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Abstract

Logarithms of determinants of large positive def-
inite matrices appear ubiquitously in machine
learning applications including Gaussian graphi-
cal and Gaussian process models, partition func-
tions of discrete graphical models, minimum-
volume ellipsoids, metric learning and kernel
learning. Log-determinant computation involves
the Cholesky decomposition at the cost cubic in
the number of variables, i.e., the matrix dimen-
sion, which makes it prohibitive for large-scale
applications. We propose a linear-time random-
ized algorithm to approximate log-determinants
for very large-scale positive definite and general
non-singular matrices using a stochastic trace ap-
proximation, called the Hutchinson method, cou-
pled with Chebyshev polynomial expansions that
both rely on efficient matrix-vector multiplica-
tions. We establish rigorous additive and mul-
tiplicative approximation error bounds depend-
ing on the condition number of the input matrix.
In our experiments, the proposed algorithm can
provide very high accuracy solutions at orders of
magnitude faster time than the Cholesky decom-
position and Schur completion, and enables us to
compute log-determinants of matrices involving
tens of millions of variables.

1. Introduction

Scalability of machine learning algorithms for extremely
large data-sets and models has been increasingly the fo-
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cus of attention for the machine learning community, with
prominent examples such as first-order stochastic optimiza-
tion methods and randomized linear algebraic computa-
tions. One of the important tasks from linear algebra that
appears in a variety of machine learning problems is com-
puting the log-determinant of a large positive definite ma-
trix. For example, serving as the normalization constant
for multivariate Gaussian models, log-determinants of co-
variance (and precision) matrices play an important role
in inference, model selection and learning both the struc-
ture and the parameters for Gaussian graphical models
and Gaussian processes (Rue & Held, 2005; Rasmussen
& Williams, 2005; Dempster, 1972). Log-determinants
also play an important role in a variety of Bayesian ma-
chine learning problems, including sampling and varia-
tional inference (MacKay, 2003). In addition, metric and
kernel learning problems attempt to learn quadratic forms
adapted to the data, and formulations involving Bregman
divergences of log-determinants have become very popular
(Davis et al., 2007; Van Aelst & Rousseeuw, 2009). Fi-
nally, log-determinant computation also appears in some
discrete probabilistic models, e.g., tree mixture models
(Meila & Jordan, 2001; Anandkumar et al., 2012) and
Markov random fields (Wainwright & Jordan, 2006). In
planar Markov random fields (Schraudolph & Kamenetsky,
2009; Johnson et al., 2010) inference and learning involve
log-determinants of general non-singular matrices.

For a positive semi-definite matrix B € R%*? numer-
ical linear algebra experts recommend to compute log-
determinant using the Cholesky decomposition. Sup-
pose the Cholesky decomposition is B = LL”, then
logdet(B) = 23", log L;;. The computational complex-
ity of Cholesky decomposition is cubic with respect to the
number of variables, i.e., O(d®), in general. For large-scale
applications involving more than tens of thousands of vari-
ables, this operation is not feasible. Our aim is to com-
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pute accurate approximate log-determinants for matrices of
much larger size involving fens of millions of variables.

Contribution. Our approach to compute accurate approx-
imations of log-determinant for a positive definite ma-
trix uses a combination of stochastic trace-estimators and
Chebyshev polynomial expansions. Using the Chebyshev
polynomials, we first approximate the log-determinant by
the trace of power series of the input matrix. We then use
a stochastic trace-estimator, called the Hutchison method
(Hutchinson, 1989), to estimate the trace using multiplica-
tions between the input matrix and random vectors. The
main assumption for our method is that the matrix-vector
product can be computed efficiently. For example, the
time-complexity of the proposed algorithm grows linearly
with respect to the number of non-zero entries in the in-
put matrix. We also extend our approach to general non-
singular matrices to compute the absolute values of their
log-determinants. We establish rigorous additive and mul-
tiplicative approximation error bounds for approximating
the log-determinant under the proposed algorithm. Our
theoretical results provide an analytic understanding on
our Chebyshev-Hutchison method depending on sampling
number, polynomial degree and the condition number (i.e.,
the ratio between the largest and smallest singular values)
of the input matrix. In particular, they imply that if the
condition number is O(1), then the algorithm provides e-
approximation guarantee (in multiplicative or additive) in
linear time for any constant € > 0.

