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Abstract
Factorized information criterion (FIC) is a re-
cently developed approximation technique for
the marginal log-likelihood, which provides an
automatic model selection framework for a few
latent variable models (LVMs) with tractable in-
ference algorithms. This paper reconsiders FIC
and fills theoretical gaps of previous FIC studies.
First, we reveal the core idea of FIC that allows
generalization for a broader class of LVMs. Sec-
ond, we investigate the model selection mecha-
nism of the generalized FIC, which we provide
a formal justification of FIC as a model selec-
tion criterion for LVMs and also a systematic
procedure for pruning redundant latent variables.
Third, we uncover a few previously-unknown re-
lationships between FIC and the variational free
energy. A demonstrative study on Bayesian prin-
cipal component analysis is provided and numer-
ical experiments support our theoretical results.

1. Introduction
The marginal log-likelihood is a key concept of Bayesian
model identification of latent variable models (LVMs),
such as mixture models (MMs), probabilistic principal
component analysis, and hidden Markov models (HMMs).
Determination of dimensionality of latent variables is an
essential task to uncover hidden structures behind the ob-
served data as well as to mitigate overfitting. In gen-
eral, LVMs are singular (i.e., mapping between param-

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

eters and probabilistic models is not one-to-one) and
such classical information criteria based on the regu-
larity assumption as the Bayesian information criterion
(BIC) (Schwarz, 1978) are no longer justified. Since ex-
act evaluation of the marginal log-likelihood is often not
available, approximation techniques have been developed
using sampling (i.e., Markov Chain Monte Carlo meth-
ods (MCMCs) (Hastings, 1970)), a variational lower bound
(i.e., the variational Bayes methods (VB) (Attias, 1999;
Jordan et al., 1999)), or algebraic geometry (i.e., the widely
applicable BIC (WBIC) (Watanabe, 2013)). However,
model selection using these methods requires heavy com-
putational cost (e.g., a large number of MCMC sampling in
a high-dimensional space, an outer loop for WBIC.)

In the last few years, a new approximation technique
and an inference method, factorized information cri-
terion (FIC) and factorized asymptotic Bayesian in-
ference (FAB), have been developed for some binary
LVMs (Fujimaki & Morinaga, 2012; Fujimaki & Hayashi,
2012; Hayashi & Fujimaki, 2013; Eto et al., 2014;
Liu et al., 2015). Unlike existing methods that evaluate
approximated marginal log-likelihoods calculated for
each latent variable dimensionality (and therefore need an
outer loop for model selection), FAB finds an effective
dimensionality via an EM-style alternating optimization
procedure.

For example, let us consider a K-component MM for N
observations X> = (x1, . . . ,xN ) with one-of-K coding
latent variables Z> = (z1, . . . , zN ), mixing coefficients
β = (β1, . . . , βK), and DΞ-dimensional component-wise
parameters Ξ = {ξ1, . . . , ξK}. By using Laplace’s
method to the marginalization of the log-likelihood, FIC
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of MMs (Fujimaki & Morinaga, 2012) is derived by

FICMM(K) ≡ max
q

Eq

[
ln p(X,Z | β̂, Ξ̂,K)

−
∑
k

Dξk

2
ln

∑
n znk
N

]
+H(q)− DΠ

2
lnN, (1)

where q is the distribution of Z, β̂ and Ξ̂ are the maximum
joint-likelihood estimators (MJLEs)1, DΠ = DΞ +K − 1
is the total dimension of Ξ and β, and H(q) is the entropy
of q. A key characteristic of FIC can be observed in the
second term of Eq. (1), which gives the penalty in terms
of model complexity. As we can see, the penalty term
decreases when

∑
n znk—the number of effective sam-

ples of the k-th component—is small, i.e., Z is degener-
ated. Therefore, through the optimization of q, the de-
generate dimension is automatically pruned until a non-
degenerated Z is found. This mechanism makes FAB a
one-pass model selection algorithm and computationally
more attractive than the other methods. The validity of the
penalty term has been confirmed for other binary LVMs,
e.g., HMMs (Fujimaki & Hayashi, 2012), latent feature
models (Hayashi & Fujimaki, 2013), and mixture of ex-
perts (Eto et al., 2014).

Despite FAB’s practical success compared with BIC and
VB, it is unclear that what conditions are actually neces-
sary to guarantee that FAB yields the true latent variable
dimensionality. In addition, the generalization of FIC for
non-binary LVMs remains an important issue. In case that
Z takes negative and/or continuous values,

∑
n znk is no

longer interpretable as the number of effective samples, and
we loose the clue for finding the redundant dimension of Z.

This paper proposes generalized FIC (gFIC), given by

gFIC(K) ≡Eq∗ [L(Z, Π̂,K)] +H(q), (2)

L(Z,Π,K) = ln p(X,Z | Π,K)− 1

2
ln |FΞ| −

DΠ

2
lnN.

Here, q∗(Z) ≡ p(Z|X,K) is the marginal posterior and
FΞ̂ is the Hessian matrix of− ln p(X,Z|Π,K)/N with re-
spect to Ξ. In gFIC, the penalty term is given by the volume
of the (empirical) Fisher information matrix, which natu-
rally penalizes model complexity even for continuous la-
tent variables. Accordingly, gFIC is applicable to a broader
class of LVMs, such as Bayesian principal component anal-
ysis (BPCA) (Bishop, 1998).

