximate projec-
tion guarantee (Hegde et al., 2014a). We provide two al-
gorithms for solving (8) and (9) (one per guarantee) which
both run in nearly-linear time.

Our model-projection algorithms are based on a connection
to the prize-collecting Steiner tree problem (PCST), which
is a generalization of the classical Steiner tree problem. In-
stead of finding the cheapest way to connect all terminal
nodes in a given weighted graph, we can instead omit some
terminals from the solution and pay a specific price for each
omitted node. The goal is to find a subtree with the optimal
trade-off between the cost paid for edges used to connect a
subset of the nodes and the price of the remaining, uncon-
nected nodes (see Section 3 for a formal definition).

We make the following three main algorithmic contribu-
tions. Due to the wide applicability of the PCST problem,
we believe that these algorithms can be of independent in-
terest (see Section 7).

Note that the framework does not supply general projection
algorithms. Instead, the model-projection algorithms have to be
designed from scratch for each model.
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e We introduce a variant of the PCST problem in which
the goal is to find a set of g trees instead of a single
tree. We call this variant the prize-collecting Steiner
forest (PCSF) problem and adapt the algorithm of
(Goemans & Williamson, 1995) for this variant.

e We reduce the projection problems (8) and (9) to a
small set of adaptively constructed PCSF instances.

e We give a nearly-linear time algorithm for the PCSF
problem and hence also the model projection problem.

2.4. Improvements for existing sparsity models

Our results are directly applicable to several previously
studied sparsity models that can be encoded with the
WGM. Table 1 summarizes these results. In spite of its gen-
erality, our approach at least matches the sample complex-
ity of prior work in all cases and actually offers an improve-
ment for the EMD model. Moreover, our running time is al-
ways within a polylogarithmic factor of the best algorithm,
even in the case of models with specialized solvers such as
tree sparsity. For the EMD and cluster models, our algo-
rithm is significantly faster than prior work and improves
the time complexity by a polynomial factor. To comple-
ment these theoretical results, our experiments in Section 6
show that our algorithm is more than one order of magni-
tude faster than previous algorithms with provable guaran-
tees and offers a better sample complexity in many cases.

2.5. Comparison to related work

In addition to the “point-solutions” for individual sparsity
models outlined above, there has been a wide range of work
on general frameworks for utilizing structure in sparse re-
covery. The approach most similar to ours is (Baraniuk
et al., 2010), which gives a framework underlying many of
the algorithms in Table 1. However, the framework has one
important drawback: it does not come with a full recovery
algorithm. Instead, the authors only give a recovery scheme
that assumes the existence of a model-projection algorithm
satisfying (7). Such an algorithm must be constructed from
scratch for each model, and the techniques that have been
used for various models so far are quite different. Our con-
tribution can be seen as complementing the framework of
(Baraniuk et al., 2010) with a nearly-linear time projec-
tion algorithm that is applicable to a wide range of sparsity
structures. This answers a question raised by the authors of
(Huang et al., 2011), who also give a framework for struc-
tured sparsity with a universal and complete recovery al-
gorithm. Their framework is applicable to a wide range of
sparsity models, but the corresponding algorithm is signif-
icantly slower than ours, both in theory (“Graph clusters”
in Table 1) and in practice (see Section 6). Moreover, our
recovery algorithm shows more robust performance across
different shapes of graph clusters.

Both of the approaches mentioned above use iterative
greedy algorithms for sparse recovery. There is also a large
body of work on combining M-estimators with convex reg-
ularizers that induce structured sparsity, e.g., see the sur-
veys (Bach et al., 2012a) and (Wainwright, 2014). The
work closest to ours is (Jacob et al., 2009), which uses an
overlapping group Lasso to enforce graph-structured spar-
sity (graph Lasso). In contrast to their approach, our algo-
rithm gives more fine-grained control over the number of
clusters in the graph. Moreover, our algorithm has better
computational complexity, and to the best of our knowl-
edge there are no formal results relating the graph struc-
ture to the sample complexity of the graph Lasso. Empriri-
cally, our algorithm recovers an unknown vector with graph
structure faster and from fewer observations than the graph
Lasso (see Section A in the supplementary material).