We first apply our algorithm to obtain a randomized linear-
time approximation scheme for counting the number of
spanning trees in a certain class of graphs where it could be
used for efficient inference in tree mixture models (Meila
& Jordan, 2001; Anandkumar et al., 2012). We also ap-
ply our algorithm for finding maximum likelihood param-
eter estimates of Gaussian Markov random fields of size
5000 x 5000 (involving 25 million variables!), which is in-
feasible for the Cholesky decomposition. Our experiments
show that our proposed algorithm is orders of magnitude
faster than the Cholesky decomposition and Schur comple-
tion for sparse matrices and provides solutions with 99.9%
accuracy in approximation. It can also solve problems of
dimension tens of millions in a few minutes on our sin-
gle commodity computer. Furthermore, the proposed algo-
rithm is very easy to parallelize and hence has a potential to
handle even a bigger size. In particular, the Schur method
was used as a part of QUIC algorithm (Hsieh et al., 2013)
for sparse inverse covariance estimation with over million
variables, hence our algorithm could be used to further im-
prove its speed and scale.

Related work. Stochastic trace estimators have been stud-
ied in the literature in a number of applications. (Bekas
et al., 2007; Malioutov et al., 2006) have used a stochastic

trace estimator to compute the diagonal of a matrix or of
matrix inverse. Polynomial approximations to band-pass
filters have been used to count the number of eigenvalues
in certain intervals (Di Napoli et al., 2013). Stochastic ap-
proximations of score equations have been applied in (Stein
et al., 2013) to learn large-scale Gaussian processes. The
works closest to ours which have used stochastic trace esti-
mators for Gaussian process parameter learning are (Zhang
& Leithead, 2007) and (Aune et al., 2014) which instead
use Taylor expansions and Cauchy integral formula, re-
spectively. A recent improved analysis using Taylor expan-
sions has also appeared in (Boutsidis et al., 2015). How-
ever, as reported in Section 5, our method using Chebyshev
expansions provides much better accuracy in experiments
than that using Taylor expansions, and (Aune et al., 2014)
need Krylov-subspace linear system solver that is computa-
tionally expensive in general. (Pace & LeSage, 2004) also
use Chebyshev polynomials for log-determinant computa-
tion, but the method is deterministic and only applicable
to polynomials of small degree. The novelty of our work
is combining the Chebyshev approximation with Hutchi-
son trace estimators, which allows to design a linear-time
algorithm with approximation guarantees.

2. Background

In this section, we describe the preliminaries for our ap-
proach to approximate the log-determinant of a positive
definite matrix. Our approach combines the following two
techniques: (a) designing a trace-estimator for the log-
determinant of positive definite matrix via Chebyshev ap-
proximation (Mason & Handscomb, 2002) and (b) approxi-
mating the trace of positive definite matrix via Monte Carlo
methods, e.g., Hutchison method (Hutchinson, 1989).

2.1. Chebyshev Approximation

The Chebyshev approximation technique is used to approx-
imate analytic function with certain orthonormal polynomi-
als. We use p,,(z) to denote the Chebyshev approximation
of degree n for a given function f : [-1,1] — R:

n

f(@) = pn(z) =

=0

CJ'TJ'(J:%

where the coefficient ¢; and the ¢-th Chebyshev polynomial
T;(z) are defined as

n

1
: > flan) To(ax) if i=0
s
¢ = 5 (1
fag) Ti(zr) otherwise
n+1 kz::o

Tiv1(x) = 22T;(z) — Ti—1 (2) fori>1 (2
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”(’;“‘7_’_11/2)) for k = 0,1,2,...n and

