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Abstract
Model selection with cross validation (CV) is
very popular in machine learning. However, CV
with grid and other common search strategies
cannot guarantee to find the model with mini-
mum CV error, which is often the ultimate goal
of model selection. Recently, various solution
path algorithms have been proposed for several
important learning algorithms including support
vector classification, Lasso, and so on. However,
they still do not guarantee to find the model with
minimum CV error. In this paper, we first show
that the solution paths produced by various al-
gorithms have the property of piecewise linear-
ity. Then, we prove that a large class of error
(or loss) functions are piecewise constant, linear,
or quadratic w.r.t. the regularization parameter,
based on the solution path. Finally, we propose a
new generalized error path algorithm (GEP), and
prove that it will find the model with minimum
CV error for the entire range of the regularization
parameter. The experimental results on a variety
of datasets not only confirm our theoretical find-
ings, but also show that the best model with our
GEP has better generalization error on the test
data, compared to the grid search, manual search,
and random search.

1. Introduction
In machine learning, most of learning algorithms are pa-
rameterized (normally continuously). For example, sup-
port vector machines (SVMs) (Vapnik, 1998) have a reg-
ularization parameter controlling the trade-off between a
large margin and a small error penalty. Lasso (Tibshirani,
1996) has a regularization parameter on model’sL1 penalty
to lead to sparse solutions. It is obvious that one fundamen-
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tal task of the parameterized learning algorithms is model
selection: tuning the parameters of models to achieve opti-
mal generalization performance.

Model selection with cross validation (CV) (Arlot et al.,
2010) is very popular in machine learning. The main idea
of CV is to divide data into two parts (once or several
times): one (the training set) used to train a model and the
other (the validation set) used to estimate the error of the
model. CV selects the parameter among a group of can-
didates with the smallest CV error, where the CV error is
the average of the multiple validation errors. Normally, K-
fold, leave-one-out, or repeated random sub-sampling pro-
cedures were used for CV. For example, Jahrer & Töscher
(2012) used 16-fold CV for collaborative filtering. Fos-
ter et al. (2014) used leave-one-out CV on SVM for med-
ical diagnosis. Usai et al. (2009) used repeated random
sub-sampling validation on Lasso for genomic selection.
Izbicki (2013); Pahikkala et al. (2012) proposed fast algo-
rithms for computing CV error for each candidate. Because
of the simplicity and the universality, CV is a widespread
strategy for model selection (Arlot et al., 2010).

As mentioned above, CV works with a group of candi-
date values of parameter. Normally, the parameter are
searched by some strategies. The most popular strategy
is grid searching. For example, the regularization param-
eter C of SVM is searched on a 18 grid linearly spaced
in the region {(log2 C)| − 9 ≤ log2 C ≤ 8}, as used in
Yang & Ong (2011). Grid search is reliable in low dimen-
sional parameter spaces. For high dimensional parameter
spaces (such as parameters in Deep Belief Networks (Hin-
ton et al., 2006)), manual search (Hinton, 2010), and ran-
dom search (Bergstra & Bengio, 2012) were often used for
CV. However, as we know, CV with grid, manual, and ran-
dom search strategies only considers finite candidates due
to the limited computing resources. It cannot guarantee to
find the model with the minimum CV error in the whole
parameter space, which is often the ultimate goal of model
selection.

In this decade, a novel learning methodology called solu-
tion path (Hastie et al., 2004) has been developed for con-
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tinuously tracing the solutions with respect to a parameter.
In a solution path, one solution can act on an interval of
the regularization parameter in which the solutions share
a same linearity property. Thus, solution path algorithm
can effectively represent the entire solutions based on a fi-
nite number of solutions at the knee points. Solution path
is much more general as it represents an entire continuous
space, than the grid, and other common search strategies as
they only represents a finite number of discrete points.

Solution path algorithms have been proposed for several
important learning algorithms. For example, Hastie et al.
(2004) proposed a solution path algorithm for C-support
vector classification (C-SVC). Bach et al. (2006) proposed
solution path algorithm for 2C-support vector classification
(2C-SVC). Gunter & Zhu (2007), and Wang et al. (2008)
proposed solution path algorithms for ε-support vector re-
gression (ε-SVR) to trace the solutions w.r.t. ε and the reg-
ularization parameter, respectively. Rosset & Zhu (2007)
proposed a solution path algorithm for Lasso. Takeuchi
et al. (2009) proposed a solution path for kernel quantile
regression (KQR). Ong et al. (2010) proposed an improved
solution path algorithm to handle the singularities encoun-
tered in the method of Hastie et al. (2004). Karasuyama
& Takeuchi (2011) proposed an approximate solution path
for C-SVC. Gu et al. (2012) proposed a solution path algo-
rithm for ν-support vector classification (ν-SVC). Giesen
et al. (2012) proposed an approximate solution path algo-
rithm for a general class of regularized optimization prob-
lems.