Furthermore, we prove that FAB automatically prunes
redundant dimensionality along with optimizing q, and
gFIC for the optimized q asymptotically converges to the

1Note that the MJLE is not equivalent to the maxi-
mum a posteriori estimator (MAP). The MJLE is given
by argmaxΘ p(X,Z|Θ) while the MAP is given by
argmaxΘ p(X,Z|Θ)p(Θ).

marginal log-likelihood with a constant order error under
some reasonable assumptions. This justifies gFIC as a
model selection criterion for LVMs and further a natural
one-pass model “pruning” procedure is derived, which is
performed heuristically in previous FIC studies. We also
provide an interpretation of gFIC as a variational free en-
ergy and uncover a few previously-unknown relationships
between them. Finally, we demonstrate the validity of gFIC
by applying it to BPCA. The experimental results agree
with to the theoretical properties of gFIC.

2. LVMs and Degeneration
We first define the class of LVMs we deal with in this paper.
Here, we consider LVMs that have K-dimensional latent
variables zn (including the MMs in the previous section),
but now zn can take not only binary but also real values.
Given X and a model family (e.g., MMs), our goal is to
determine K and we refer to this as a model. Note that we
sometimes omit the notation K for the sake of brevity, if it
is obvious from the context.

The LVMs have DΞ-dimensional component-dependent
parameters Ξ = {ξ1, . . . , ξK} and DΘ-dimensional
component-independent parameters Θ, which include hy-
perparameters of the prior of Z. We abbreviate them
as Π = {Θ,Ξ} and assume the dimension DΠ =
DΘ + DΞ is finite. Then, we define the joint prob-
ability: p(X,Z,Π) = p(X|Z,Π)p(Z|Π)p(Π) where
ln p(X,Z|Π) is twice differentiable at Π ∈ P . Let FΠ ≡(

FΘ FΘ,Ξ

F>
Θ,Ξ FΞ

)
= −

(
∂

∂Θ>
∂

∂Ξ>

)(
∂

∂Θ
∂
∂Ξ

) ln p(X,Z | Π)

N
.

Note that the MJLE Π̂ ≡ argmaxΠ ln p(X,Z | Π) de-
pends on Z (and X). In addition, ln p(X,Z | Π) can have
multiple maximizers, and Π̂ could be a set of solutions.

Model redundancy is a notable property of LVMs. Be-
cause the latent variable Z is unobservable, the pair (Z,Π)
is not necessarily determined uniquely for a given X. In
other words, there could be pairs (Z,Π) and (Z̃, Π̃), whose
likelihoods have the same value, i.e., p(X,Z | Π,K) =
p(X, Z̃ | Π̃,K). In such case, the model possibly has mul-
tiple maxima, and the conventional asymptotic analysis is
no longer valid (Watanabe, 2009).

Previous FIC studies address this redundancy by introduc-
ing a variational representation that enables treating Z as
fixed, as we explain in the next section. However, even if
Z is fixed, the redundancy still remains, namely, the case
in which Z is singular or “degenerated,” and there exists an
equivalent likelihood with a smaller model K ′ < K:

p(X,Z | Π,K) = p(X, Z̃K′ | Π̃K′ ,K ′). (3)

In this case, K is overcomplete for Z, and Z lies on the
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subspace of the model K. As a simple example, let us con-
sider a three-component MM for which Z = (z,1− z,0).
In this case, ξ3 is unidentifiable, because the third com-
ponent is completely unused, and the K ′ = 2-component
MM with Z̃2 ≡ (z,1 − z) and Π̃2 ≡ (Θ, (ξ1, ξ2)) satis-
fies equivalence relation (3). The notion of degeneration is
defined formally as follows.

Definition 1. Given X andK, Z is degenerated if there are
multiple MJLEs and any FΠ̂ of the MJLEs are not positive
definite. Similarly, p(Z) is degenerated in distribution, if
Ep[FΠ̂] are not positive definite. Let κ(Z) ≡ rank(FΠ̂)
and κ(p) ≡ rank(Ep[FΠ̂]).

The idea of degeneration is conceptually understandable as
an analogous of linear algebra. Namely, each component of
a model is a “basis”, Z are “coordinates”, and κ(Z) is the
number of necessary components to represent X, i.e., the
“rank” of X in terms of the model family. The degeneration
of Z is then the same idea of the “degeneration” in linear
algebra, i.e., the number of components is too many and Π
is not uniquely determined even if Z is fixed.

As discussed later, given a degenerated Z where κ(Z) =
K ′, finding the equivalent parameters Z̃K′ and Π̃K′ that
satisfy Eq. (3) is an important task. In order to analyze this,
we assume A1): for any degenerated Z under a modelK ≥
2 and K ′ < K, there exists a continuous onto mapping
(Z,Π) → (Z̃K′ , Π̃K′) that satisfies Eq. (3), and Z̃K′ is
not degenerated. Note that, if P is a subspace of RDΠ , a
linear projection V : RDΠ 7→ RDΠ

K′ satisfies A1 where
V is the top-DΠK′ eigenvectors of FΠ. This is verified
easily by the fact that, by using the chain rule, FΠ̃K′

=

VFΠ̂V>, which is a diagonal matrix whose elements are
positive eigenvalues. Therefore, FΠ̃K′

is positive definite

and Z̃K′ is not degenerated.