To(z) =1, Ty (z) = 2 (Mason & Handscomb, 2002).

where z;, = cos(

Chebyshev approximation for scalar functions can be natu-
rally generalized to matrix functions. Using the Chebyshev
approximation p,,(x) for function f(z) = log(l — x) we
obtain the following approximation to the log-determinant
of a positive definite matrix B € R4*4;

Zlog (I-=X
) = ZZCJ'TJ()‘Z)

i=1 i=1 j=0

Z cjtr

log det B = log det (I — A)

I
[¢]

N

M&
b

where A = I — B has eigenvalues 0 < Ay,..., g < 1
and the last equality is from the fact that Zle p(\) =
tr(p(A)) for any polynomial p(-).! We remark that other
polynomial approximations, e.g., Taylor, can also be used
to approximate log-determinants. We focus on the Cheby-
shev approximation, where Chevyshev approximation is
known to be an optimal polynomial interpolation that min-
imize the ¢ -error (de De Villiers, 2012).

2.2. Trace Approximation via Monte-Carlo Method

The main challenge to compute the log-determinant of a
positive definite matrix in the previous section is calculat-
ing the trace of T} (A) efficiently without evaluating the
entire matrix A*. We consider a Monte-Carlo approach for
estimating the trace of a matrix. First, a random vector z
is drawn from some fixed distribution, such that the expec-
tation of z' Az is equal to the trace of A. By sampling
m such i.i.d. random vectors, and averaging we obtain an
estimate of tr(A).

It is known that the Hutchinson method, where components
of the random vectors Z are i.i.d. Rademacher random
variables, i.e., Pr(+1) = Pr(—1) = 1, has the smallest
variance among such Monte-Carlo methods (Hutchinson,
1989; Avron & Toledo, 2011). It has been used extensively
in many applications (Avron, 2010; Hutchinson, 1989; Ar-
avkin et al., 2012). Formally, the Hutchinson trace estima-
tor tr,,(A) is known to satisfy the following:

m

1
tr,(A) = — ZZZTAZZ»
m

i=1

Var [tr,, (4)] = 2 <|A% - _ZAi-> .

tr(-) denotes the trace of a matrix.

E =tr(4)

1

Note that computing z " Az requires only multiplications
between a matrix and a vector, which is particularly appeal-
ing when evaluating A itself is expensive, e.g., A = B for
some matrix B and large k. Furthermore, given any matrix
X, one can compute z' T} (X ) z more efficiently using the
following recursion on the vector w; = T (X)z:

Wi41 = 2X1Uj — Wj—1,
which follows directly from (2).

3. Log-determinant Approximation Scheme

Now we are ready to present algorithms to approximate
the absolute value of log-determinant of an arbitrary non-
singular square matrix C. Without loss of generality,
we assume that singular values of C are in the interval
[Omins Omax) for some opin, omax > 0, i.e., the condi-
tion number k(C) is at most Kmax ‘= Omax/Omin- The
proposed algorithms are not sensitive to tight knowledge
of Opmin, Omax, but some loose lower and upper bounds on
them, respectively, suffice.

3.1. Algorithm for Positive Definite Matrices

In this section, we describe our proposed algorithm for es-
timating the log-determinant of a positive definite matrix
whose eigenvalues are less than one, i.e., 0pax < 1. Itis
used as a subroutine for estimating the log-determinant of
a general non-singular matrix in the next section.

Algorithm 1 Log-determinant approximation for positive
definite matrices with o, < 1

Input: positive definite matrix B € R?*¢ with eigen-
values in [ , 1 — §] for some § > 0, sampling number
m and polynomial degree n
Initialize: A< I — B, T+ 0
for ; = 0ton do
¢; + i-th coefficient of Chebyshev approximation for
log(1 — U=2t1)
end for
fori =1 to mdo
Draw a Rademacher random vector v and u < cg v
if n > 1 then
wo < vand wy < Av
u<+ u+cAv
for j =2 to ndo
Wo < 2AW1 — Wy
u<u—+c; wa
wo < wp and wi < Wy
end for
end if
F«T+viu/m
end for
QOutput: I’
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We establish the following theoretical guarantee of the
above algorithm, where its proof is given in Section 4.3.

