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Abstract

The Orthant-Wise Limited memory Quasi-
Newton (OWL-QN) method has been demon-
strated to be very effective in solving the ℓ1-
regularized sparse learning problem. OWL-QN
extends the L-BFGS from solving unconstrained
smooth optimization problems to ℓ1-regularized
(non-smooth) sparse learning problems. At each
iteration, OWL-QN does not involve any ℓ1-
regularized quadratic optimization subproblem
and only requires matrix-vector multiplication-
s without an explicit use of the (inverse) Hes-
sian matrix, which enables OWL-QN to tack-
le large-scale problems efficiently. Although
many empirical studies have demonstrated that
OWL-QN works quite well in practice, several
recent papers point out that the existing conver-
gence proof of OWL-QN is flawed and a rigor-
ous convergence analysis for OWL-QN still re-
mains to be established. In this paper, we pro-
pose a modified Orthant-Wise Limited memo-
ry Quasi-Newton (mOWL-QN) algorithm by s-
lightly modifying the OWL-QN algorithm. As
the main technical contribution of this paper,
we establish a rigorous convergence proof for
the mOWL-QN algorithm. To the best of our
knowledge, our work fills the theoretical gap by
providing the first rigorous convergence proof
for the OWL-QN-type algorithm on solving ℓ1-
regularized sparse learning problems. We also
provide empirical studies to show that mOWL-
QN works well and is as efficient as OWL-QN.
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1. Introduction
Sparse learning with ℓ1-regularized optimization
problems have been extensively studied (Tibshirani,
1996; Efron et al., 2004) and have been suc-
cessfully applied to many applications including
face recognition (Wright et al., 2008), gene selec-
tion (Shevade & Keerthi, 2003), signal recovery
(Figueiredo et al., 2007; Wright et al., 2009) and
image deburring (Bioucas-Dias & Figueiredo, 2007;
Beck & Teboulle, 2009). Due to the wide use of the ℓ1-
regularized sparse learning problem, many algorithms have
been developed to speedup the optimization. The existing
optimization algorithms can be roughly classified into two
categories. The first family of algorithms, called first-order
algorithms (Beck & Teboulle, 2009; Wright et al., 2009),
mainly utilize the gradient or sub-gradient to solve the
problem. The first-order algorithms have low compu-
tational cost per iteration but usually achieve sub-linear
convergence rates. The second family of algorithms,
called (quasi-) Newton algorithms (Tseng & Yun, 2009;
Friedman et al., 2010), rely on the (approximated) Hessian
matrix to achieve linear or super-linear convergence rates
but commonly have high computational cost per iteration.
In general, (quasi-) Newton algorithms need to estimate
the exact or approximated (inverse) Hessian and solve
an ℓ1-regularized quadratic optimization subproblem at
each iteration (Schmidt et al., 2009; Friedman et al., 2010;
Yuan et al., 2012). Moreover, the subproblem usually does
not admit a closed-form solution. Thus, a specific iterative
algorithm needs to be designed to solve the subproblem.

Different from the (quasi-) Newton framework presented
in Tseng & Yun (2009), the Orthant-Wise Limited mem-
ory Quasi-Newton (OWL-QN) method (Andrew & Gao,
2007) does not involve an ℓ1-regularized quadratic opti-
mization subproblem at each iteration. It generalizes the
limited memory quasi-Newton method (Jorge & Stephen,
1999) from solving the unconstrained smooth optimiza-
tion problem to the ℓ1-regularized (non-smooth) optimiza-
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tion problem; it only involves matrix-vector multiplica-
tions without explicitly forming the (inverse) Hessian ma-
trix, making OWL-QN applicable for large-scale prob-
lems. Furthermore, OWL-QN is very simple and easy
to implement based on the L-BFGS (Jorge & Stephen,
1999) and is often included as a state-of-the-art method for
comparison in the ℓ1-regularized sparse learning problem
(Schmidt et al., 2009; Yu et al., 2010; Yuan et al., 2010;
Byrd et al., 2012b;a). Yuan et al. (2010) performed an ex-
tensive empirical comparison of existing algorithms for
solving ℓ1-regularized problems. Experimental results
show that OWL-QN is comparable to the state-of-the-art
algorithms. Moreover, Olsen et al. (2012) developed an
OWL-QN-type algorithm to solve the sparse inverse co-
variance estimation problem, achieving a very competitive
result, though no convergence analysis was provided.