Let us further introduce a few assumptions required to
show the asymptotic properties of gFIC. Suppose A2) the
joint distribution is mutually independent in sample-wise,

p(X,Z | Π,K) =
∏
n

p(xn, zn | Π,K), (4)

and A3) ln p(Π | K) is constant, i.e., limN→∞ ln p(Π |
K)/N = 0. In addition, A4) p(Π | K) is continuous,
not improper, and its support P is compact and the whole
space. Note that for almost all Z, we expect that Π̂ ∈ P is
uniquely determined and FΠ̂ is positive definite, i.e., A5)
if Z is not degenerated, then ln p(X,Z | Π,K) is concave
and det |FΠ̂| <∞.

2.1. Examples of the LVM Class

The above definition covers a broad class of LVMs. Here,
we show that, as examples, MMs and BPCA are included in
that class. Note that A2 does not allow correlation among

samples and analysis of cases with sample correlation (e.g.
time series models) remains as an open problem.

MMs In the same notation used in Section 1,
the joint likelihood is given by p(X,Z|Π) =∏

n

∏
k{βkpk(xn|ξk)}znk where pk is the density of

component k. If ξ1, . . . , ξK have no overlap, FΞ is
the block-diagonal matrix whose block is given by
Fξk

= −
∑

n∇∇ ln pk(xn|ξk)znk/N . This shows that
the MM is degenerated, when more than one column
of Z is filled by zero. For that case, removing such
columns and corresponding ξk suffices as Z̃K′ and
Π̃K′ in A1. Note that if pk is an exponential-family
distribution exp(x>

n ξk − ψ(ξk)), −∇∇ ln pk(xn|ξk) =
∇∇ψ(ξk) = C does not depend on n and gFIC
recovers the original formulation of FICMM, i.e.,
1
2 ln |Fξ̂k

| = 1
2 ln |C(

∑
n znk

N )| = Dξk

2 ln
∑

n znk

N + const.

BPCA Suppose X ∈ RN×D is centerized, i.e.,
∑

n xn =
0. Then, the joint likelihood of X and Z ∈ RN×K is
given by p(X,Z|Π) =

∏
nN(xn|Wzn,

1
λI)N(zn|0, I),

where Ξ = W = (w·1, . . . ,w·K) is a linear basis and
Θ = λ is the reciprocal of the noise variance. Note that
the original study of BPCA (Bishop, 1998) introduces the
additional priors p(W) =

∏
dN(wd|0,diag(α−1)) and

p(λ) = Gamma(λ|aλ, bλ) and the hyperprior p(α) =∏
k Gamma(αk|aα, bα). In this paper, however, we do

not specify explicit forms of those priors but just treat them
as an O(1) term.

Since there is no second-order interaction between wi and
wj 6=i, the Hessian FΞ is a block-diagonal and each block
is given by λ

NZ>Z. The penalty term is then given as

−1

2
ln |FΞ| = −

D

2
(K lnλ+ ln | 1

N
Z>Z|), (5)

and Z is degenerated, if rank(Z) < K. Suppose that Z is
degenerated, let K ′ = rank(Z) < K, and let the SVD be
Z = Udiag(σ)V> = (UK′ ,0)diag(σK′ ,0)(VK′ ,0)>,
where UK′ and VK′ are K ′ non-zero singular vectors and
σK′ is K ′ non-zero singular values. From the definition of
FΞ, the projection V removes the degeneration of Z, i.e.,
by letting Z̃ = ZV and W̃ = WV,

ln p(X,Z | Π,K) = −λ
2
‖X− ZW>‖2F −

1

2
‖Z‖2F + const.

= −λ
2
‖X− Z̃W̃

>‖2F −
1

2
‖Z̃‖2F + const.

= ln p(X, Z̃K′ | {λ,W̃K′},K ′).

where ‖A‖2F =
∑

ij a
2
ij denotes the Frobenius norm,

Z̃K′ = UK′diag(σK′), and W̃K′ = WVK′ . V trans-
forms K−K ′ redundant components to 0-column vectors,
and we can find the smaller model K ′ by removing the 0-
column vectors from W̃ and Z̃, which satisfies A1.
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3. Derivation of gFIC
To obtain p(X | K), we need to marginalize out two vari-
ables: Z and Π. Let us consider the variational form for Z,
written as

ln p(X|K) =Eq[ln p(X,Z|K)] +H(q) + KL(q‖q∗) (6)
=Eq∗ [ln p(X,Z|K)] +H(q∗), (7)

where KL(q‖p) =
∫
q(x) ln q(x)/p(x)dx is the Kullback-

Leibler (KL) divergence.

Variational representation (7) allows us to consider the
cases of whether Z is degenerated or not separately. In par-
ticular, when Z ∼ q∗(Z) is not degenerated, then A5 guar-
antees that p(X,Z | K) is regular, and standard asymp-
totic results such as Laplace’s method are applicable. In
contrast, if q∗(Z) is degenerated, p(X,Z | K) becomes
singular and its asymptotic behavior is unclear.

In this section, we analyze the asymptotic behavior of the
variational representation (7) in both cases and show that
gFIC is accurate even if q∗(Z) is degenerated. Our main
contribution is the following theorem.2

Theorem 2. Let K ′ = κ(p(Z | X,K)). Then,

ln p(X | K) = gFIC(K ′) +O(1). (8)

We emphasize that the above theorem holds even if the
model family does not include the true distribution of X.
To prove Theorem 2, we first investigate the asymptotic be-
havior of ln p(X | K) for the non-degenerated case.