Theorem 1 Given ¢,( € (0, 1), consider the following in-
puts for Algorithm 1:

e B c R4 pe q positive definite matrix with eigenval-
ues in [0,1 — 0] for some § € (0,1/2)

e m > 54c2log (%)

log (20 (\/71 1) 10;()%}%{6)6)))
= )

=0 (\/t10g(%))

Then, it follows that

o n >

Pr[|logdet B—T| <e|logdetB|] >1-¢
where T is the output of Algorithm 1.

The bound on polynomial degree n in the above theorem
is relatively tight, e.g., it implies to choose n = 14 for
0 = 0.1 and ¢ = 0.01. While our bound on sampling
number m is not tight, we observe that m =~ 30 is suffi-
cient for high accuracy in our experiments. We also remark
that the time-complexity of Algorithm 1 is O(mn| Bllo),
where || B||o is the number of non-zero entries of B. This
is because the algorithm requires only multiplications of
matrices and vectors. In particular, if m,n = O(1), the
complexity is linear with respect to the input size. There-
fore, Theorem 1 implies that one can choose m,n = O(1)
for e-multiplicative approximation with probability 1 — ¢
given constants €, ¢ > 0.

3.2. Algorithm for General Non-Singular Matrices

Now, we are ready to present our linear-time approximation
scheme for the log-determinant of general non-singular
matrix C, through generalizing the algorithm in the pre-
vious section. The idea is simple: run Algorithm 1 with
normalization of positive definite matrix C*'C'. This is for-
mally described in what follows.

Algorithm 2 Log-determinant approximation for general
non-singular matrices

Input: matrix C € R¥94 with singular values are in
the interval [yin, Omax] for some min, max > 0, sam-
pling number m and polynomial degree n

o2
CTC O — T min

2
T rnin T Tiax

Initialize: B + m

min

I' « Output of Algorithm 1 for inputs B, m,n,d
Output: I' + (I' + dlog (02, + 02,,)) /2

Algorithm 2 is motivated to design from the equality
log |det C| = }logdet CTC. Given non-singular matrix
C, one need to choose appropriate oy,x, Omin. In Mmost ap-
plications, o, iS €asy to choose, e.g., one can choose

Tmax = V[ Cl1lIClloc,

or one can run the power iteration (Ipsen, 1997) to esti-
mate a better bound. On the other hand, oy, is generally
not easy to obtain, except for special cases. It is easy to
obtain in the problem of counting spanning trees we stud-
ied in Section 3.3, and it is explicitly given as a parame-
ter in many machine learning log-determinant applications
(Wainwright & Jordan, 2006). In general, one can use the
inverse power iteration (Ipsen, 1997) to estimate it. Fur-
thermore, the smallest singular value is easy to compute
for random matrices (Tao & Vu, 2009; 2010) and diagonal-
dominant matrices (Gershgorin, 1931; Moraca, 2008).

The time-complexity of Algorithm 2 is still O(mn/|C||o)
instead of O(mn||CTC||o) since Algorithm 1 requires
multiplication of matrix C*'C and vectors. We state the
following additive error bound of the above algorithm.

Theorem 2 Given ¢,( € (0, 1), consider the following in-
puts for Algorithm 2:

o C c R¥? be q matrix having singular values in the
interval [Omin, Omax) fOr SOme o min, Omax > 0

e m>M (5 ""‘”‘,C) andn >./\/< U"”") where

)
Omin

M(e, K, ¢) =

1 (10 (1 + #2))* 1og (2)

log (20 (V2™ 1 - 1) (25251 )

L log(1+k—2)
N (e k) = o <\/2;<,2+1+1)
8\ Vartrio1
=0 (/-e log E)
€

Then, it follows that

Pr[ flog (det C|) — T < ed] > 1 —¢

where I is the output of Algorithm 2.