Although OWL-QN works quite well in practice, sev-
eral recent papers (Yu et al., 2010; Yuan et al., 2010;
Schmidt et al., 2011; Byrd et al., 2012b) pointed out
that the convergence proof is flawed. In particular,
Schmidt et al. (2011) presented the following comment on
the efficiency and the convergence of the OWL-QN al-
gorithm: “Thus, while the algorithms of Andrew & Gao
(2007) and Section 1.5.1 appear to be very effective in
practice, it remains to show whether they are global-
ly convergent in general without additional assumptions.”
Byrd et al. (2013) also presented a similar comment as fol-
lows: “Although this algorithm1 performed reliably in our
tests, its convergence has not been proved”. A key dif-
ficulty of the convergence analysis for OWL-QN is that
the objective function is not differentiable and the tech-
niques commonly used in convergence analysis of the gra-
dient methods (Bertsekas, 1999) do not work for OWL-
QN. In this paper, we first point out the problems of exist-
ing convergence analysis for OWL-QN. Then, we propose
a modified Orthant-Wise Limited memory Quasi-Newton
(mOWL-QN) algorithm by slightly modifying the OWL-
QN algorithm. As the main technical contribution of this
paper, we establish a rigorous convergence analysis for the
mOWL-QN algorithm. Moreover, we present empirical s-
tudies to show that mOWL-QN works well and is as effi-
cient as OWL-QN. To our best knowledge, our work fills
the theoretical gap by providing the first rigorous conver-
gence proof for the OWL-QN-type algorithm on solving
ℓ1-regularized sparse learning problems.

The rest of the paper is organized as follows: We briefly re-
view the OWL-QN algorithm and point out problems in the
existing convergence analysis in Section 2. We propose the
mOWL-QN algorithm by slightly modifying the OWL-QN
algorithm and provide detailed convergence analysis for the
mOWL-QN algorithm in Section 3. We report experimen-

1This algorithm here refers to the OWL-QN algorithm.

tal results to validate the convergence analysis in Section 4
and we conclude in Section 5.

2. OWL-QN and Problems in the Existing
Convergence Analysis

OWL-QN (Andrew & Gao, 2007) is designed to solve the
following ℓ1-regularized optimization problem:

min
x∈Rn

{f(x) = l(x) + λ∥x∥1} , (1)

where ∥x∥1 =
∑n

i=1 is the ℓ1-norm of x and l : Rn 7→ R
is convex, bounded from below and continuously differ-
entiable; the gradient ∇l(x) is L-Lipschitz continuous for
some L > 0.

2.1. Basics of OWL-QN

Define a function π : Rn 7→ Rn with the i-th entry being:

πi(xi; yi) =

{
xi, if σ(xi) = σ(yi),
0, otherwise,

where y ∈ Rn (yi is the i-th entry of y) is the parameter of
the function π; σ(·) is the sign function defined as follows:
σ(xi) = 1, if xi > 0; σ(xi) = −1, if xi < 0 and σ(xi) =
0, otherwise. Define the pseudo-gradient ⋄f(x) whose i-th
entry is given by:

⋄if(x) =


∇il(x) + λ, if xi > 0,
∇il(x)− λ, if xi < 0,
∇il(x) + λ, if xi = 0, ∇il(x) + λ < 0,
∇il(x)− λ, if xi = 0, ∇il(x)− λ > 0,
0, otherwise.

Then, the objective function in problem (1) is approximat-
ed by a quadratic function and a direction is computed by
minimizing that quadratic function as follows:

dk = argmin
d∈Rn

{
f(xk) + ⋄f(xk)Td+

1

2
dTBkd

}
= −Hk ⋄ f(xk),

where Bk is the (approximated) Hessian matrix at x = xk

and Hk = (Bk)−1. Here, Andrew & Gao (2007) use the
L-BFGS2 (Jorge & Stephen, 1999) to approximate the in-
verse Hessian matrix Hk and compute the matrix-vector
multiplication −Hk ⋄ f(xk), which enables OWL-QN to
tackle large-scale problems. To guarantee convergence,
Andrew & Gao (2007) align the direction as follows:

pk = π(dk;vk), where vk = − ⋄ f(xk).

To restrict the next iterate in the same orthant of the pre-
vious iterate xk, Andrew & Gao (2007) propose to project

2More details on the L-BFGS are provided in Supplement A.
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the point back onto the same orthant of the previous iterate
xk:

xk(α) = π(xk + αpk; ξk), (2)

where

ξki =

{
σ(xk

i ), if xk
i ̸= 0,

σ(vki ), if xk
i = 0,

(3)

and α is a step size chosen by the following line search
procedure: for constants β, γ ∈ (0, 1) and m = 0, 1, · · · ,
find the smallest integer m with α = βm such that

f(xk(α)) ≤ f(xk)− γ(vk)T (xk(α)− xk). (4)

The pseudo code of OWL-QN is given in Algorithm 2.1.