Solution path algorithms can fit the entire solutions with
respect to one parameter. However, they still do not guar-
antee to find the model with minimum CV error, as they
do not correspond to “error path” in CV. That is, previous
solution path algorithms do not directly lead to global min-
imal CV error. To the best of our knowledge, the only work
on CV with global search is (Yang & Ong, 2011)1. Based
on the solution paths of (Hastie et al., 2004; Ong et al.,
2010), Yang & Ong (2011) proposed an error path algo-
rithm mainly for C-SVC and standard error function of bi-
nary classification. A remark in (Yang & Ong, 2011) said
that the error path algorithm is also applicable, with mi-
nor modifications, when the error function2 is the weighted
error rate, the precision, the recall, and the F-measure. It
can guarantee to find the model with minimum CV error.
However, their method is limited to the two solution path
algorithms and error functions of binary classification.

1Recently, Shibagaki et al. (2015) proposed a method for ap-
proximately computing error path, which solves the optimization
problem for multiple times. In this paper, we mainly discuss the
fast algorithm of error path, based on solution path.

2Although several functions (e.g., the precision, the recall, and
the F-measure) are related to accuracy, we totally call them error
functions in this paper for simplifying terms.

In this paper, we design a new generalized error path algo-
rithm (GEP). We believe this is very important for model
selection, for three reasons. First, GEP incorporates more
general error (or loss) functions. Second, GEP works with
more general solution path algorithms. Third and most im-
portantly, we can obtain minimum CV errors directly for a
large variety of error (or loss) functions and solution path
algorithms. More specifically, we first show that the solu-
tion paths produced by various algorithms have the prop-
erty of piecewise linearity. Then, we point out model func-
tion builds the bridge between solution path and error path,
and show that the piecewise linearity of solution path leads
to the piecewise linearity of model function. Based on the
piecewise linearity of model function, we prove that a large
class of error (or loss) functions are piecewise constant, lin-
ear, or quadratic w.r.t. the regularization parameter. Fi-
nally, we propose our GEP for the generalized error (or
loss) functions and solution path algorithms, which guar-
antees to find the models with the minimum CV error. The
experimental results on a variety of datasets not only con-
firm our theoretical findings, but also show that the best
model with our GEP has better generalization error on the
test data, compared to the grid search, manual search, and
random search.

We organize the rest of the paper as follows. In Section
2 we propose our GEP algorithm. In Section 3 we show
how to do CV based on the GEPs. In Section 4, we present
the experimental results on a variety of datasets. Finally, in
Section 5, we give some concluding remarks.

2. Generalized Error Path
As mentioned above, solution path algorithms do not di-
rectly lead to global minimal CV error; however, error path
algorithm can. Thus, more attention should be paid to error
path algorithms for any work related to CV. In the follow-
ing, we first give a formal description to error path algo-
rithm.

Given a validation set V = {(x̃i, ỹi)}`i=1. The error path al-
gorithm is trying to compute the error on the validation set
E(α̂(λ),V, L) for all λ ∈ [a, b], where α̂(λ) is the solution
of a learning problem, λ is the parameter of the learning
problem, L is an error (loss) function.

In order to propose the generalized error path algorithm,
we first give a brief review on the solution path algorithms
(Section 2.1), then show that the model functions f(x) are
piecewise linear w.r.t. λ (see the left part of Fig. 1, and Sec-
tion 2.2), when solution path is piecewise linear. Based on
the piecewise linearity on model functions, we then show
that the error path on common error (loss) functions could
be piecewise constant, linear, or quadratic w.r.t. λ (see the
right part of Fig. 1, and Section 2.3). Finally, we propose a
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Table 1. Representative solution path algorithms. The piecewise linearities on these solution paths also produce the piecewise linearities
on their model functions. (BC and R are the abbreviations of binary classification and regression, respectively.)

Problem Task Reference Parameter Exact Piecewise
C-SVC BC Hastie et al. (2004) Regularization parameter C Yes Linear
2C-SVC BC Bach et al. (2006) Regularization parameters C+, C− Yes Linear
ε-SVR R Gunter & Zhu (2007) Regularization parameter Yes Linear
ε-SVR R Wang et al. (2008) Regularization parameter and ε Yes Linear
Lasso R Rosset & Zhu (2007) Regularization parameter Yes Linear
KQR R Takeuchi et al. (2009) Quantile order τ ∈ (0, 1) Yes Linear
C-SVC BC Ong et al. (2010) Regularization parameter C Yes Linear
C-SVC BC Karasuyama & Takeuchi (2011) Regularization parameter C No Linear
ν-SVC BC Gu et al. (2012) Regularization parameter ν Yes Linear
General BC+R Giesen et al. (2012) Regularization parameter No Linear

framework to compute generalized error path (Section 2.4),
which may be piecewise constant, linear, or quadratic w.r.t.
λ.
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Figure 1. Model function builds a bridge from solution path to
error path. Left: The piecewise linearity of solution path leads
to the piecewise linearity of model function. Right: The error
path could be piecewise constant, linear, or quadratic, based on
the piecewise linearity on model functions.