Proof. The proof of Theorem 2 is quite straightforward
using Theorem 1 for B with the facts that

2log | det C| = logdet B + dlog (o2 z2)

mm + Umax

and |log det B| < dlog (1 + max)' -

min

We remark that the condition number oyax/0min decides
the complexity of Algorithm 2. As one can expect, the
approximation quality and algorithm complexity become
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worse for matrices with very large condition numbers, as
the Chebyshev approximation for the function log x near
the point 0 is more challenging and requires higher degree
approximations.

When 0. > 1 and oin < 1, i.e., we have mixed signs
for logs of the singular values, a multiplicative error bound
(as stated in Theorem 1) can not be obtained since the log-
determinant can be zero in the worst case. On the other
hand, when o, < 1 or o, > 1, we further show that
the above algorithm achieves an e-multiplicative approxi-
mation guarantee, as stated in the following corollaries.

Corollary 3 Given ¢,( € (0,1), consider the following
inputs for Algorithm 2:

o C € R¥? be a matrix having singular values in the
interval [Omin, Omax] fOr some omax < 1

e m>M (&:log L ”m““‘,C)

Omax ’ Omin

en>N (510g U"}a ,%)
Then, it follows that
Pr[|log|det C| —T| < ellog|detC||]] > 1 —¢
where T is the output of Algorithm 2.

Corollary 4 Given ¢,( € (0,1), consider the following
inputs for Algorithm 2:

o C € R¥4 be a matrix having singular values in the
interval [0 min, Omax] for some oy > 1

Omin

e m Z M (5 log Omin, Fumaz 9 C)

o n 2 N (5 IOg Omin; Umax)

Then, it follows that
Pr[|logdetC —T'| <elogdetC] >1—¢
where T is the output of Algorithm 2.

The proofs of the above corollaries are given in the supple-
mentary material due to the space limitation.

3.3. Application to Counting Spanning Trees

We apply Algorithm 2 to a concrete problem, where we
study counting the number of spanning trees in a sim-
ple undirected graph G = (V, E) where there exists a
vertex ¢* such that (i*,j) € E forall j € V \ {i*}.
Counting spanning trees is one of classical well-studied

counting problems, and also necessary in machine learning
applications, e.g., tree mixture models (Meila & Jordan,
2001; Anandkumar et al., 2012). We denote the maximum
and average degrees of vertices in V' \ {i*} by Apax and
Ay > 1, respectively. In addition, we let L(G) denote
the Laplacian matrix of GG. Then, from Kirchhoff’s matrix-
tree theorem, the number of spanning tree 7(G) is equal to
7(G) = det L(i*), where L(i*) isthe (|[V|—1) x (|V|—-1)
submatrix of L(G) that is obtained by eliminating the row
and column corresponding to ¢* (Kocay & Kreher, 2004).
Now, it is easy to check that eigenvalues of L(i*) are in
[1,2Anax — 1]. Under these observations, we derive the
following corollary.
2

Corollary 5 Given 0 < ¢ < x=—,¢ € (0,1), consider
v

the following inputs for Algorithm 2.
o C=L(i")

o m= M (LB oa, —1,¢)
on z/\/(%,mm — 1)

Then, it follows that
Prlllog7(G) —T| <elogm(G)] >1—¢
where T is the output of Algorithm 2.

The proof of the above corollary is given in the supplemen-
tary material due to the space limitation. We remark that
the running time of Algorithm 2 with inputs in the above
theorem is O(nmA.vg|V|). Therefore, for e, = Q(1)
and Ay = O(1), ie., G is sparse, one can choose
n,m = O(1) so that the running time of Algorithm 2 is
o(V)).