3. The prize-collecting Steiner forest problem

We now establish our connection between prize-collecting
Steiner tree (PCST) problems and the weighted graph
model. First, we formally define the PCST problem: Let
G = (V,E) be an undirected, weighted graph with edge
costs ¢ : £ — R{ and node prizes 7 : V — R{. For a
subset of edges E' C E, we write ¢c(E') = ) . c(e)
and adopt the same convention for node subsets. More-
over, for a node subset V/ C V, let V’ be the complement
V7’ =V \ V'. Then the goal of the PCST problem is to find
a subtree T = (V', E’) such that ¢(E") + 7(V’) is mini-
mized. We sometimes write ¢(7") and 7(T') if the node and
edge sets are clear from context.

Similar to the classical Steiner tree problem, PCST is
NP-hard. Most algorithms with provable approximation
guarantees build on the seminal work of (Goemans &
Williamson, 1995) (GW), who gave an efficient primal-
dual algorithm with the following guarantee:

c(T) +2#(T) < 2 T’rirsliartlree (T + = (T7) . (10)
Note that the PCST problem already captures three impor-
tant aspects of the WGM: (i) there is an underlying graph
G, (ii) edges are weighted, and (iii) nodes have prizes. If
we set the prizes to correspond to vector coefficients, i.e.,
7(i) = b?, the term 7(T') in the PCST objective function
becomes 7(T) = ||b — br||*, which matches the objective
in the model-projection problems (8) and (9). However,
there are two important differences. First, the objective
in the PCST problem is to find a single tree T', while the
WGM can contain supports defined by multiple connected
components (if g > 1). Moreover, the PCST problem op-
timizes the trade-off ¢(7") + m(T'), but we are interested
in minimizing ||b — by || subject to hard constraints on the
support cardinality |T'| and the support cost ¢(T") (the pa-
rameters s and B, respectively). In this section, we ad-
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Table 1. Results of our sparsity framework applied to several sparsity models. In order to simplify the running time bounds, we assume
that all coefficients are polynomially bounded in d, and that s < d'/?=# for some w1 > 0. For the graph cluster model, we consider the
case of graphs with constant degree. The exponent 7 depends on the degree of the graph and is always greater than 1. The parameters
w and h are specific to the EMD model, see (Hegde et al., 2014a) for details. We always have w - h = d and s > w. Our sparsity
framework improves on the sample complexity and running time of both the EMD and graph cluster models (bold entries).

Vol R Belpin Owanpe  Betem  Ownmni
1D-cluster (Cevher et al., 2009b)  O(s+ glog g) O(s+ glog g) O(dlog? d) O(dlog* d)
Trees (Hegde et al., 2014b) O(s) O(s) O(dlog? d) O(dlog* d)
EMD (Hegde etal., 2014a)  O(slog 1% O(slogZ)  O(sh?Blogd) O(wh?log*d)
Graph clusters  (Huang et al., 2011) O(s+ glogd) O(s+ glog g) o(dn) O(dlog* d)

dress the first of these two issues; Section 4 then completes
the connection between PCST and the WGM. We begin by
defining the following variant of the PCST problem.

Definition 4 (The prize-collecting Steiner forest problem).
Let g € N be the target number of connected components.
Then the goal of the prize-collecting Steiner forest (PCSF)
problem is to find a subgraph F = (V' E") withvy(F) = g
that minimizes c(E") + 7(V").