2.1. Brief Review on Solution Path

As we have mentioned, solution path can efficiently trace
the solutions with respect to a parameter. In this section,
we will first give a more formal description about solution
path algorithm, and then look through various solution path
algorithms. After extensive literature search, it seems that
most of solution paths have the property of piecewise lin-
earity.

Given a generic learning problem J(α, S, λ), where S =
{(xi, yi)}li=1 is a training set, xi ∈ Rd, yi ∈ {+1,−1} is
for binary classification, yi ∈ R is for regression, α is the
coefficients of model, λ is a parameter of the optimization
problem. The solution path algorithm is trying to compute
α̂(λ) = argminα J(α, S, λ) for all λ ∈ [a, b].

As previously mentioned, there have been various solu-
tion path algorithms (Hastie et al., 2004; Bach et al., 2006;
Gunter & Zhu, 2007; Wang et al., 2008; Rosset & Zhu,
2007; Takeuchi et al., 2009; Ong et al., 2010; Karasuyama
& Takeuchi, 2011; Gu et al., 2012; Giesen et al., 2012) pro-
posed for important learning algorithms (e.g., C-SVC, 2C-
SVC, ε-SVR, Lasso, KQR, ν-SVC, and so on). We reor-

ganize them into Table 1. From Table 1, it shows that all
these solution path algorithms are returning the exact solu-
tions to the corresponding problems, except Karasuyama &
Takeuchi (2011) and Giesen et al. (2012). A more impor-
tant observation in Table 1 is that all these solution paths
are piecewise linear w.r.t. the parameter listed in Table 1. It
means that the piecewise linearity is important for design-
ing solution path algorithms.

Besides being used to design solution path algorithms, the
property of piecewise linearity can also produce the piece-
wise linearity on model function (we will discuss it in detail
in Section 2.2), which can be used to efficiently compute
error path in CV. Thus, the piecewise linearity of solution
path is is a core conception in this paper.

A formal definition about the piecewise linearity of the so-
lution path was gave in Rosset & Zhu (2007). However,
their definition is for the exact solution path. In order to in-
corporate the approximate solution paths (e.g. Karasuyama
& Takeuchi (2011)), we modify the definition, and give a
more general one as following:

Definition 1. Suppose α̃(λ) is returned by a solution path.
The solution α̃(λ) is called piecewise linear as a function
of λ, if existing a = a0 < a1 < a2 < · · · < am =
b, and the corresponding vectors β[1], β[2], · · · , β[m], such
that the solution α̂(λ) is given exactly or approximately, by
α̃(ak−1) + β[k](λ− ak−1), ∀λ ∈ [ak−1, ak].

2.2. From Solution Path to Model Function

As we all know, learning a (linear or nonlinear) model f(x)
with a linear representation f(x) = 〈G(x), α〉 is dominant
in machine learning3. For example, to obtain a nonlinear
model, a popular way is learning a linear model in a high
dimensional kernel space, based on the representer theorem
(Scholkopf & Smola, 2002). Importantly, all the problems
in Table 1 are also considering models with a linear repre-
sentation, which are verified as following:

3G(x) denotes a mapping function from x to a vector with the
same size of α.
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1. For C-SVC, 2C-SVC, ν-SVC, the models are f(x) =∑l
i αiyiK(x, xi) + α0.

2. For ε-SVR, we define an extended training sample
set {(xi, yi, zi = −1)}li=1 ∪ {(xi, yi, zi = +1)}li=1,
where zi is the label of the training sample (xi, yi).
The model of ε-SVR is f(x) =

∑2l
i αiziK(x, xi) +

α0.

3. For Lasso, the model is f(x) = xTα.

4. For KQR, the model is f(x) =
∑l
i αiK(x, xi) + α0.

where K(·, ·) is a kernel function, α̂0 is the offset of the
model function.

Because of the linear representation of models, in Lemma
1, we show that the piecewise linearity of solution path
leads to the piecewise linearity of model function. The de-
tailed proof of Lemma 1 is presented in Appendix A.

Lemma 1. Given an interval [ak−1, ak] in a solution path,
and the corresponding vector β[k]. If the model is with
linear representation, there exists a scale γ[k] such that
the model function fλ(x) can be represented as fλ(x) =
fak−1

(x) + γ[k](λ− ak−1), ∀λ ∈ [ak−1, ak].