Algorithm 1 OWL-QN: Orthant-Wise Limited memory
Quasi-Newton

1: Initialize x0, S ← {}, Y ← {} and choose β, γ ∈
(0, 1);

2: for k = 0 to maxiter do
3: Compute vk ← − ⋄ f(xk);
4: Compute dk ← Hkvk using L-BFGS with S, Y ;
5: Alignment: pk ← π(dk;vk);
6: Initialize α← 1;
7: while Eq. (4) is not satisfied do
8: α← αβ;
9: xk(α)← π(xk + αpk; ξk);

10: end while
11: xk+1 ← xk(α);
12: if some stopping criterion is satisfied then
13: stop and return xk+1;
14: end if
15: Update S with sk ← xk+1 − xk;
16: Update Y with yk ← ∇l(xk+1)−∇l(xk);
17: end for

2.2. Problems in the Existing Convergence Analysis of
OWL-QN

Andrew & Gao (2007) utilize the techniques used in the
convergence proof of gradient methods (Bertsekas, 1999)
to prove the convergence of OWL-QN. However, due to the
non-differentiability of the objective function, these tech-
niques do not work for OWL-QN. In the following, we
point out the key problems in the existing convergence
proof.

First, Andrew & Gao (2007) present the following propo-
sition and establish the convergence proof of OWL-QN
based on this proposition.

Proposition 1 “Define qk
α = 1

α (π(x
k + αpk; ξk) − xk).

Then for all α ∈ (0,∞) and all i,

dki v
k
i ≤ pki v

k
i ≤ (qkα)iv

k
i ≤ 0,

Algorithm 2 mOWL-QN: modified Orthant-Wise Limited
memory Quasi-Newton

1: Initialize x0, S ← {}, Y ← {} and choose β, γ ∈
(0, 1), ϵ > 0, α0 > 0;

2: for k = 0 to maxiter do
3: Compute vk ← − ⋄ f(xk) and
4: Ik = {i ∈ {1, · · · , n} : 0 < |xk

i | ≤ ϵk, xk
i v

k
i < 0},

where ϵk = min(∥vk∥, ϵ);
5: Initialize α← α0;
6: if Ik = ∅ then
7: (QN-step)
8: Compute dk ← Hkvk using L-BFGS with S, Y ;
9: Alignment: pk ← π(dk;vk);

10: while Eq. (7) is not satisfied do
11: α← αβ;
12: xk(α)← π(xk + αpk; ξk);
13: end while
14: else
15: (GD-step)
16: while Eq. (8) is not satisfied do
17: α← αβ;
18: xk(α)← argminx

{
∇l(xk)T (x− xk)

+ 1
2α∥x− xk∥2 + λ∥x∥1

}
;

19: end while
20: end if
21: xk+1 ← xk(α);
22: if some stopping criterion is satisfied then
23: stop and return xk+1;
24: end if
25: Update S with sk ← xk+1 − xk;
26: Update Y with yk ← ∇l(xk+1)−∇l(xk);
27: end for

and therefore

(vk)Tqk
α ≥ (vk)Tpk ≥ (vk)Tdk.′′

Unfortunately, Proposition 1 is NOT correct (We will cor-
rect this proposition in the next section).

Second, Andrew & Gao (2007) claim that {αk} → 0
and {∥qk

αkβ−1∥} is bounded [refer to Theorem 2 in
Andrew & Gao (2007)]. Obviously, {αk} → 0 indi-
cates that the denominator of ∥qk

αkβ−1∥ = 1
αkβ−1 ∥π(xk +

αkβ−1pk; ξk)− xk∥ approaches zero. Thus, we can NOT
simply conclude that {∥qk

αkβ−1∥} is bounded.

Third, Andrew & Gao (2007) apply the mean value theo-
rem to obtain that there exists some α̃ ∈ [0, α̂] such that

f(xk + α̂q̂k)− f(xk)

α̂
= f ′(xk + α̃kq̂k; q̂k).

This is NOT necessarily true, due to the non-
differentiability of f . In fact, we only obtain that



A Modified Orthant-Wise Limited Memory Quasi-Newton Method

there exists some α̃ ∈ [0, α̂] such that

f(xk + α̂q̂k)− f(xk)

α̂
∈ (q̂k)T∂f(xk + α̃kq̂k).

Fourth, based on the following inequality:

f ′(xk + α̃kq̂k; q̂k) > γf ′(xk; q̂k), (5)

where γ ∈ (0, 1), {α̃k}κ → 0, {xk}κ → x̄ and {q̂k}κ →
q̄, Andrew & Gao (2007) take limits for Eq. (5) and obtain

f ′(x̄; q̄) > γf ′(x̄, q̄) (6)

and hence f ′(x̄, q̄) > 0, since γ ∈ (0, 1). Unfortunately,
Eq. (6) is NOT correct, because f ′(xk, q̂k) and f ′(xk +
α̃kq̂k, q̂k) do NOT necessarily converge to f ′(x̄, q̄). Ac-
tually, we only have the following upper semi-continuity
according to Proposition B.23 in Bertsekas (1999):

lim supk∈κ,k→∞f ′(xk; q̂k) ≤ f ′(x̄; q̄),

lim supk∈κ,k→∞f ′(xk + α̃kq̂k; q̂k) ≤ f ′(x̄; q̄).