3.1. Non-degenerated Cases

Suppose K is fixed, and consider the marginalization
p(X,Z) =

∫
p(X,Z|Π)p(Π)dΠ. If p(Z|X) is not de-

generated, then Z ∼ p(Z|X) is not degenerated with prob-
ability one. This suffices to guarantee the regularity condi-
tion (A5) and hence to justify the application of Laplace’s
method, which approximates p(X,Z) in an asymptotic
manner (Tierney & Kadane, 1986).

Lemma 3. If Z is not degenerated, p(X,Z) =

p(X,Z, Π̂)|FΠ̂|
−1/2

(
2π

N

)DΠ/2

(1 +O(N−1)). (9)

This result immediately yields the following relation:

ln p(X,Z) = L(Z, Π̂,K) +O(1). (10)

Substitution of Eq. (10) into Eq. (7) yields Eq. (8).Note
that we drop the O(1) terms: ln p(Π̂) (see A3), DΠ

2 ln 2π,
and a term related to FΘ̂ to obtain Eq. (10). We empha-
size here that the magnitude of FΠ (and FΘ and FΞ) is

2A formal proof is given in supplemental material.

constant by definition. Therefore, ignoring all of the in-
formation of FΠ̂ in Eq. (9) just gives another O(1) error
and equivalence of gFIC (8) still holds. However, FΞ con-
tains important information of which component is effec-
tively used to captures X. Therefore, we use the relation
ln |FΠ| = ln |FΞ| + ln |FΞ,ΠF−1

Π F>
Ξ,Π| and remain the

first term in gFIC. In Section 4.3, we interpret the effect of
FΞ in more detail.

3.2. Degenerated Cases

If p(Z | X,K) is degenerated, then the regularity condi-
tion does not hold, and we cannot use Laplace’s method
(Lemma 3) directly. In that case, however, A1 guaran-
tees the existence of a variable transformation (Z,Π) →
(Z̃K′ , Π̃K′) that replaces the joint likelihood by the equiv-
alent yet smaller “regular” model: p(X,Z | K) =∫

p(X,Z | Π,K)p(Π | K)dΠ

=

∫
p(X, Z̃K′ | Π̃K′ ,K ′)p̃(Π̃K′ | K ′)dΠ̃K′ . (11)

Since Z̃K′ is not degenerated in the model K ′, we can
apply Laplace’s method and obtain asymptotic approxima-
tion (10) by replacing K by K ′. Note that the transformed
prior p̃(ΠK′ | K ′) would differ from the original prior
p(ΠK′ | K ′). However, since the prior does not depend
onN (A3), the difference is at mostO(1), which is asymp-
totically ignorable.

Eq. (11) also gives us an asymptotic form of the marginal
posterior.
Proposition 4.

p(Z | X,K) = pK(Z)(1 +O(N−1)), (12)

pK(Z) ≡

{
p(Z,X|Π̂,K)|FΠ̂|−1/2

C K = κ(Z),

pκ(Z)(Tκ(Z)(Z)) K > κ(Z),
(13)

where TK′ : Z→ Z̃K′ as Eq. (3) and C is the normalizing
constant.

The above proposition indicates that, if κ(p(Z | X,K)) =
K ′, p(Z | X,K) is represented by the non-degenerated
distribution p(Z | X,K ′). Now, we see that the joint like-
lihood (11) and the marginal posterior (12) depend on K ′

rather than K. Therefore, putting these results into vari-
ational bound (7) leads to (8), i.e., ln p(X | K) is repre-
sented by gFIC of the “true” model K ′.

Theorem 2 indicates that, if the model K is overcomplete
for the true model K ′, ln p(X | K) takes the same value as
ln p(X | K ′).
Corollary 5. For every K > K ′ = κ(p(Z | X)),

ln p(X | K) = ln p(X | K ′) +O(1). (14)



Rebuilding Factorized Information Criterion

This implication is fairly intuitive in the sense that if X
concentrates on the subspace of the model, then marginal-
ization with respect to the parameters outside of the sub-
space contributes nothing to ln p(X | K). Corollary 5
also justifies model selection of the LVMs on the basis
of the marginal likelihood. According to Corollary 5, at
N → ∞ redundant models always take the same value of
the marginal likelihood as that of the true model, and we
can safely exclude them from model candidates.

4. The gFAB Inference
To evaluate gFIC (2), we need to solve several estimation
problems. First, we need to estimate p(Z | X,K) to min-
imize the KL divergence in Eq. (6). In addition, since
ln p(X | K) depends on the true model K ′ (Theorem 2),
we need to check whether the current model is degenerated
or not, and if it is degenerated, we need to estimate K ′.
This is paradoxical, because we would like to determineK ′

through model selection. However, by using the properties
of gFIC, we can obtain K ′ efficiently by optimization.

4.1. Computation of gFIC

By applying Laplace’s method to Eq. (11) and substituting
it into the variational form (6), we obtain ln p(X | K) =

Eq[L(Z, Π̂, κ(q))] +H(q) + KL(q‖q∗) +O(1). (15)

Since the KL divergence is non-negative, substituting this
into Eq. (8) and ignoring the KL divergence gives a lower
bound of gFIC(K ′), i.e.,

gFIC(K ′) ≥ Eq[L(Z, Π̂, κ(q))] +H(q). (16)

This formulation allows us to estimate gFIC(K ′) via max-
imizing the lower bound. Moreover, we no longer need
to know K ′—if the initial dimension of q is greater than
K ′, the maximum of lower bound (16) attains gFIC(K ′)
and thus ln p(X | K ′). Similarly to other variational in-
ference problems, this optimization is solved by iterative
maximization of q and Π.