4. Proof of Theorem 1

In order to prove Theorem 1, we first introduce some nec-
essary background and lemmas on error bounds of Cheby-
shev approximation and Hutchinson method we introduced
in Section 2.1 and Section 2.2, respectively.

4.1. Convergence Rate for Chebyshev Approximation

Intuitively, one can expect that the approximated Cheby-
shev polynomial converges to its original function as de-
gree n goes to co. Formally, the following error bound is
known (Berrut & Trefethen, 2004; Xiang et al., 2010).

Theorem 6 Suppose f is analytic with |f(z)| < M in the
region bounded by the ellipse with foci +1 and major and
minor semiaxis lengths summing to K > 1. Let p,, denote
the interpolant of | of degree n in th Chebyshev points as



Large-scale Log-determinant Computation through Stochastic Chebyshev Expansions

defined in section 2.1, then for each n > 0,

AM
— P —

To prove Theorem 1 and Theorem 2, we are in particular
interested in f(z) = log(1 — ), for x € [§,1 — J]. Since

Chebyshev approximation is defined in the interval [—1, 1],
e.g., see Section 2.1, one can use the following linear map-

ping g : [-1,1] — [, 1 — ] so that
Jnax [(fog)(x) —pn(z)| = Lo |f (x) = pn ()],

where p,, () = (pn ngl) (2).

We choose the ellipse region, denoted by &k, in the
complex plane with foci at =1 and its semimajor axis
length is 1/(1 — 0) where f o g is analytic on and in-
side. The length of semimajor axis of the ellipse is equal

(1/(1-9))°

be set to

2
K - \/2— +\f o
1-6 175 Vo

The constant M can be also obtained as follows:

— 1. Hence, the convergence rate K can

max [(f 0 g)(z)| = max [log (1 — g(2))|

< max 1/ (log [1 — g(=)])* + 2

2€EK
1 2
1—gf —— 2
o(-75)])

= \/ <log
where the inequality in the second line holds because

2
< 5log (> = M.
)
llog z| = |log|z| + iarg (z)| < y/(log |z|)* + 72 for any
z € C and equality in the third line holds by the maximum-
modulus theorem.

Hence, for z € [§,1 — 4],

20 log (2/0)

|log (1 —x) — W

Under these observations, we establish the following
lemma that is a “matrix version” of Theorem 6.

Lemma7 Let B € R be a positive definite matrix
whose eigenvalues are in [§,1 — 6] for 6 € (0,1/2). Then,
it holds that

20d log (2/5)

K= V2=5+V5
V2=86—V5"

Proof. Let A, A2, -+, Aq € [0,1 — ] be eigenvalues of
matrix A = I — B. Then, we have

[logdet(I — A) — tr (pn(A))]
[tr (log(I — A)) — tx (pu(A))]

d d
Zlog(lfA)fZﬁnm

where

d
< Z [log(1 — Ai) — pn(As)]

=1

. 20log (2/8)  20dlog (2/6)
= ; (K-1)K»  (K—-1)K"

where we use Theorem 6. This completes the proof of
Lemma 7. u

4.2. Approximation Error of Hutchinson Method

In this section, we use the same notation, e.g., f, p,,, used in
the previous section and we analyze the Hutchinson’s trace
estimator tr,,(-) defined in Section 2.2. To begin with,
we state the following theorem that is proven in (Roosta-
Khorasani & Ascher, 2013).

Theorem 8 Let A € R¥*? be a positive definite or nega-
tive definite matrix. Given €y, (o € (0,1),

Prljtr,,(4) — tr(A)] <egtr(4)] >1-{
holds if sampling number m is larger than 6ey Zlog (C%)

The theorem above provides a lower-bound on the sam-
pling complexity of Hutchinson method, which is indepen-
dent of a given matrix A. To prove Theorem 1, we need
an error bound on tr,,(p,(A)). However, in general we
may not know whether or not p,, (A4) is positive definite or
negative definite. We can guarantee that the eigenvalues of
Dn(A) will be negative using the following lemma.