Specifically, γ in the problems of Table 1 can be computed
as following:

1. For C-SVC, 2C-SVC, and ν-SVC, γ =∑l
i βiyiK(x, xi) + β0.

2. For ε-SVR, γ =
∑2l
i βiziK(x, xi) + β0.

3. For Lasso, γ = xTβ.

4. For KQR, γ =
∑l
i βiK(x, xi) + β0.

Thus, we know that the model functions are also piecewise
linear w.r.t. λ, when solution path is piecewise linear. The
piecewise linearity of model functions will help us to reveal
the relationship between the error path on common error
(loss) functions and the parameter λ.

2.3. From Model Function to Error Path

The model functions are piecewise linear w.r.t. λ as
mentioned above. Thus, given a validation set V =
{(x̃i, ỹi)}`i=1, and an interval [ak−1, ak], we can fit all er-
rors on the validation set for common error (or loss) func-
tions of regression and binary classification problems.

In the following, we will show that the error path on the
entire interval [a, b] could be piecewise quadratic, linear,
or constant w.r.t. λ, on common error (loss) functions for
regression and binary classification problems.

Piecewise Quadratic (Type-1): For regression, if we
consider square error (loss) function L(ỹ, ŷ) = (ỹ − ŷ)2,
where ŷ = fλ(x̃) is the predicted value of input x̃, the
mean square error (MSE) on the validation set is

E(α̂(λ),V, L) = 1

`

∑̀
i=1

L(ỹi, ŷi) (1)

=
1

`

∑̀
i=1

(ỹi − fλ(x̃i))2

=
1

`

∑̀
i=1

(
ỹi − fak−1

(x̃i)− γ[k]i (λ− ak−1)
)2

=
1

`

∑̀
i=1

(γ
[k]
i )2λ2 +

1

`

∑̀
i=1

(
ỹi − fak−1

(x̃i) + γ
[k]
i ak−1

)2
−1

`

∑̀
i=1

2× γ[k]i (ỹi − fak−1
(x̃i) + γ

[k]
i ak−1)λ

Based on (1), it is easy to see that E(α̂(λ),V, L) is a
quadratic function of λ in the interval [ak−1, ak]. Thus,
MSE is piecewise quadratic w.r.t. λ (see Fig. 2), in the
whole interval [a, b] =

⋃m
k=1[ak−1, ak].

Piecewise Linear (Type-2): If we consider the absolute
error (loss) function L(ỹ, ŷ) = |ỹ − ŷ| = |ỹ − fλ(x̃)| for
regression, according to the sign of ỹ−fλ(x̃), the validation
set V can have the partition π(λ) as:

π(λ) = {{i ∈ V : ỹi − fλ(x̃i) ≥ 0}, (2)

{i ∈ V : ỹi − fλ(x̃i) < 0}} def
= {I+(λ), I−(λ)}

Thus, we can define an invariant region of λ, which has
a same partition π(λ0), as IR(λ0) = {λ ∈ [ak−1, ak] :
π(λ) = π(λ0)}. Theorem 1 shows that IR(λ0) is a non-
trivial interval region (not a single point). The detailed
proof of Theorem 1 is presented in Appendix B.

Theorem 1. The IR(λ0) is a convex set and its closure is
a nontrivial interval region.

If an interval IR(λ0) is given, the mean absolute error
(MAE) on the validation set can be computed as:

E(α̂(λ),V, L) = 1

`

∑̀
i=1

|ỹi − fλ(x̃i)| (3)

=
1

`
(
∑

i∈I+(λ0)

(ỹi − fλ(x̃i))−
∑

i∈I−(λ0)

(ỹi − fλ(x̃i)))

=
1

`

 ∑
i∈I+(λ0)

(
ỹi − fλ0(x̃i)− γ

[k]
i (λ− λ0)

)
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−
∑

i∈I−(λ0)

(
ỹi − fλ0

(x̃i)− γ[k]i (λ− λ0)
)

=
1

`

 ∑
i∈I−(λ0)

γ
[k]
i −

∑
i∈I+(λ0)

γ
[k]
i

 · λ
+
1

`

 ∑
i∈I−(λ0)

(ỹi − fλ0
(x̃i) + γ

[k]
i λ0)

−
∑

i∈I+(λ0)

(ỹi − fλ0
(x̃i) + γ

[k]
i λ0)


Based on (3), it is easy to see that E(α̂(λ),V, L) is a linear
function of λ, in the interval IR(λ0). Corollary 1 shows
that, for each interval [ak−1, ak], there exists an interval
sequence {[b0, b1], [b1, b2], · · · , [bnk−1, bnk

]} with bi−1 <
bi such that

⋃n
i=1[bi−1, bi] = [ak−1, ak], and each interval

[bi−1, bi] corresponds a IR(λi). According to the proof of
theorem 1, Corollary 1 can be proved easily.
Corollary 1. For each [ak−1, ak], there exists a finite num-
ber nk of λi, such that

⋃nk

i=1 IR(λi) = [ak−1, ak], and
∀i, j, if i 6= j, IR(λi) ∩ IR(λj) = ∅ or |IR(λi) ∩
IR(λj)| = 1.