As defined in Section 2.1, y(F’) is the number of connected
components in the (sub-)graph F'. To simplify notation in
the rest of the paper, we say that a forest F' is a g-forest
if v(F') = g. There is always an optimal solution for the
PCSF problem which consists of g trees because remov-
ing edges cannot increase the objective value. This allows
us to employ the PCSF problem for finding supports in
the WGM that consist of several connected components.
In order to give a computationally efficient algorithm for
the PCSF variant, we utilize prior work for PCST: (i) To
show correctness of our algorithm, we prove that the GW
scheme for PCST can be adapted to our PCSF variant. (ii)
To achieve a good time complexity, we show how to simu-
late the GW scheme in nearly-linear time.

3.1. The Goemans-Williamson (GW) scheme for PCSF

A useful view of the GW scheme is the “moat-growing”
interpretation of (Jiinger & Pulleyblank, 1995), which de-
scribes the algorithm as an iterative clustering method that
constructs “moats” around every cluster. These moats are
essentially the dual variables in the linear program of the
GW scheme. Initially, every node forms its own active
cluster with a moat of size 0. The moats around each active
cluster then grow at a uniform rate until one of the follow-
ing two events occurs:

Cluster deactivation When the sum of moats in a cluster
reaches the sum of node prizes in that cluster, the clus-
ter is deactivated.

Cluster merge When the sum of moats that are intersected
by an edge e reaches the cost of e, the clusters at the
two endpoints of e are merged and e is added to the
current solution.

The moat-growing stage of the algorithm terminates when
only a single active cluster remains. After that, the resulting
set of edges is pruned in order to achieve a provable approx-
imation ratio. We generalize the proof of (Feofiloff et al.,
2010) and show that it is possible to extract more than one
tree from the moat-growing phase as long as the trees come
from different clusters. Our modification of GW terminates
the moat-growing phase when exactly g active clusters re-
main, and we then apply the GW pruning algorithm to each
resulting tree separately. This gives the following result.

Theorem 5. There is an algorithm for the PCSF problem
that returns a g-forest F' such that

o(F)+2n(F) < min
F'CG,y(F")<g

2¢(F") +2n(F) . (11)
For g = 1, the theorem recovers the guarantee in (10). We
defer the proof to Sec. D.1 of the supplementary material.

3.2. A fast algorithm for Goemans-Williamson

While the modified GW scheme produces good approxi-
mate solutions, it is not yet sufficient for a nearly-linear
time algorithm: we still need an efficient way of simu-
lating the moat-growing phase. There are two main diffi-
culties: (i) The remaining “slack” amounts on edges can
shrink at different rates depending on how many of the
edge endpoints are in active clusters. (ii) A single clus-
ter event (merge or deactivation) can change this rate for
up to ©(|V]) edges. In order to maintain edge events ef-
ficiently, we use the dynamic edge splitting approach in-
troduced by (Cole et al., 2001). This technique essentially
ensures that every edge always has at most one active end-
point, and hence its slack either shrinks at rate 1 or not
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at all. However, edge splitting introduces additional edge
events that do not directly lead to a cluster merge. While
it is relatively straightforward to show that every such in-
termediate edge event halves the remaining amount of slack
on an edge, we still need an overall bound on the number of
intermediate edge events necessary to achieve a given pre-
cision. For this, we prove the following new result about
the GW moat growing scheme.

Theorem 6. Let all edge costs c(e) and node prizes m(v)
be even integers. Then all finished moats produced by the
GW scheme have integer sizes.

In a nutshell, this theorem shows that one additional bit of
precision is enough to track all events in the moat-growing
phase accurately. We prove the theorem via induction over
the events in the GW scheme, see Section D.2.2 for details.
On the theoretical side, this result allows us to bound the
overall running time of our algorithm for PCSF. Combined
with suitable data structures, we can show the following:

Theorem 7. Let o be the number of bits used to specify
a single edge cost or node prize. Then there is an algo-

rithm achieving the PCSF guarantee of Theorem 5 in time
O(a - |Ellog|V)).

On the practical side, we complement Theorem 6 with a
new adaptive edge splitting scheme that leads to a small
number of intermediate edge events. Our experiments show
that our scheme results in less than 3 events per edge on
average (see Section D.3 in the supplementary material).