4.1.1. UPDATE OF q

As suggested in Eq. (15), the maximizer of lower
bound (16) is p(Z | X) in which the asymptotic form
is shown in Proposition 4. Unfortunately, we cannot use
this as q, because the normalizing constant is intractable.
One helpful tool is the mean-field approximation of q, i.e.,
q(Z) =

∏
n qn(zn). Although the asymptotic marginal

posterior (12) depends on n due to FΠ, this dependency
eventually vanishes for N → ∞, and the mean-field ap-
proximation still maintains the asymptotic consistency of
gFIC.

Proposition 6. Suppose p(Z|X,K) is not degener-
ated in distribution. Then, p(Z|X,K) converges to
p(Z|X, Π̂,K), and p(Z|X,K) is asymptotically mutually
independent for z1, . . . , zn.

In some models, such as MMs (Fujimaki & Morinaga,
2012), the mean-field approximation suffices to solve the
variational problem. If it is still intractable, other approxi-
mations are necessary. For BPCA, for example, we restrict
q as the Gaussian density q(Z) =

∏
nN(zn|µn,Σn),

which we use in the experiments (Section 7).

4.1.2. UPDATE OF Π

After obtaining q, we need to estimate Π̂ for each sample
Z ∼ q(Z), which is also intractable. Alternatively, we es-
timate the expected MJLE Π̄ = argmaxΠ Eq[ln p(X,Z |
Π)]. Since the max operator has convexity, Jensen’s in-
equality shows that replacing Π̂ by Π̄ introduces the fol-
lowing lower bound.

Eq[ln p(X,Z | Π̂)] = Eq[max
Π

ln p(X,Z | Π)]

≥Eq[ln p(X,Z | Π̄)] = max
Π

Eq[ln p(X,Z | Π)].

Since Π̄ depends only on q, we now need to compute the
parameter only once. Remarkably, Π̂ is consistent with Π̄
and the above equality holds asymptotically.
Proposition 7. If q(Z) is not degenerated in distribution,
then Π̂

p→ Π̄.

Since Eq[ln p(X,Z|Π)] is the average of the concave func-
tion (A5), Eq[ln p(X,Z|Π)] itself is also concave and
the estimation of Π̄ is relatively easy. If the expecta-
tions Eq[ln p(X,Z|Π)] and Eq[FΠ] are analytically writ-
ten, then gradient-based methods suffice to obtain Π̄.

4.1.3. MODEL PRUNING

During the optimization of q, it can become degenerated
or nearly degenerated. In such a case, by definition of ob-
jective (16), we need to change the form of L(Z, Π̂,K)

to L(Z, Π̂,K ′). This can be accomplished by using the
transformation (Z,Π) → (Z̃K′ , Π̃K′) and decreasing the
current model from K to K ′, i.e., removing degenerated
components. We refer to this operation as “model prun-
ing”. We practically verify the degeneration by the rank of
FΞ, i.e., we perform model pruning if the eigenvalues are
less than some threshold.

4.2. The gFAB Algorithm

Algorithm 1 summarizes the above procedures, solving the
following optimization problem:

max
q∈Q

Eq[L(Z, Π̄(q), κ(q))] +H(q), (17)
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Algorithm 1 The gFAB algorithm
Input: data X, initial model K, threshold δ
repeat
q ← argmaxq∈Q Eq[L(Z, Π̄, κ(q))] +H(q)
if σK(FΞ) ≤ · · · ≤ σK′(FΞ) ≤ δ then
K ← K ′ and (Z, Π̄)← (Z̃K′ , Π̃K′)

end if
Π̄← argmaxΠ Eq[ln p(X,Z | Π,K)]

until Convergence

K' KK

=

Figure 1. The gFIC penalty |FΞ̂|
−1/2 changes the shape of the

posterior p(Z | X, Π̂) as increasing the probability of degener-
ated Z (indicated by diagonal stripes).

where Q = {q(Z) | q(Z) =
∏

n qn(zn)}. As shown in
Propositions 6 and 7, the above objective is the lower bound
of Eq. (16) and thus of gFIC(K ′), and the equality holds
asymptotically.

Corollary 8.{
gFIC(K ′) ≥ Eq. (17) for a finite N > 0,

gFIC(K ′) = Eq. (17) for N →∞.
(18)

The gFAB algorithm is the block coordinate ascent. There-
fore, if the pruning threshold δ is sufficiently small, each
step monotonically increases objective (17), and the algo-
rithm stops at a critical point.

A unique property of the gFAB algorithm is that it esti-
mates the true model K ′ along with the updates of q and
Π̄. If N is sufficiently large and the initial model Kmax is
larger thanK ′, the algorithm learns pK′(Z) as q, according
to Proposition 4. At the same time, model pruning removes
degenerated K − K ′ components. Therefore, if the solu-
tions converge to the global optimum, the gFAB algorithm
returns K ′.

4.3. How FΠ Works?

Proposition 4 shows that if the model is not degener-
ated, objective (17) is maximized at q(Z) = pK(Z) ∝
p(Z|X, Π̂)|FΠ̂|

−1/2, which is the product of the un-
marginalized posterior p(Z|X, Π̂) and the gFIC penalty
term |FΠ̂|

−1/2. Since |FΠ̂|
−1/2 has a peak where Z is

degenerating, it changes the shape of p(Z|X, Π̂) and in-
creases the probability that Z is degenerated. Figure 1 il-
lustrates how the penalty term affects the posterior.