Thus, according to Theorem 1, Corollary 1, and the equa-
tion (3), MAE is piecewise linear w.r.t. λ (see Fig. 2), in
the whole interval [a, b].

Piecewise Constant (Type-3): For binary classification,
if we consider standard loss function L(ỹ, ŷ) = 1

2 |ỹ − ŷ|,
where ŷ = sign(fλ(x̃)) is the predicted label of input x̃.
According to the sign of fλ(x̃), the validation set V can
have the partition π̃(λ) as:

π̃(λ) = {{i ∈ V : fλ(x̃i) ≥ 0}, {i ∈ V : fλ(x̃i) < 0}}
def
=

{
Ĩ+(λ), Ĩ−(λ)

}
(4)

Thus, we can also define a invariant region of λ, which has
a same partition π̃(λ0), as ĨR(λ0) = {λ ∈ [ak−1, ak] :

π̃(λ) = π̃(λ0)}. Theorem 2 also shows that ĨR(λ0) is
a nontrivial interval region. It can be proved, similar to
Theorem 1.
Theorem 2. The ĨR(λ0) is a convex set and its closure is
a nontrivial interval region.

If an interval ĨR(λ0) is given, the error rate (ER) on the
validation set can be computed as:

E(α̂(λ),V, L) = 1

2`

∑̀
i=1

|ỹi − sign (fλ(x̃i))|

=
1

2`

 ∑
i∈I+(λ0)

|ỹi − 1|+
∑

i∈I−(λ0)

|ỹi + 1|

 (5)

Based on (5), it is easy to see that E(α̂(λ),V, L) is a con-
stant function of λ, in an interval ĨR(λ0). Corollary 2
shows that, for each interval [ak−1, ak], there exists an
interval sequence {[b0, b1], [b1, b2], · · · , [bnk−1, bnk

]} with
bi−1 < bi such that

⋃n
i=1[bi−1, bi] = [ak−1, ak], and each

interval [bi−1, bi] corresponds a ĨR(λi). It can be proved,
similar to Corollary 1.

Corollary 2. For each [ak−1, ak], there exists a finite num-
ber nk of λi, such that

⋃nk

i=1 ĨR(λi) = [ak−1, ak], and
∀i, j, if i 6= j, ĨR(λi) ∩ ĨR(λj) = ∅ or |ĨR(λi) ∩
ĨR(λj)| = 1.

Thus, according to Theorem 2, Corollary 2, and the equa-
tion (5), ER is piecewise constant w.r.t. λ (see Fig. 2), in
the whole interval [a, b].

Similarly, we can also show that, the weighted error rate,
the precision, the recall, and the F-measure (Yang & Ong,
2011) are piecewise constant w.r.t. λ.
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Figure 2. The error path w.r.t. the regularization parameter.

2.4. Computing Generalized Error Path

The last step in Fig. 1 is to compute generalized error path,
which may be piecewise constant, linear, or quadratic w.r.t.
λ. To fit various error paths, we define a 2-tuple (I, P ),
where I is an interval, P is a set of parameters describing
the constant, linear, and quadratic functions in the interval
I . According to (1), (3), and (5), (I, P ) for the three types
of error path is defined, respectively, as following:

1. For piecewise quadratic (Type-1) error path:
I = [ak−1, ak], P.c2 = 1

`

∑`
i=1(γ

[k]
i )2,

P.c1 = − 1
`

∑`
i=1 2×γ

[k]
i (ỹi−fak−1

(x̃i)+γ
[k]
i ak−1),

P.c0 = 1
`

∑`
i=1

(
ỹi − fak−1

(x̃i) + γ
[k]
i ak−1

)2
.

2. For piecewise linear (Type-2) error path:
I = IR(λ0),
P.c1 = 1

`

(∑
i∈I−(λ0)

γ
[k]
i −

∑
i∈I+(λ0)

γ
[k]
i

)
,

P.c0 = 1
` (
∑
i∈I−(λ0)

(ỹi − fλ0
(x̃i) + γkλ0) −∑

i∈I+(λ0)
(ỹi − fλ0(x̃i) + γkλ0)).
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Algorithm 1 GEP (Generalized error path algorithm)
Input: A solution path w.r.t. λ in an interval [a, b] =⋃m

k=1[ak−1, ak], a validation set V .
Output: An error path {(I1, P1), (I2, P2), (I3, P3), · · · }.