4. Sparse approximation with the WGM

In order to utilize the WGM in sparse recovery, we em-
ploy the framework of (Hegde et al., 2014a). As out-
lined in Section 2.3, the framework requires us to construct
two approximation algorithms satisfying the head- and tail-
approximation guarantees (8) and (9). We now give two
such model-projection algorithms, building on our tools for
PCSF developed in the previous section.

4.1. Tail-approximation algorithm

We can connect the PCSF objective to the WGM quantities
by setting 7(i) = b7 and c(e) = w(e) + 1, which gives:

o(F) = w(F) +(|F|—g) and x(F)=[b—br|*.

After multiplying the edge costs with a trade-off parameter
A, the PCSF objective A-c(F)+m(F') essentially becomes a
Lagrangian relaxation of the model-constrained optimiza-
tion problem (8). We build our tail-approximation algo-
rithm on top of this connection, starting with an algorithm
for the “tail”-variant of the PCSF problem. By performing
a binary search over the parameter A (see Algorithm 1), we

get a bicriterion guarantee for the final forest.

Algorithm 1 PCSF-TAIL

1: Input: G, ¢, m, g, cost-budget C, parameters v and 9.

2: We write cx(e) = A - c(e).

3: Tmin minw(i)>0 (1), Ao Trzmcif‘

4: F <+ PCSF-GW(G, cy,, T, 9)

5: if ¢(F) <2C and n(F) = 0 then return F

6: A0, N 37(G), e+ Tmwd

7: while \; — )\, > ¢ do

8: A, — ()\l+>\7~)/2

9:  F+ PCSF-GW(G,cx, . m,9)

10 if ¢(F) > C and ¢(F) < vC then return F’
11: if ¢(F) > ~C then \,. < A\, else \; < A\,
12: end while

—_
[O%]

: return ' < PCSF-GW(G, ¢y, 7, g)

Theorem 8. Let v > 2 and § > 0. Then PCSF-TAIL re-
turns a g-forest F C G such that ¢(F) < v - C and

m(F) . (12)

7(F) < (1 +

+ 5> min
v—2 Y(F')=g,c(F")<C

Theorem 8 does not give ¢(F') < C exactly, but the cost
of the resulting forest is still guaranteed to be within a con-
stant factor of C. The framework of (Hegde et al., 2014a)
also applies to projections into such slightly larger mod-
els. As we will see in Section 5, this increase by a constant
factor does not affect the sample complexity.

For the trade-off between support size and support weight,
we also make use of approximation. By scalarizing the two
constraints carefully, i.e., setting c(e) = w(e) + £, we get
the following result. The proofs of Theorems 8 and 9 can
be found in the supplementary material, Section C.1.

Theorem 9. Let M be a (G, s, g, B)-WGM, let b € RY,
and let v > 2. Then there is an algorithm that returns a
support S C [d] in the (G, 2v - s + g, g, 2v - B)-WGM
satisfying (8) with ¢y = \/1+ 3/(v — 2). Moreover, the
algorithm runs in time O(|E|log® d).

4.2. Head-approximation algorithm

For our head-approximation algorithm, we also use the
PCSF objective as a Lagrangian relaxation of the model-
constraint problem (9). This time, we multiply the node
prizes instead of the edge costs with a parameter A\. We
perform a binary search similar to Alg. 1, but the final step
of the algorithm requires an extra subroutine. At the end of
the binary search, we are guaranteed to have a forest with
good “density” Z(( 5)) , but the good forest could correspond
to either the lower bound A; or the upper bound A,. In the
latter case, we have no bound on the cost of the correspond-
ing forest F,.. However, it is always possible to extract a
high-density sub-forest with bounded cost from F.:
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Algorithm 2 GRAPH-COSAMP
1: IAnput: y, X, G, s, g, B, number of iterations t.