Note that, if the model family contains the true distribution

of X, then FΠ̂ converges to the Fisher information matrix.
From another viewpoint, FΠ̂ is interpreted as the covari-
ance matrix of the asymptotic posterior of Π. As a result
of applying the Bernstein-von Mises theorem, the asymp-
totic normality holds for the posterior p(Π|X,Z) in which
the covariance is given by (NFΠ̂)−1.

Proposition 9. Let Ω =
√
N(Π − Π̂). Then, if Z is not

degenerated, |p(Ω | X,Z)−N(0,E[FΠ̂]−1)| p→ 0.

This interpretation has the following implication. In max-
imizing the variational lower bound (7), we maximize
−1

2 ln |FΞ|. In the gFAB algorithm, this is equivalent to
maximize the posterior covariance and pruning the com-
ponents where those covariance diverge to infinity. Diver-
gence of the posterior covariance means that there is insuf-
ficient information to determine those parameters, which
are not necessary for the model and thus can reasonably be
removed.

5. Relationship with VB
Similarly to FAB, VB alternatingly optimizes with respect
to Z and Π, whereas VB treats both of them as distribu-
tions. Suppose K ≤ K ′, i.e., the case when the posterior
p(Z | X,K ′) is not degenerated in distribution. Then, the
marginal log-likelihood is written by the variational lower
bound. Namely, let J (Z,Π) ≡ ln p(X,Z,Π | K ′), and
ln p(X | K ′) ≥ Eq(Z,Π)[J (Z,Π)] +H(q(Z,Π))

≥Eq(Z)q(Π)[J (Z,Π)] +H(q(Z)) +H(q(Π)), (19)

where we use the mean-field approximation q(Z,Π) =
q(Π)q(Z). The maximizers of Eq. (19) are given as

q̃(Π) ∝ exp(Eq(Z)[J ]), q̃(Z) ∝ exp(Eq(Π)[J ]). (20)

Here, we look inside the optimal distributions to see the
relationship with the gFAB algorithm. Let us consider to
restrict the density q(Π) to be Gaussian. Since Eq(Z)[J ]
increases proportional to N while ln p(Π) does not, q̃(Π)
attains its maximum around Π̄. Then, the second order
expansion to ln q̃(Π) at Π̄ yields the solution q̃(Π) =
N(Π̄, (NFΠ̄)−1). We remark that this solution can be
seen as an empirical version of the asymptotic normal
posterior given by Proposition 9. Then, if we further
approximate J (Z,Π) by the second order expansion at
Π = Π̄, the other expectation Eq(Π)[J (Z,Π)] appearing
in Eq. (20) is evaluated by J (Z, Π̄) − 1

2 ln |FΠ̄|. Under
these approximations, alternating updates of {Π̄, FΠ̄} and
q̃(Z) coincide exactly with the gFAB algorithm3, which
justifies the VB lower bound as an asymptotic expansion
of p(X | K ′).
Proposition 10. Let LVB(K) be the VB lower bound (19)
with restricting q(Π) to be Gaussian and approximating

3Note that model pruning is not necessary when K ≤ K′.
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the expectation in ln q̃(Z) by the second order expansion.
Then, for K ≤ K ′, ln p(X | K) = LVB(K) +O(1).

Proposition 10 states that the VB approximation is asymp-
totically accurate as well as gFIC when the model is
not degenerated. For the degenerated case, the asymp-
totic behavior of LVB(K) of general LVMs is un-
clear except for a few specific models such as Gaussian
MMs (Watanabe & Watanabe, 2006) and reduced rank re-
gressions (Watanabe, 2009).

Proposition 10 also suggests that the mean-field approxi-
mation does not loose the consistency with p(X | K). As
shown in Proposition 9, for K ≤ K ′, the posterior covari-
ance is given by (NFΠ̂)−1, which goes to 0 for N → ∞,
i.e., the posterior converges to a point. Therefore, mutual
dependence among Z and Π eventually vanishes in the pos-
terior, and the mean-field assumption holds asymptotically.

6. Related Work
The EM Algorithm Algorithm 1 looks quite similar to
the EM algorithm, solving

max
q,Π

Eq[ln p(X | Π,K)] +H(q). (21)

We see that both gFAB and EM algorithms iteratively up-
date the posterior-like distribution of Z and estimate Π.
The essential difference between them is that the EM algo-
rithm infers the posterior p(Z|X, Π̂) in the E-step, but the
gFAB algorithm infers the marginal posterior p(Z|X) '
p(Z|X, Π̂)|FΠ̂|

−1/2. As discussed in Section 4.3, the
penalty term |FΠ̂|

−1/2 increases the probability mass of
the posterior, where Z is degenerating, enabling automatic
model determination through model pruning. In contrast,
the EM algorithm lacks such pruning mechanism, and al-
ways overfits to X as long as N is finite while p(Z|X)

eventually converges to p(Z|X, Π̂) for N → ∞ (see
Proposition 6).

Note that Eq. (21) has O(lnN) error against ln p(X).
Analogously to gFIC, this error is easily reduced to O(1)
by adding −DΠ

2 lnN . This modification provides another
information criterion, which we refer to as BICEM.