1: Initialize λ = a, k = 0, j = 1.
2: while λ < b do
3: Update k = k + 1, read the k-th sub-interval

[ak−1, ak] from the solution path.
4: while λ < ak do
5: Compute (Ij , Pj) for the leftmost in [λ, ak].
6: Update λ = R(Ij), j = j + 1.
7: end while
8: end while

3. For piecewise constant (Type-3) error path:
I = ĨR(λ0), P.c0 = E(α̂(λ0),V, L).

Given a solution path w.r.t. λ in an interval [a, b] =⋃m
k=1[ak−1, ak], to compute error path for the interval

[ak−1, ak], we explore all (I, P ) in the [ak−1, ak]. Repeat-
ing this procedure on all [ak−1, ak] derives a generalized
error path algorithm (i.e., GEP, Algorithm 1). Note that in
Algorithm 1, the function R(I) is to return the rightmost
point in the interval I .

3. Cross Validation with GEP
Based on GEP, we expect to compute the error path for
CV, which can definitely find the model with the global
minimum CV error. Without losing generality, we consider
K-fold CV here, however, extending to other types of CV
(e.g. repeated random sub-sampling validation, leave-one-
out CV, etc.) is straightforward.

In K-fold CV, the samples are randomly partitioned into
K equal size subsets (i.e., V1, · · · ,VK). For each k =
1, · · · ,K, we train a model from the other K − 1 parts,
and compute its validation error E(α̂k(λ),Vk, L) in pre-
dicting the k-th part. The K-fold CV error is given as
CV (λ) = 1

K

∑K
k=1E(α̂k(λ),Vk, L).

As mentioned above, K-fold CV error is the mean of K
validation errors on the K folds. Thus, the error path of K-
fold CV intuitively can be obtained by averaging K error
paths. A simple merge procedure (i.e., CV-GEP, Algorithm
2), like the one used in merge sort (Cormen et al., 2009),
can be designed to compute the average of K validation
error paths. Specifically, we give an index ik for each er-
ror path to point the corresponding 2-tuple (Ikik , P

k
ik
). Ini-

tially, all indices are set to 1. In each iteration, we compute
the intersection of the K intervals {Ikik}

K
k=1, and the cor-

responding parameters with averaging K 2-tuples. It gives
a 2-tuple (Ij , Pj) for the error path of K-fold CV. In the
following, we give the details of computing Ij and Pj in

Algorithm 2 CV-GEP (Cross validation with GEP)
Input: K error paths {(Ik1 , P k1 ), (Ik2 , P k2 ), (Ik3 , P k3 ), · · · }Kk=1

in the interval [a, b].
Output: An error path {(I1, P1), (I2, P2), (I3, P3), · · · }.

1: Initialize λ = a, i1 = 1, · · · , iK = 1, j = 1.
2: while λ < b do
3: Compute (Ij , Pj) from (I1i1 , P

1
i1), · · · , (IKiK , P

K
iK ).

4: Update i1, · · · , iK . (If R(Ij) = R(Ikik), update
ik = ik + 1.)

5: Update λ = R(Ij), and j = j + 1.
6: end while

each iteration.

1. The interval Ij is the intersection of the K intervals
{Ikik}

K
k=1, and can be computed as Ij = I1i1 ∩ I

2
i2
∩

· · · ∩ IKiK .

2. According to (1), (3), and (5), the set of parameters
in Pj is computed as Pj .c2 = 1

K

∑K
k=1 P

k
ik
.c2 (if

existing), Pj .c1 = 1
K

∑K
k=1 P

k
ik
.c1 (if existing), and

Pj .c0 = 1
K

∑K
k=1 P

k
ik
.c0.

IfR(Ij) = R(Ikik), we update ik = ik+1 in each iteration.
Repeating this procedure until all intervals Ikik in the K er-
ror paths are scanned, produces an error path for K-fold
CV. Based on the error path of K-fold CV, the values of λ
with the minimum K-fold CV error can be found easily.

4. Experiments
In this section, we first give the experimental setup, then
present our experimental results and discussion.

4.1. Experimental Setup

Design of Experiments: As mentioned above, GEP can
theoretically find the global minimum CV error with a fi-
nite number of points. In this section, we do experiments
not only to verify our theoretical findings, but also to show
that the best model with our GEP has better generalization
error on the test data, compared to the grid search, manual
search, and random search.

Because this paper focuses on binary classification and re-
gression, we do experiments mainly on C-SVC, and Lasso.
The corresponding solution path algorithms used in our ex-
periments are Hastie et al. (2004); Rosset & Zhu (2007),
respectively. In order to compare different methods fairly,
we set the numbers of candidate points in grid search, man-
ual search, and random search are same with the number of
knee points of solution path.