This problem was also pointed out by Yu et al. (2010).

3. Convergence Analysis for mOWL-QN
We first propose a modified Orthant-Wise Limited memory
Quasi-Newton (mOWL-QN) algorithm as in Algorithm 2.1
by slightly modifying the OWL-QN algorithm. At each it-
eration, mOWL-QN adopts different strategies (QN-step or
GD-step) to generate the next iterate depending on if Ik =
{i ∈ {1, · · · , n} : 0 < |xk

i | ≤ min(∥vk∥, ϵ), xk
i v

k
i < 0} is

an empty set. Accordingly, we use different line search cri-
teria for each strategy: for constants α0 > 0, β, γ ∈ (0, 1)
and m = 0, 1, · · · , find the smallest integer m with α =
α0β

m such that the following inequalities hold:

QN-step : f(xk(α)) ≤ f(xk)− γα(vk)Tdk, (7)

GD-step : f(xk(α)) ≤ f(xk)− γ

2α
∥xk(α)− xk∥2. (8)

Remark 1 In practice, we set ϵ > 0 as a very small value
(e.g., 10−12) such that Ik is empty and hence QN-step is
adopted at almost all iterations. Thus, mOWL-QN not only
converges in theory but also works as efficient as OWL-QN
in practice. But without the strategy of switching between
QN-step and GD-step, it is practically impossible to prove
the convergence.

Next, we provide a rigorous convergence analysis for the
mOWL-QN algorithm. We begin the convergence analysis
by showing how to correct Proposition 1.

3.1. Corrected Proposition 1

Proposition 2 (Corrected) Define qk
α = 1

α (π(x
k +

αpk; ξk)− xk). Then for all α ∈ (0,∞) and all i,

pki v
k
i ≥ dki v

k
i , (9)

pki v
k
i ≥ (qkα)iv

k
i ≥ 0, (10)

and therefore

(vk)Tpk ≥ (vk)Tdk ≥ 0, (11)

(vk)Tpk ≥ (vk)Tqk
α ≥ 0. (12)

Proof Since pki = πi(d
k
i ; v

k
i ), Eq. (9) is obvious. By the

definition of qk
α, we know that (qkα)i = pki or (qkα)i =

−xk
i /α. We next prove Eq. (10) by considering these two

cases separately.

(a) If (qkα)i = pki , then we have (qkα)iv
k
i = pki v

k
i ≥ 0 by

recalling pki = πi(d
k
i ; v

k
i ) and hence Eq. (10) holds.

(b) If (qkα)i = −xk
i /α, then we have (xk

i + αpki )ξ
k
i ≤

0 must hold. We next focus on the case (b) in the
following three subcases:

(1) If xk
i > 0, then by the definition of ξki in Eq. (3),

we have ξki = 1. Recalling (xk
i +αpki )ξ

k
i ≤ 0, we

have xk
i +αpki ≤ 0 and hence pki < 0. Recalling

pki = πi(d
k
i ; v

k
i ) and (qkα)i = −xk

i /α, we have
vki < 0 and hence (qkα)iv

k
i > 0, (xk

i +αpki )v
k
i ≥

0. Thus, we have pki v
k
i −(qkα)ivki ≥ 0. Therefore,

Eq. (10) holds.
(2) If xk

i < 0, then by the definition of ξki in Eq. (3),
we have ξki = −1. Recalling (xk

i + αpki )ξ
k
i ≤

0, we have xk
i + αpki ≥ 0 and hence pki > 0.

Recalling pki = πi(d
k
i ; v

k
i ) and (qkα)i = −xk

i /α,
we have vki > 0 and hence (qkα)iv

k
i > 0, (xk

i +
αpki )v

k
i ≥ 0. Thus, we have pki v

k
i −(qkα)ivki ≥ 0.

Therefore, Eq. (10) holds.
(3) If xk

i = 0, then by recalling pki = πi(d
k
i ; v

k
i )

and (qkα)i = −xk
i /α, we have (qkα)iv

k
i = 0 and

pki v
k
i ≥ 0. Therefore, Eq. (10) holds.

Eq. (11) and Eq. (12) readily follow from Eq. (9) and E-
q. (10) by noticing that (vk)Tdk = (vk)THkvk ≥ 0 as
long as Hk is positive definite (the positive definiteness of
Hk is guaranteed by the L-BFGS).

3.2. Convergence Proof of mOWL-QN

We first provide an optimality condition for problem (1),
which is directly used to prove the final convergence theo-
rem (Theorem 1).