VB Methods As discussed in the previous section,
gFIC/gFAB has better theoretical properties than the VB
methods. Another key advantage is that gFIC/gFAB does
not depend on hyperparameters. The VB methods intro-
duce a prior distribution in an explicit form and often with
hyperparameters, and we need to determine the hyperpa-
rameters by e.g., the empirical Bayes. Conversely, gFIC
ignores the direct effect of the prior as O(1) (see A3) but
takes into account the effect caused by the marginalization
via Laplace’s method. This makes gFIC prior-free and let
hyperparameter tuning unnecessary.

Collapsed VB (CVB) (Teh et al., 2006) is a variation of
VB. Similarly to gFIC, CVB takes the variational bound
after marginalizing out Π from the joint likelihood. In
contrast to gFIC, CVB approximates q in a non-asymptotic
manner, such as the first-order expansion (Asuncion et al.,
2009). Although such approximation has been found to
be accurate in practice, its asymptotic properties, such as
consistency, have not been explored. Note that as one of
those approximations, the mean-field assumption q(Z) =∏

n q(zn) is used in the original CVB paper (Teh et al.,
2006), motivated by the intuition that the dependence
among {zn} is weak after marginalization. Proposition 6
formally justifies this asymptotic independence assumption
on the marginal distribution employed in CVB.

Several authors have studied about asymptotic behaviors
of VB methods for LVMs. Wang & Titterington (2004) in-
vestigated the VB approximation for linear dynamical sys-
tems and showed the inconsistency of VB estimation with
large observation noise. Watanabe & Watanabe (2006) de-
rived an asymptotic variational lower bound of the Gaus-
sian MMs and demonstrated its usefulness for the model se-
lection. Recently, Nakajima et al. (2014) analyzed the VB
learning on latent Dirichlet allocation (LDA) (Blei et al.,
2003), who revealed conditions for the consistency and
clarified its transitional behavior of the parameter sparsity.
By comparing with these existing works, we have a contri-
bution in terms of that our asymptotic analysis is valid for
general LVMs, rather than individual models.

BIC and Extensions Let Y = (X,Z) be a pair of non-
degenerated X and Z. By ignoring all the constant terms
of Laplace’s approximation (9), we obtain BIC (Schwarz,
1978) considering Y as an observation, which is given by
the right-hand side of the following equation.

ln p(Y | K) = ln p(Y | Π̂,K)− DΠ

2
lnN +O(1).

Unfortunately, the above relation does not hold for p(X |
K). Since p(X | K) =

∫
p(Y | K)dZ mixes up de-

generated and non-degenerated cases, p(X | K) always
becomes singular. This looses the necessary condition A5
for Laplace’s approximation.

There are several studies that extend BIC to be able to
deal with singular models. Watanabe (2009) evaluates
p(X | K) with an O(1) error for any singular models by
using algebraic geometry. However, it requires an evalua-
tion of the intractable rational number called the real log
canonical threshold. Recent study (Watanabe, 2013) re-
laxes this intractable evaluation to the evaluation of crite-
rion called WBIC at the expense of an Op(

√
lnN) error.

Yet, the evaluation of WBIC needs an expectation with re-
spect to a practically intractable distribution, which usually
incurs heavy computation.
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EM BICEM† VB CVB FAB gFAB†

Obj. function Eq. (21) Eq. (21)−DΠ

2 lnN Eq. (19) Eq. (7) Eq. (16)
Π Point estimate Posterior w/ MF Marginalized out Laplace approximation
q(Z) = p(Z | X, Π̂) ' p(Z | X) ∝ p(Z | X)(1 +O(1))†

ln p(X|K ≤ K ′) O(lnN) O(1)† O(1)† O(1)†

ln p(X|K > K ′) NA Generally NA O(1)†

Applicability Many models Many models Binary LVMs Binary LVMs LVMs

Table 1. A comparison of approximated Bayesian methods. The symbol † highlights our contributions. “MF” stands for the mean-field
approximation. Note that the asymptotic relations with ln p(X | K) hold only for LVMs.

7. Numerical Experiments
We compare the performance of model selection for BPCA
explained in Section 2.1 with the EM algorithm, BICEM in-
troduced in Section 6, simple VB (VB1), full VB (VB2),
and the gFAB algorithm. VB2 had the priors for W, λ,
and α described in Section 2.1 in which the hyperparam-
eters were fixed as aλ = bλ = aα = bα = 0.01 by fol-
lowing (Bishop, 1999). VB1 is a simple variant of VB2,
which fixed α = 1. In this experiments, We used the syn-
thetic data X = ZW> +E where W ∼ uniform([0, 1])4,
Z ∼ N(0, I), and End ∼ N(0, σ2). Under the data di-
mensionality D = 30 and the true model K ′ = 10, we
generated data with N = 100, 500, 1000, and 2000. We
stopped the algorithms if the relative error was less than
10−5 or the number of iterations was greater than 104.