2: ﬁg —0

3:fori«1,...,tdo _

4. b(—XT(y—XBZ',])

5: S+ supp(@_l) UHEADAPPROX (b, G, s, ¢, B)
6: zZg X;,y7 zgic <0

7: S < TAILAPPROX(z, G, s, g, B)

8: Bz — Zs

9: end for

0:

return 3 < @

—

Lemma 10. Let T be a tree and C' < ¢(T). Then
there is a subtree T' C T such that ¢(T") < C' and
m(T") > % . % Moreover, we can find such a subtree
T in linear time.

The algorithm first converts the tree into a list of nodes
corresponding to a tour through 7. Then we can extract
a good sub-tree by either returning a single, high-prize
node or sliding a variable-size window across the list of
nodes. See Section C.2 in the supplementary material
for details. Combining these components, we get a head-
approximation algorithm with the following properties.

Theorem 11. Let M be a (G, s, g, B)-WGM and let b €
R®. Then there is an algorithm that returns a support S C
[d] inthe (G, 25+ g, g,2B)-WGM satisfying (9) with cg =
\/1/14. The algorithm runs in time O(|E|log® d).

5. Application in sparse recovery

We now instantiate the framework of (Hegde et al., 2014a)
to give a sparse recovery algorithm using the WGM. The
resulting algorithm (see Alg. 2) is a variant of CoSaMP
(Needell & Tropp, 2009) and uses the head- and tail-
approximation algorithms instead of the hard thresholding
operators.* In order to state the corresponding recovery
guarantee in full generality, we briefly review the definition
of the (model-) restricted isometry property (RIP) (Candes
& Tao, 2005; Baraniuk et al., 2010). We say that a matrix
X satisfies the (M, §)-model-RIP if for all § € M:

1=0) - 18I> < IXBI> < (1 +0)-118]*.  (13)

Theorem 12. Let 3 € R? be in the (G, s, g, B)-WGM M
and let X € R™*? be a matrix satisfying the model-RIP for
a (G, c18,9,c2B)-WGM and a fixed constant 6, where 1
and cq are also fixed constants. Moreover, let e € R™ be an
arbitrary noise vector and let y € R"™ be defined as in (2).

4Strictly speaking, HEADAPPROX’ is a “boosted” version of
the head-approximation algorithm developed here. See (Hegde
et al., 2014a) for details.

Then GRAPH-COSAMP returns a B in the (G, 5s,g,5B)-

WGM such that ||3 — 5” < cslle|l, where c3 is a fixed
constant. Moreover, GRAPH-COSAMP runs in time

(0] <(TX + |E|log® d) log w> ,
e
where T'x is the time complexity of a matrix-vector multi-
plication with X.

In order to establish sample complexity bounds for con-
crete matrix ensembles (e.g., random Gaussian matrices as
in Theorem 3), we use a result of (Baraniuk et al., 2010)
that relates the sample complexity of sub-Gaussian matrix
ensembles to the size of the model, i.e., the quantity |M].
More precisely, n = O(s + log|M]|) rows / observations
suffice for such matrices to satisfy the model-RIP for M
and a fixed constant . For the WGM, we use a counting
argument to bound |M]| (see Section B in the supplemen-
tary material). Together with Theorem 12, the following
theorem establishes Theorem 3 from Section 2.2.

Theorem 13.Let M be the set of supports in the
(G,s,g,B)-WGM. Then

B d
log|M| = O<s <10gp(G) + log s) + glog g> .

Next, we turn our attention to the running time of GRAPH-
CoSAMP. Since our model-projection algorithms run in
nearly-linear time, the matrix-vector products involving X
can become the bottleneck in the overall time complexity:>
for a dense Gaussian matrix, we have T'x = §2(sd), which
would dominate the overall running time. If we can control
the design matrix (as is often the case in compressive sens-
ing), we can use the construction of (Hegde et al., 2014b)
to get a sample-optimal matrix with nearly-linear T'x in the
regime of s < d'/?7# ;i > 0. Such a matrix then gives
an algorithm with nearly-linear running time. Note that the
bound on s is only a theoretical restriction in this construc-
tion: as our experiments show, a partial Fourier matrix em-
pirically performs well for significantly larger values of s.