Implementation: We implemented our GEP in MAT-
LAB. For the solution path of C-SVC, we used the
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implementation in http://web.eecs.umich.edu/

˜cscott/code.html#svmpath, where the Gaussian
kernel K(x1, x2) = exp(−κ‖x1 − x2‖2) with κ = 0.5
was used. We implemented the solution path algorithm of
(Rosset & Zhu, 2007) for Lasso. In addition, the details of
the implementations of the grid search, manual search, and
random search are described as following:

1. grid search (GS): GS is done on a τ grid linearly
spaced in the region {log2 λ| − 20 ≤ log2 λ ≤ 20}.

2. manual search (MS): MS is done on the set
{1, 10, 100}, then followed by a fine GS on a τ−3 uni-
form grid linearly spaced by 0.1 in the log2 λ space.
If τ < 4, the fine GS will be ignored.

3. random search (RS): RS is done with τ random points
generated from the uniform distribution in the region
{log2 λ| − 20 ≤ log2 λ ≤ 20}.

where τ is the average number of knee points in the solu-
tion paths.

Datasets: The Ionosphere, Diabetes, Hill-Valley, Breast
Cancer, Housing, Forest Fires, Auto MPG, and Triazines
datasets are from the UCI benchmark repository (Bache &
Lichman, 2013). Friedman is an artificial data set as pro-
duced in (Friedman, 1991).

The Spine dataset collected by us is to diagnose degenera-
tive disc disease depending on five image texture features
quantified from magnetic resonance imaging, where 157
records were marked normal and 193 records were marked
abnormal by an experienced radiologist.

Table 2. Summary of datasets. (BC=binary classification,
R=regression)

Dataset Number of samples Dimensionality Task
Ionosphere 354 34 BC
Diabetes 768 8 BC

Hill-Valley 606 100 BC
Breast Cancer 683 10 BC

Spine 350 5 BC
Friedman 1,500 10 R
Housing 506 13 R

Forest Fires 517 12 R
Auto MPG 392 7 R
Triazines 186 60 R

We randomly partition each dataset into 65% training and
35% test sets. For each dataset, the training set is used with
a 5-fold CV procedure to determine the optimal parameter.

4.2. Experimental Results and Discussion

As mentioned above, in order to compare different meth-
ods fairly, we set the numbers of candidate points in GS,

MS, and RS are same with these numbers of knee points.
Table 3 presents the average numbers of knee points in the
solution paths of Hastie et al. (2004); Rosset & Zhu (2007)
on different datasets.

Based on the average numbers of knee points in Table 3,
Table 4 presents the average of CV errors obtained from
GS, MS, RS, and our GEP, on a variety of datasets. The
results confirm that, GEP guarantees to find the model with
minimum CV error for the entire range of the regularization
parameter, with a finite number of points.

Table 5 presents the average errors on the test data, over
10 trails, obtained from GS, MS, RS, and our GEP. The
results show that the best model with our GEP has better
generalization error on the test data, compared to the grid
search, manual search, and random search.

Table 3. The average numbers of knee points in the solution paths
on different datasets.

Dataset Knee points Dataset Knee points
Ionosphere 168 Friedman 10
Diabetes 2 Housing 10

Hill-Valley 38 Forest Fires 12
Breast Cancer 1 Auto MPG 7

Spine 237 Triazines 12

5. Conclusion
In this paper, we proposed a new generalized error path al-
gorithm (GEP). We believe this is very important for model
selection, for the following three reasons. First, GEP in-
corporates more general error (or loss) functions. Second,
GEP works with more general solution path algorithms.
Third and most importantly, we can obtain minimum CV
errors directly for a large variety of error (or loss) functions
and solution path algorithms. The experimental results on
a variety of datasets not only confirm our theoretical find-
ings, but also show that the best model with our GEP has
better generalization error on the test data, compared to the
grid search, manual search, and random search.

As mentioned previously, we mainly discuss the error paths
on binary classification and regression in this paper. If the
solution paths of other learning problems (e.g. ordinal re-
gression, ranking, multi classification, etc.) are available,
we believe that the corresponding error paths can be ob-
tained similarly. For several advantaged error (or accuracy)
criterions (e.g. AUC (Ridgway et al., 2014)), we believe
our GEP also works on them.

http://web.eecs.umich.edu/~cscott/code.html#svmpath
http://web.eecs.umich.edu/~cscott/code.html#svmpath
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Table 4. The results of CV error obtained from GS, MS, RS, and our GEP.