Proposition 3 Let x̄ = limk∈K,k→∞ xk, vk = − ⋄
f(xk) and v̄ = − ⋄ f(x̄), where K is a subsequence of
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{1, 2, · · · , k, k + 1, · · · }. If lim infk∈K,k→∞ |vki | = 0 for
all i ∈ {1, · · · , n}, then v̄ = 0 and hence x̄ is a global
minimizer of problem (1).

Proof We firstly use contradiction to prove that if
lim infk∈K,k→∞ |vki | = 0 for all i ∈ {1, · · · , n}, then
v̄ = 0. Assume that lim infk∈K,k→∞ |vki | = 0 for al-
l i ∈ {1, · · · , n} but v̄ ̸= 0. Then there exists at least
one i ∈ {1, · · · , n} such that v̄i = − ⋄i f(x̄) ̸= 0. We
consider the following two cases:

(1) If x̄i ̸= 0, then we have lim infk∈K,k→∞ |vki | =
|v̄i| ̸= 0, leading to a contradiction with that
lim infk∈K,k→∞ |vki | = 0 for all i ∈ {1, · · · , n}.

(2) If x̄i = 0, then v̄i = − ⋄i f(x̄) ̸= 0 implies that

∇il(x̄) + λ > ∇il(x̄)− λ > 0

or ∇il(x̄)− λ < ∇il(x̄) + λ < 0. (13)

By the definition of vki = − ⋄i f(xk), we know that

−(∇il(x
k) + λ) ≤ vki ≤ −(∇il(x

k)− λ).

Taking limits of the above inequalities, we have

− (∇il(x̄) + λ) ≤ lim inf
k∈K,k→∞

vki ≤ −(∇il(x̄)− λ), and

− (∇il(x̄) + λ) ≤ lim sup
k∈K,k→∞

vki ≤ −(∇il(x̄)− λ),

which together with Eq. (13) imply that

lim inf
k∈K,k→∞

|vki | ̸= 0.

This leads to a contradiction with that
lim infk∈K,k→∞ |vki | = 0 for all i ∈ {1, · · · , n}. There-
fore, if lim infk∈K,k→∞ |vki | = 0 for all i ∈ {1, · · · , n},
then v̄ = 0.

To complete the proof, we next prove that x̄ is a global
minimizer of problem (1) if and only if v̄ = 0. According
to the definition of the pseudo gradient, it is easy to verify
that ⋄f(x̄) is the minimum norm sub-gradient at point x =
x̄, that is:

⋄f(x̄) = argmin
ḡ∈∂f(x̄)

∥ḡ∥. (14)

Thus, 0 ∈ ∂f(x̄)⇔ ⋄f(x̄) = 0⇔ v̄ = 0 and hence x̄ is a
global minimizer of problem (1) if and only if 0 ∈ ∂f(x̄),
if and only if v̄ = 0.

We subsequently show that we have a similar Lipschitz
continuous inequality in the following proposition, which
is crucial to prove the final convergence theorem.

Proposition 4 Let ∇l(x) be L-Lipschitz continuous for
some L > 0, vk = − ⋄ f(xk), xk(α) = π(xk + αpk; ξk)

and qk
α = 1

α (π(x
k +αpk; ξk)− xk) with α > 0. Then we

have

(i)∇l(xk)T (xk(α)− xk) + λ(∥xk(α)∥1 − ∥xk∥1)
=− (vk)T (xk(α)− xk), (15)

(ii) f(xk(α)) ≤ f(xk)− α(vk)Tqk
α +

α2L

2
∥qk

α∥2.
(16)

Proof (i) Based on the definition of xk(α), we know that
xk
i (α)x

k
i ≥ 0. We next prove for all i ∈ {1, · · · , n}, the

following equality holds by considering two cases:

∇il(x
k)(xk

i (α)− xk
i ) + λ(|xk

i (α)| − |xk
i |)

=− vki (x
k
i (α)− xk

i ). (17)

(a) If xk
i ̸= 0, then xk

i (α)x
k
i ≥ 0 implies |xk

i (α)|−|xk
i | =

σ(xk
i )(x

k
i (α) − xk

i ), which together with ∇il(x
k) +

λσ(xk
i ) = −vki (by noticing that xk

i ̸= 0) implies that
Eq. (17) holds.

(b) If xk
i = 0, then we have xk

i (α) = πi(αp
k
i ;σ(v

k
i )) =

αpki . We next focus on the case (b) in the following
two subcases:

(1) If pki ̸= 0, then |xk
i (α)| = ασ(pki )p

k
i =

σ(vki )(αp
k
i ) = σ(vki )x

k
i (α). Thus, |xk

i (α)| −
|xk

i | = σ(vki )(x
k
i (α)−xk

i ). Noticing that pki ̸= 0
implies vki ̸= 0. According to the definition of
vki , we obtain that ∇il(x

k) + λσ(vki ) = −vki
whenever xk

i = 0 and vki ̸= 0. Therefore, E-
q. (17) holds.