6. Experiments

We focus on the performance of our algorithm Graph-
CoSaMP for the task of recovering 2D data with clustered
sparsity. Multiple methods have been proposed for this
problem, and our theoretical analysis shows that our algo-
rithm should improve upon the state of the art (see Table 1).
We compare our results to StructOMP (Huang et al., 2011)
and the heuristic Lattice Matching Pursuit (LaMP) (Cevher
et al., 2009a). The implementations were supplied by the

51t is not necessary to compute a full pseudo-inverse X . See
(Needell & Tropp, 2009) for details.
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Figure 2. Sparse recovery experiments. The images in the top row are the original images 3. In the regime where the algorithms
recover with high probability, the estimates 5 are essentially identical to the original images. Our algorithm Graph-CoSaMP achieves
consistently good recovery performance and offers the best sample complexity for images (b) and (c). Moreover, our algorithm is about
20 times faster than StructOMP, the other method with provable guarantees for the image cluster model.

authors and we used the default parameter settings. More-
over, we ran two common recovery algorithms for “stan-
dard” s-sparsity: Basis Pursuit (Candes et al., 2006) and
CoSaMP (Needell & Tropp, 2009).

We follow a standard evaluation procedure for sparse re-
covery / compressive sensing: we record n observations
y = X of the (vectorized) image 3 € R? using a sub-
sampled Fourier matrix X. We assume that all algorithms
possess prior knowledge of the sparsity s and the number of
connected-components ¢ in the true support of the image 3.
We declare a trial successful if the squared ¢5-norm of the
recovery error is at most 5% of the squared £2-norm of the
original vector 5. The probability of successful recovery is
then estimated by averaging over 50 trials. We perform sev-
eral experiments with varying oversampling ratios n/s and
three different images. See Section A in the supplementary
material for a description of the dataset, experiments with
noise, and a comparison with the graph Lasso.

Figure 2 demonstrates that Graph-CoSaMP yields consis-
tently competitive phase transitions and exhibits the best
sample complexity for images with “long” connected clus-
ters, such as the angiogram image (b) and the text image
(c). While StructOMP performs well on “blob”-like im-
ages such as the background-subtracted image (a), its per-
formance is poor in our other test cases. For example,
it can successfully recover the text image only for over-
sampling ratios n/s > 15. Note that the performance of
Graph-CoSaMP is very consistent: in all three examples,
the phase transition occurs between oversampling ratios 3
and 4. Other methods show significantly more variability.

We also investigate the computational efficiency of Graph-
CoSaMP. We consider resized versions of the angiogram
image and record n = 6s observations for each image size
d. Figure 2(d) displays the recovery times (averaged over
50 trials) as a function of d. We observe that the runtime of
Graph-CoSaMP scales nearly linearly with d, comparable
to the conventional sparse recovery methods. Moreover,
Graph-CoSaMP is about 20 x faster than StructOMP.

7. Further applications

We expect our algorithms to be useful beyond sparse recov-
ery and now briefly describe two promising applications.

Seismic feature extraction In (Schmidt et al., 2015), the
authors use Steiner tree methods for a seismic feature ex-
traction task. Our new algorithms for PCSF give a princi-
pled way of choosing tuning parameters for their proposed
optimization problem.. Moreover, our fast algorithms for
PCSF can speed-up their method.

Event detection in social networks (Rozenshtein et al.,
2014) introduce a method for event detection in social net-
works based on the PCST problem. Their method per-
forms well but produces spurious results in the presence
of multiple disconnected events because their PCST algo-
rithm produces only a single tree instead of a forest. Our
new algorithm for PCSF gives exact control over the num-
ber of trees in the solution and hence directly addresses this
issue. Furthermore, the authors quote a running time of
O(|V|*log|V|) for their GW scheme, so our nearly-linear
time algorithm allows their method to scale to larger data.
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