Dataset ER Dataset MAE MSE
GS MS RS GEP GS MS RS GEP GS MS RS GEP

Ionosphere 0.062 0.068 0.068 0.060 Friedman 2.08 2.1 2.07 1.98 6.81 6.82 6.82 6.60
Diabetes 0.655 0.655 0.565 0.345 Housing 2.12 2.13 2.13 2.09 8.11 8.14 8.14 8.05

Hill-Valley 0.465 0.470 0.468 0.460 Forest Fires 17.9 18.3 18.2 17.2 3251 3258 3263 3238
Breast Cancer 0.528 0.528 0.474 0.342 Auto MPG 2.39 2.41 2.39 2.36 9.62 9.63 9.62 9.58

Spine 0.060 0.058 0.059 0.055 Triazines 2.39 2.40 2.40 2.37 9.66 9.67 9.66 9.63

Table 5. The average errors on the test data, over 10 trails, obtained from GS, MS, RS, and our GEP.

Dataset ER Dataset MAE MSE
GS MS RS GEP GS MS RS GEP GS MS RS GEP

Ionosphere 0.066 0.066 0.065 0.063 Friedman 2.12 2.16 2.14 2.08 6.84 6.83 6.84 6.75
Diabetes 0.356 0.356 0.358 0.347 Housing 2.05 2.06 2.06 2.05 8.56 8.63 8.66 8.44

Hill-Valley 0.514 0.519 0.514 0.512 Forest Fires 18.4 19.1 18.9 17.9 5468 5475 5471 5446
Breast Cancer 0.528 0.528 0.474 0.342 Auto MPG 2.74 2.75 2.76 2.62 14.6 14.6 14.7 14.0

Spine 0.060 0.061 0.061 0.058 Triazines 2.76 2.77 2.77 2.54 14.7 14.8 14.6 14.2

Appendix A: Proof of Lemma 1
Given an interval [ak−1, ak] in the solution path, and the
corresponding vector β[k]. If the model is with linear rep-
resentation, the model function fλ(x), ∀λ ∈ [ak−1, ak],
can be computed as:

fλ(x)

= 〈G(x), α̃(λ)〉 = 〈G(x), α̃(ak−1) + β[k](λ− ak−1)〉
= 〈G(x), α̃(ak−1)〉+ 〈G(x), β[k]〉(λ− ak−1) (6)
def
= fak−1

(x) + γ[k](λ− ak−1)

where γ[k] denotes the linear relationship between fλ(x)
and λ in the interval [ak−1, ak], and can be computed by
β[k]. This completes the proof.

Appendix B: Proof of Theorem 1
Let λ1 and λ2 be two arbitrary values in IR(λ0) ⊆
[ai−1, ai]. ∀θ ∈ [0, 1], we define λ(θ) = θλ1 + (1− θ)λ2,
then we can prove that:

ỹ − fλ(θ)(x̃) (7)
= ỹ − (fλ0

(x̃i)− γi(θλ1 + (1− θ)λ2 − λ0))
= θ · (ỹ − fλ0

(x̃i)− γi(λ1 − λ0))
+(1− θ) · (ỹ − fλ0

(x̃i)− γi(λ2 − λ0))
= θ · (ỹ − fλ1

(x̃)) + (1− θ) · (ỹ − fλ2
(x̃))

Based on (7), we can conclude that, ∀θ ∈ [0, 1],
I+(λ(θ)) = I+(λ0) and I−(λ(θ)) = I−(λ0). Thus, we
have that IR(λ0) is a convex set.

Further, ∀λ ∈ IR(λ0), according to the definition of π(λ),
we have

∀i ∈ I+(λ0) : ỹi − fλ0
(x̃i)− γi(λ− λ0) ≥ 0 (8)

∀i ∈ I−(λ0) : ỹi − fλ0
(x̃i)− γi(λ− λ0) < 0 (9)

The closure of inequalities (8)-(9) can be rewritten as:

max
i∈I+(λ0)∧γi<0
i∈I−(λ0)∧γi>0

ỹi − fλ0(x̃i)

γi
+ λ0 ≤ λ (10)

≤ min
i∈I+(λ0)∧γi>0
i∈I−(λ0)∧γi<0

ỹi − fλ0
(x̃i)

γi
+ λ0

Assume IR(λ0) = {λ0}, we have

max
i∈I+(λ0)∧γi<0
i∈I−(λ0)∧γi>0

ỹi − fλ0
(x̃i)

γi
= 0 (11)

min
i∈I+(λ0)∧γi>0
i∈I−(λ0)∧γi<0

ỹi − fλ0
(x̃i)

γi
= 0 (12)

If existing a sample i reaching the equality of (12), we can
change π(λ0) as following:

1. if i ∈ I+(λ0), we update I+(λ0) ← I+(λ0) − {i},
and I−(λ0)← I−(λ0) ∪ {i}.

2. if i ∈ I−(λ0), we update I−(λ0) ← I−(λ0) − {i},
and I+(λ0)← I+(λ0) ∪ {i}.

Thus, the interval region of (10) corresponding to the new
π(λ0) is not a single point. This completes the proof.
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