(2) If pki = 0, then |xk
i (α)|−|xk

i | = xk
i (α)−xk

i = 0,
which implies Eq. (17) holds.

Combining (a) and (b), we obtain that Eq. (17) holds for all
i ∈ {1, · · · , n}, which implies that Eq. (15) holds.

(ii) Since ∇l(x) is L-Lipschitz continuous, we have

l(xk(α)) ≤l(xk) +∇l(xk)T (xk(α)− xk)

+
L

2
∥xk(α)− xk∥2.

It follows that

f(xk(α)) ≤ f(xk) +∇l(xk)T (xk(α)− xk)

+ λ(∥xk(α)∥1 − ∥xk∥1) +
L

2
∥xk(α)− xk∥2,

which together with Eq. (15) and qk
α = 1

α (x
k(α) − xk)

implies that Eq. (16) holds.

We next show that both line search criteria in QN-step (E-
q. (7)) and GD-step (Eq. (8)) at any iteration k is satisfied
in a finite number of trials (The detailed proof is provided
in Supplement C).
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Proposition 5 At any iteration k of the mOWL-QN algo-
rithm, if xk is not a minimizer of problem (1), then (a) for
QN-step, there exists an α ∈ [ᾱk, α0] with 0 < ᾱk ≤ α0

such that the line search criterion in Eq. (7) is satisfied; (b)
for GD-step, the line search criterion in Eq. (8) is satisfied
whenever α ≥ βmin(α0, (1 − γ)/L). That is, both line
search criteria at any iteration k are satisfied in a finite
number of trials.

We finally provide the convergence proof for the mOWL-
QN algorithm based on the propositions presented above.

Theorem 1 The sequence {xk} generated by the mOWL-
QN algorithm has at least a limit point and every limit point
of {xk} is a global minimizer of problem (1).

Proof It follows from Proposition 5 that both line search
criteria in QN-step (Eq. (7)) and GD-step (Eq. (8)) at each
iteration can be satisfied in a finite number of trials. Let αk

be the accepted step size at iteration k. Then we have

f(xk)− f(xk+1) ≥ γαk(vk)Tdk

= γαk(vk)THkvk (QN-step), (18)

or f(xk)− f(xk+1) ≥ γ

2αk
∥xk+1 − xk∥2

≥ γ

2α0
∥xk+1 − xk∥2 (GD-step). (19)

Recalling that Hk is positive definite and γ > 0, αk > 0,
which together with Eqs.(18),(19) imply that {f(xk)} is
monotonically decreasing. Thus, {f(xk)} converges to a
finite value f̄ , since f is bounded from below. Due to the
boundedness of {xk} (see Proposition 6 in Supplement B),
the sequence {xk} generated by the mOWL-QN algorithm
has at least a limit point x̄. Since f is continuous, there
exists a subsequenceK of {1, 2 · · · , k, k+1, · · · } such that

lim
k∈K,k→∞

xk = x̄, (20)

lim
k→∞

f(xk) = lim
k∈K,k→∞

f(xk) = f̄ = f(x̄). (21)

In the following, we prove the theorem by contradic-
tion. Assume that x̄ is not a global minimizer of prob-
lem (1). Then by Proposition 3, there exists at least one
i ∈ {1, · · · , n} such that

lim inf
k∈K,k→∞

|vki | > 0. (22)

We next consider the following two cases:

(a) There exist a subsequence K̃ of K and an integer k̃ >
0 such that for all k ∈ K̃, k ≥ k̃, GD-step is adopted.

Then for all k ∈ K̃, k ≥ k̃, we have

xk+1 =argmin
x

{
∇l(xk)T (x− xk)

+
1

2αk
∥x− xk∥2 + λ∥x∥1

}
.

By the optimality condition of the above problem, we
have

λ∥x∥1 ≥ λ∥xk+1∥1

+

(
1

αk
(xk − xk+1)−∇l(xk)

)T

(x− xk+1),

∀x ∈ Rn, k ∈ K̃, k ≥ k̃. (23)

Taking limits with k ∈ K̃ for Eq. (19) and considering
Eqs. (20), (21), we have

lim
k∈K̃,k→∞

∥xk+1 − xk∥2 ≤ 0

⇒ lim
k∈K̃,k→∞

xk = lim
k∈K̃,k→∞

xk+1 = x̄. (24)

Taking limits with k ∈ K̃ for Eq. (23) and considering
Eq. (24) and αk ≥ βmin(α0, (1 − γ)/L) (Proposi-
tion 5), we have

λ∥x∥1 ≥ λ∥x̄∥1 −∇l(x̄)T (x− x̄), ∀x ∈ Rn

⇒ −∇l(x̄) ∈ λ∂∥x̄∥1,

which leads to a contradiction with the assumption
that x̄ is not a global minimizer of problem (1).