Lemma 9 p,(z) is a negative-valued polynomial in the in-
terval [6,1 — 0] if

201og (2/9)

=R /AP -

(K_-1K" = ®\1-5

K = \/ +\f
s

Proof. From Theorem 6, we have

[gnzzx]pn( x) = [ﬁéﬁ] f(@) + (Pn(2) — f(x))

where we recall that

< max f(z) + max |p, () — f(z)]

[6,1—3] [6,1—3]
201log (2/6
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2(%0}71()2]/(? < —log(1 — ¢). This completes

the proof of Lemma 9. ]

where we use

4.3. Proof of the Theorem 1

Now we are ready to prove Theorem 1. First, one can check
that sampling number n in the condition of Theorem 1 sat-

isfies
201og (2/9)

€ 1
(K—l)K”§2log(1—6)' )

Hence, from Lemma 9, it follows that p, (A) is negative
definite where A = I — B and eigenvalues of B are in
[0,1 — ¢]. Hence, we can apply Theorem 8 as

Pr [[ox (7a(4)) = tom (Bu(A)] < =[x (Fa(A))]
>21-¢ 4

for m > 5de~2 log (%) In addition, from Theorem 7, we
have

[tr (pn(A))| — [logdet B| < [logdet B — tr (p,(A4))]

20dlog (2/0) ¢ 1 €
< 22080 o Zilog (—— ) < S |logdet B
S Kok = 2o\ 705 ) S gllesdet Bl

which implies that
~ 5 3
ltx (Fa(A))] < (5 +1) Jlog det B| < 2 llogdet B

Combining the above inequality with (3) and (4) leads to
the conclusion of Theorem 1 as follows:

1-¢
< Pr[Jtx (Bu(A) — trm (n(4))] < £ [e (Ba())]]
< Pr {|tr(ﬁn(A)) — b, (Fa(A))] < g llog det B@

< Pr{jtr (pu(A)) — trym (Pu(A))]
+ |logdet B — tr (pn(A)) |

< % [log det B| + % [log det Bl
< Pr[llogdet B — tr,, (pn(A))| < e |logdet Bl
= Pr|logdet B —T| < ¢ |logdet B|],
where I’ = tr,, (pr(A)).

5. Experiments
5.1. Performance Evaluation and Comparison

We first investigate the empirical performance of our pro-
posed algorithm on large sparse random matrices.” We
generate a random matrix C € R?*?, where the number

2Our code is at http://sites.google.com/site/mijirim/logdet_code.zip

of non-zero entries per each row is around 10. We first
select five non-zero off-diagonal entries in each row with
values uniformly distributed in [—1,1]. To make the ma-
trix symmetric, we set the entries in transposed positions to
the same values. Finally, to guarantee positive definiteness,
we set its diagonal entries to absolute row-sums and add a
small weight, 1073,

Figure 1 (a) shows the running time of Algorithm 2 from
d = 103 to 3 x 107, where we choose m = 10, n = 15,
Omin = 1073 and o ax = ||C||1. It scales roughly linearly
over a large range of sizes. We use a machine with 3.40
Ghz Intel I7 processor with 24 GB RAM. It takes only 500
seconds for a matrix of dimension 3 x 107 with 3 x 10® non-
zero entries. In Figure 1 (b), we study the relative accuracy
compared to the exact log-determinant computation up to
size 3 x 10%. Relative errors are very small, below 0.1%,
and appear to only improve for higher dimensions.

Under the same setup, we also compare the running time
of our algorithm with other algorithm for computing deter-
minants: Cholesky decomposition and Schur complement.
The latter was used for sparse inverse covariance estimation
with over a million variables (Hsieh et al., 2013) and we run
the code implemented by the authors. The running time of
the algorithms are reported in Figure 1 (c). The proposed
algorithm is dramatically faster than both exact algorithms.
We also compare the accuracy of our algorithm to a related
stochastic algorithm that uses Taylor expansions (Zhang &
Leithead, 2007). For a fair comparison we use a large num-
ber of samples, n = 1000, for both algorithms to focus on
the polynomial approximation errors. The results are re-
ported in Figure 1 (d), showing that our algorithm using
Chebyshev expansions is superior in accuracy compared to
the one based on Taylor series.