Figure 2 depicts the objective functions after convergence
for K = 2, . . . , 30. Note that, we performed gFAB with
K = 30 and it finally converged at K ' 10 owing to
model pruning, which allowed us to skip the computation
for K ' 10, . . . , 30, and the objective values for those Ks
are not drawn in the figure. We see that gFAB success-
fully chose the true model, except for the small sample
size (N = 100) where gFAB underestimated the model.
In contrast, the objective of EM slightly but monotoni-
cally increased with K, which means EM always chose the
largest K as the best model. This is because EM maximizes
Eq. (21), which does not contain the model complexity
term of Π. As our analysis suggested in Section 6, BICEM
and VB1 are close to gFAB as N increasing and has a peak
around K ′ = 10, meaning that BICEM and VB1 are ade-
quate for model selection. However, in contrast to gFAB,
both of them need to compute for all K. Interestingly, VB2
were unstable for N < 2000 and it gave the inconsistent
model selection results. We observed that VB2 had very
strong dependence on the initial values. This behavior is
understandable because VB2 has the additional prior and
hyperparameters to be estimated, which might produce ad-
ditional local minima that make optimization difficult.

4This setting could be unfair because VB1 and VB2 assume
the Gaussian prior for W. However, we confirmed that data gen-
erated by W ∼ N(0, 1) gave almost the same results.
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Figure 2. The objective function versus the model K. The error-
bar shows the standard deviations over 10 different random seeds,
which affect both data and initial values of the algorithms.

8. Conclusion
This paper provided an asymptotic analysis for the
marginal log-likelihood of LVMs. As the main contribu-
tion, we proposed gFIC for model selection and showed its
consistency with the marginal log-likelihood. Part of our
analysis also provided insight into the EM and VB meth-
ods. Numerical experiments confirmed the validity of our
analysis.

We remark that gFIC is potentially applicable to many
other LVMs, including factor analysis, LDA, canonical cor-
relation analysis, and partial membership models. Investi-
gating the behavior of gFIC on these models is an important
future research direction.

Acknowledgments KH was supported by MEXT Kak-
enhi 25880028. SM was supported by MEXT Kakenhi
15K15210.



Rebuilding Factorized Information Criterion

References
Asuncion, Arthur, Welling, Max, Smyth, Padhraic, and

Teh, Yee Whye. On smoothing and inference for topic
models. In Proceedings of the Twenty-Fifth Conference
on Uncertainty in Artificial Intelligence (UAI), 2009.

Attias, Hagai. Inferring Parameters and Structure of Latent
Variable Models by Variational Bayes. In Uncertainty in
Artificial Intelligence (UAI), 1999.

Bishop, C. M. Bayesian PCA. In Advances in Neural In-
formation Processing Systems (NIPS), 1998.

Bishop, C. M. Variational principal components. In In-
ternational Conference on Artificial Neural Networks
(ICANN), 1999.

Blei, David M., Ng, Andrew Y., and Jordan, Michael I.
Latent dirichlet allocation. Journal of Machine Learning
Research, 3:993–1022, 2003.

Eto, Riki, Fujimaki, Ryohei, Morinaga, Satoshi, and
Tamano, Hiroshi. Fully-automatic bayesian piecewise
sparse linear models. In AISTATS, 2014.

Fujimaki, Ryohei and Hayashi, Kohei. Factorized asymp-
totic bayesian hidden markov model. In International
Conference on Machine Learning (ICML), 2012.

Fujimaki, Ryohei and Morinaga, Satoshi. Factorized
asymptotic bayesian inference for mixture modeling. In
AISTATS, 2012.

Hastings, W. K. Monte carlo sampling methods using
markov chains and their applications. Biometrika, 57(1):
97–109, 1970.

Hayashi, Kohei and Fujimaki, Ryohei. Factorized asymp-
totic bayesian inference for latent feature models. In
27th Annual Conference on Neural Information Process-
ing Systems (NIPS), 2013.

Jordan, Michael I., Ghahramani, Zoubin, Jaakkola,
Tommi S., and Saul, Lawrence K. An introduction
to variational methods for graphical models. Machine
Learning, 37(2):183–233, 1999.

Liu, Chunchen, Feng, Lu, Fujimaki, Ryohei, and Muraoka,
Yusuke. Scalable model selection for large-scale facto-
rial relational models. In International Conference on
Machine Learning (ICML), 2015.

Nakajima, Shinichi, Sato, Issei, Sugiyama, Masashi,
Watanabe, Kazuho, and Kobayashi, Hiroko. Analysis of
variational bayesian latent dirichlet allocation: Weaker
sparsity than MAP. In Advances in Neural Information
Processing Systems (NIPS), 2014.

Schwarz, Gideon. Estimating the Dimension of a Model.
The Annals of Statistics, 6(2):461–464, 1978.

Teh, Yee W., Newman, David, and Welling, Max. A col-
lapsed variational bayesian inference algorithm for latent
dirichlet allocation. In 19th Annual Conference on Neu-
ral Information Processing Systems (NIPS), 2006.

Tierney, Luke and Kadane, Joseph B. Accurate Approx-
imations for Posterior Moments and Marginal Densi-
ties. Journal of the American Statistical Association, 81
(393):82–86, 1986.

Wang, Bo and Titterington, D.M. Lack of consistency of
mean field and variational bayes approximations for state
space models. Neural Processing Letters, 20(3):151–
170, 2004.

Watanabe, Kazuho and Watanabe, Sumio. Stochastic com-
plexities of gaussian mixtures in variational bayesian ap-
proximation. Journal of Machine Learning Research, 7:
625–644, 2006.

Watanabe, Sumio. Algebraic Geometry and Statistical
Learning Theory. Cambridge University Press, 2009.

Watanabe, Sumio. A widely applicable bayesian informa-
tion criterion. Journal of Machine Learning Research,
14(1):867–897, 2013.