(b) There exists an integer k̂ > 0 such that for all k ∈
K, k ≥ k̂, QN-step is adopted. According to Re-
mark 5 (in Supplement B), we know that the smallest
eigenvalue of Hk is uniformly bounded from below
by a positive constant, which together with Eq. (22)
implies

lim inf
k∈K,k→∞

(vk)THkvk > 0. (25)

Taking limits with k ∈ K for Eq. (18), we have

lim
k∈K,k→∞

γαk(vk)THkvk ≤ 0,

which together with γ ∈ (0, 1), αk ∈ (0, α0] and E-
q. (25) implies that

lim
k∈K,k→∞

αk = 0. (26)

Eq. (22) implies that there exist an integer ǩ > 0 and
a constant ϵ̄ > 0 such that ϵk = min(∥vk∥, ϵ) ≥ ϵ̄
for all k ∈ K, k ≥ ǩ. Notice that for all k ∈ K, k ≥
k̂, QN-step is adopted. Thus, we have Ik = {i ∈
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{1, · · · , n} : 0 < |xk
i | ≤ ϵk, xk

i v
k
i < 0} = ∅ for

all k ∈ K, k ≥ k̂. We also notice that, if |xk
i | ≥

ϵ̄, there exists a constant ᾱi > 0 such that xk
i (α) =

πi(x
k
i + αpki ; ξ

k
i ) = xk

i + αpki for all α ∈ (0, ᾱi],
as {pki } is bounded (Proposition 7 in Supplement B).
Therefore, we conclude that, for all k ∈ K, k ≥ k̄ =
max(ǩ, k̂) and for all i ∈ {1, · · · , n}, at least one of
the following three cases must happen:

xk
i = 0⇒ xk

i (α) = πi(x
k
i + αpki ; ξ

k
i )

= xk
i + αpki , ∀α > 0,

or |xk
i | > ϵk ≥ ϵ̄⇒ xk

i (α) = πi(x
k
i + αpki ; ξ

k
i )

= xk
i + αpki , ∀α ∈ (0, ᾱi],

or xk
i v

k
i ≥ 0⇒ xk

i p
k
i ≥ 0⇒

xk
i (α) = πi(x

k
i + αpki ; ξ

k
i ) = xk

i + αpki , ∀α > 0.

It follows that there exists a constant ᾱ > 0 such that

qk
α =

1

α
(xk(α)− xk) = pk,

∀k ∈ K, k ≥ k̄, α ∈ (0, ᾱ]. (27)

Thus, considering Eq. (11) and |pki | = |πi(d
k
i ; v

k
i )| ≤

|dki | for all i ∈ {1, · · · , n}, we have

∥qk
α∥2 = ∥pk∥2 ≤ ∥dk∥2 = (vk)T (Hk)2vk,

∀k ∈ K, k ≥ k̄, α ∈ (0, ᾱ], (28)

(vk)Tqk
α = (vk)Tpk ≥ (vk)Tdk = (vk)THkvk,

∀k ∈ K, k ≥ k̄, α ∈ (0, ᾱ]. (29)

According to Proposition 7 (in Supplement B), we
know that the largest eigenvalue of Hk is uniform-
ly bounded from above by some positive constant M .
Thus, we have

(vk)T (Hk)2vk ≤ 2

αL
(vk)THkvk

−
(

2

αL
−M

)
(vk)THkvk, ∀k,

which together with Eqs. (28), (29) and dk = Hkvk

implies

∥qk
α∥2 ≤

2

αL
(vk)Tqk

α −
(

2

αL
−M

)
(vk)Tdk,

∀k ∈ K, k ≥ k̄, α ∈ (0, ᾱ]. (30)

Considering Eqs. (16), (30), we have

f(xk(α)) ≤ f(xk)− α

(
1− αLM

2

)
(vk)Tdk,

∀k ∈ K, k ≥ k̄, α ∈ (0, ᾱ],

which together with Eq. (11) implies that the line
search criterion in QN-step (Eq. (7)) is satisfied if

1− αLM

2
≥ γ , 0 < α ≤ α0 and 0 < α ≤ ᾱ,

∀k ∈ K, k ≥ k̄.

Considering the backtracking form of the line search
in QN-step (Eq. (7)), we conclude that the line search
criterion in QN-step (Eq. (7)) is satisfied whenever

αk ≥ βmin(min(ᾱ, α0), 2(1− γ)/(LM)) > 0,

∀k ∈ K, k ≥ k̄.

This leads to a contradiction with Eq. (26).

Conbiming (a) and (b), we conclude that x̄ =
limk∈K,k→∞ xk is a global minimizer of problem (1),
which together with Eq. (21) implies that every limit point
of {xk} is a global minimizer of problem (1).