5.2. Maximum Likelihood Estimation for GMRF

GMREF with 25 million variables for synthetic data. We
now apply our proposed algorithm for maximum likeli-
hood (ML) estimation in Gaussian Markov Random Fields
(GMRF) (Rue & Held, 2005). GMRF is a multivariate
joint Gaussian distribution defined with respect to a graph.
Each node of the graph corresponds to a random vari-
able in the Gaussian distribution, where the graph captures
the conditional independence relationships (Markov prop-
erties) among the random variables. The model has been
extensively used in many applications in computer vision,
spatial statistics, and other fields. The inverse covariance
matrix J (also called information or precision matrix) is
positive definite and sparse: .J;; is non-zero only if the edge
{i,j} is contained in the graph.

We first consider a GMREF on a square grid of size 5000 x
5000 (with d = 25 million variables) with precision ma-
trix J € R?*? parameterized by p, i.e., each node has four
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Figure 2. Log-likelihood estimation for
hidden parameter p for square GMRF
model of size 5000 x 5000.

neighbors with partial correlation p. We generate a sample
x from the GMRF model (using Gibbs sampler) for pa-
rameter p = —0.22. The log-likelihood of the sample is:
log p(x|p) = logdet J(p) — x " J(p)x + G, where J(p) is
a matrix of dimension 25 x 10° and 10® non-zero entries,
and G is a constant independent of p. We use Algorithm 2
to estimate the log-likelihood as a function of p, as reported
in Figure 2. The estimated log-likelihood is maximized at
the correct (hidden) value p = —0.22.

GMRF with 6 million variables for ozone data. We
also consider GMRF parameter estimation from real spa-
tial data with missing values. We use the data-set from
(Aune et al., 2014) that provides satellite measurements
of ozone levels over the entire earth following the satellite
tracks. We use a resolution of 0.1 degrees in lattitude and
longitude, giving a spatial field of size 1681 x 3601, with
over 6 million variables. The data-set includes 172,000
measurements. To estimate the log-likelihood in pres-
ence of missing values, we use the Schur-complement
formula for determinants. Let the precision matrix for

. J, o J 0,z
the entire field be J < T.o .
X, and x. denote the observed and unobserved compo-
nents of x. The marginal precision matrix of x, is J, =
Jo — JoJ 1JZ,O. Its log-determinant is computed as
log(det(J,)) = logdet(.J) — logdet(.J,) via Schur com-
plements. To evaluate the quadratic term z/,.J,z,, of the log-

> , Where subsets

1500

@)

2000

2500 3000 3500

(b)

Figure 3. GMREF interpolation of 0zone measurements: (a) original sparse measurements
and (b) interpolated values using a GMRF with parameters fitted using Algorithm 2.

likelihood we need a single linear solve using an iterative
solver. We use a linear combination of the thin-plate model
and the thin-membrane models (Rue & Held, 2005), with
two parameters o and 5: J = o + (8)Jip + (1 — B) Jim
and obtain ML estimates using Algorithm 2. Note that
Omin(J) = a. We show the sparse measurements in Fig-
ure 3 (a) and the GMRF interpolation using fitted values of
parameters in Figure 3 (b).

6. Conclusion

Tools from numerical linear algebra, e.g. determinants,
matrix inversion and linear solvers, eigenvalue computa-
tion and other matrix decompositions, have been playing
an important theoretical and computational role for ma-
chine learning applications. In this paper, we designed and
analyzed a high accuracy linear-time approximation algo-
rithm for the logarithm of matrix determinants, where its
exact computation requires cubic-time. We believe that the
proposed algorithm will find numerous applications in ma-
chine learning problems.
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