Remark 2 The challenge of proving the convergence of
OWL-QN without any modification is: if there exists a sub-
sequence K such that {xk

i }K converges to zero, it is possi-
ble that for a large enough k ∈ K, |xk

i | is arbitrarily small
but xk

i is never equal to zero. In this case, Eq. (27) cannot
be obtained (note that for k ∈ K, k + 1 may not be in K),
while Eq. (27) is critical to the subsequent proof. To ex-
clude the above case in the QN-step, we propose to switch
the iteration to the GD-step when |xk

i | is very small. We
also change (vk)Tqk

α [note that qk
α = (xk(α) − xk)/α]

in Eq. (4) to (vk)Tdk in Eq. (7) for the line search in the
QN-step. Such a modification is needed to obtain Eq. (26)
which is the contradiction we will show in the subsequent
proof. If Proposition 1 is correct, we do not need this mod-
ification, because (vk)Tqk

α ≥ (vk)Tpk ≥ (vk)Tdk can
also lead to Eq. (26).

Remark 3 Note that even for the QN-step, we use a totally
different proof framework from OWL-QN (Andrew & Gao,
2007). In particular, the Lipschitz-continuous-like inequal-
ity in Proposition 4 is new for non-smooth problems and it
is critical to the convergence proof.

4. Experiments
In this section, we validate the convergence analysis by ap-
plying the mOWL-QN algorithm to solve the following ℓ1-
regularized logistic regression problem:

min
x∈Rn

{
f(x) =

1

N

N∑
i=1

log(1 + exp(−yiaTi x)) + λ∥x∥1

}
,

where N is the number of samples; λ > 0 is the regularized
parameter; ai ∈ Rn is the i-th sample; yi ∈ {1,−1} is the
label of the sample ai.
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Table 1. Data set statistics.
No. 1 2 3 4

datasets kdd2010a kdd2010b real-sim rcv1
♯ samples N 510,302 748,401 72,309 677,399

dimensionality n 20,216,830 29,890,095 20,958 47,236

We include mOWL-QN and OWL-QN algorithms in com-
parison. Experiments are conducted on four large scale da-
ta sets which are summarized in Table 1. These data sets
are high-dimensional and sparse and can be downloaded
from http://www.csie.ntu.edu.tw/˜cjlin
/libsvmtools/datasets/binary.html.

Both algorithms are implemented in Matlab and executed
on an Intel(R) Core(TM)2 i7-3770 CPU (@3.4GHz) with
32GB memory. We choose the starting points x0 for both
algorithms using the same random vector whose entries are
independently sampled from the standard Gaussian distri-
bution. We terminate both algorithms if the relative change
of two consecutive objective function values is less than
10−5 or the number of iterations exceeds 500. We set
γ = 10−2, β = 0.2, α0 = 1, ϵ = 10−12 and the number
of unrolling steps (in L-BFGS) as m = 10.

We report the objective function value vs. CPU time plot-
s in Figure 1. We observe that our results agree with
empirical studies of OWL-QN algorithms in existing lit-
erature (Schmidt et al., 2009; Yu et al., 2010; Yuan et al.,
2010; Byrd et al., 2012a;b; 2013), that is, the OWL-QN
algorithm works very well in practice, though a rigorous
convergence proof has not been established so far. We al-
so observe that mOWL-QN and OWL-QN have very simi-
lar convergence behaviors since the convergence curves of
mOWL-QN and OWL-QN almost overlap with each other.
The underlying reason is that, for a very small ϵ, mOWL-
QN adopts QN-step at almost all iterations3. Moreover,
both line search criteria in Eq. (4) and Eq. (7) accept the
unit step size (i.e., the line search terminates in only one
trial).

5. Conclusions
In this paper, we establish a detailed convergence analysis
for the mOWL-QN algorithm which is based on a slight
modification of a well-known algorithm called OWL-QN.
To the best of our knowledge, this is the first work to pro-
vide a rigorous convergence proof and fills the theoretical
gap for the OWL-QN-type algorithm.

3The main purpose of the current experiments is to show that
the modified algorithm is almost identical to the original algo-
rithm when ϵ is set to be very small. Meanwhile, the modified
algorithm has a rigorous convergence guarantee.
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Figure 1. Objective function value (logged scale) vs. CPU time
(seconds) plots using OWL-QN and mOWL-QN algorithms with
different values of λ.

There are several interesting directions that we will explore
in the future. First, we plan to extend similar ideas to other
sparsity-inducing problems including non-convex regular-
ized problems. Second, we plan to analyze the convergence
rate of the mOWL-QN algorithm in the future. Third, we
plan to develop parallel and distributed variants of the al-
gorithm to deal with much larger data sets.
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