A Modified Orthant-Wise Limited Memory Quasi-Newton Method

Supplementary Material for “A Modified Orthant-Wise Limited Memory Quasi-Newton
Method with Convergence Analysis”

A. BFGS and L-BFGS

For self-containedness, we briefly review the update of the inverse Hessian matrix in the BFGS and L-BFGS
(Jorge & Stephen, 1999). Assume that we are given an approximate inverse Hessian matrix H* at x = x*. BFGS updates
the inverse Hessian matrix H**1 at x = x¥*1 as:

HkJrl — (Vk:)THkvk: + pksk(sk)T’ (31)
where VF = [ — pkyk(sF)T, sk = xk+1 — x| yk = Vi(xFH1) — VI(xF), p* = ((y*)TsF) 1. Ttis easy to verify that
HF1 w 0,if H* = 0 and p* > 0 (Jorge & Stephen, 1999).

L-BFGS updates the inverse Hessian matrix by unrolling the update from BFGS back to m steps:
Hk _ (kal)THk‘flkal +pkflsk71(sk‘71)T
_ (Vkrfl)T(Vk72)THk72vk72kal
+ (Vk—l)Tsk—2pk—2(sk—2)TVk—l
+pk—1sk—1(sk—1)T
— (Uk7m)THk7mUk’m
+ pk—m (Uk',m—l)T Sk—m(sk—m)TUk',m—l

i pszm+1 (Uk,m72)TSk7m+1(sk7m+1)TUk,m72

+pk72(kal)Tsk72(Sk72)TVk71
+pkflsk71(skfl)T’ (32)

where Uk = yk—myk=m+1 ... y/k=1 For the L-BFGS, we need not explicitly store the approximated inverse Hessian
matrix. Instead, we only require matrix-vector multiplications at each iteration, which can be implemented by a two-
loop recursion with a time complexity of O(mn) (Jorge & Stephen, 1999). Thus, we only store 2m vectors of length n:
sh=1 gk=2 ... gh=m and y*—1 yF=2 ... yk=™ with a storage complexity of O(mn), which is very useful when n is
large. In practice, L-BFGS updates H*~™ as ;¥ I, where ¥ = (s¥)Ty* /|| y*|2.

B. Properties of L-BFGS

We first show that some key sequences are bounded, which are critical for establishing some important properties of
L-BFGS.

Proposition 6 The sequence {x*} generated by the mOWL-QN algorithm is bounded. Let sk = xF*1 — xk yk =
Vi(x*+1) — VI(xF). Then {s*}, {y*} and {v*} are also bounded.

Proof Proposition 5 guarantees that both line search criteria in QN-step (Eq. (7)) and GD-step (Eq. (8)) can be satisfied in
a finite number of trials with some o* > 0. By Egs. (11), (7), (8), we have

FOM) = FOHT) > yak (vF)Td" > 0 (QN-step),
or () = F(x"*1) = ST xF|2 2 0 (GD-step), (33)

which imply that {f(x*)} is decreasing. Hence for all k > 1, f(x*) < f(x°). Assume that {x*} is unbounded. Then
there exists a subsequence {x"} ¢ such that {||x"||1}z — oo. Recall that I(x) is bounded from below (see Section 2).
Thus, we have {f(x*)}z — oo, which leads to a contradiction with that f(x") < f(x°),Vk > 1. Therefore, {x"} is
bounded, which immediately imply that {s*} is also bounded. Recalling that VI(x) is L-Lipschitz continuous, we obtain
that ||y*|| < L|jx* — x**1|| and hence {y"} is bounded. Since —v* € Of(x*), then based on the Proposition B.24(b) in
Bertsekas (1999), we obtain that {v*} is bounded.
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Based on Proposition 6, we present the following important properties of L-BFGS.

Proposition 7 In the course of the inversion Hessian matrix update using L-BFGS, let { H} and { H*=™} be bounded and
positive definite, and {x*}, {s*}, {v¥}, {y"*} and {p*} be bounded, where s* = x**+1 —xF, y* = Vi(x*+1)-Vi(x*) and
o* = ((y*)Ts¥)~L. Then there exists a positive constant M such that for all x € R™ and all k > 1: xT H*x < M||x||.
That is, the eigenvalues of H are uniformly bounded from above by M. Moreover, {d*} and {p*} are bounded.

Proof When k& < m (m is the unrolling steps of L-BFGS), L-BFGS is equivalent to BFGS and H”* is updated by the
recursive relationship in Eq. (31). When k& > m, HF is updated by the recursive relationship in Eq. (32). Thus, Egs. (31),
(32) and the boundedness of { H°}, {H*~™}, {s*}, {y*}, {v¥} and {p*} immediately imply that {||H* ||} is bounded.
That is, there exist an M > 0 such that | H*||z < M for all k > 1. Thus, for all k& > 1, Apnax (HF) < |HF||r < M,
where Aoy (H") is the largest eigenvalue of H¥. That is, there exists a positive constant M such that for all x € R™ and
all k > 1: xTH*x < M]||x||?. Thus, the eigenvalues of H* are uniformly bounded from above by M. It easily follows
that {d*} and {p*} are bounded by noticing that {v*} is bounded.

Remark 4 We discuss how to guarantee that the conditions in Proposition 7 are satisfied in practical L-BFGS updates.
We usually choose H® and H*~™ as multiple identity matrices such that {H®} and {H*~™) are bounded and positive
definite. Proposition 6 guarantees that {x*}, {s*}, {v¥} and {y*} are bounded. To guarantee that {p*} is also bounded,
we adopt a similar strategy presented in Byrd et al. (1995); Andrew & Gao (2007): choose a small positive constant 6 and
perform L-BFGS updates only when (s*)Ty* > 6.

Remark 5 To guarantee the eigenvalues of H* are uniformly bounded from below by a positive constant, we can add a
small positive diagonal matrix vI to H* (e.g., v = 10712). Thus, the eigenvalues of H* are both uniformly bounded from
below by v and uniformly bounded from above by M, respectively.

C. Proof of Proposition 5 and Auxiliary Propositions

We present the following proposition which is useful to prove Proposition 5.

Proposition 8 At the point x = x* with the vector v¥ = — o f(x*), if p* = w(d*;v*) is a non-zero vector, then
f'(xk:p*) = —(vF)Tp* < 0, where f'(x*; p¥) denotes the directional derivative of f(x) at x = x* along the direction
p* defined as follows:

<k kY _ f(xk
f/(xk;pk)zg?olf( +apa> I )

(34)

Proof According to the property of the directional derivative of a convex function (Bertsekas, 1999), we have

n
"(x*:p*) = max T pk = max  gFpF.
f'(x"p") gkeaf(xk)(g )'p iﬂgfeaif(xk)gzpz

Noticing that o; f (x*) = V;1(x*) 4+ Ao (z¥) is the unique element of J; f (x*) whenever z¥ # 0, we have

F1eEpR) = Y o f (P )k + Z max  gfp}.

i€ Ay, cAg 9i FE0if(xk)
")pf + max gro(vf)|pf],
XA: 2850
where Ay = {i : 2% #£ 0}, A{ = {i : 2¥ = 0} and the last equality is due to pf = 7;(d¥; vF). We now focus on z¥ = 0 in

the following three cases:
(1) If vk > 0, then o; f(x*) = V;l(x*) + A < 0 and hence V;I(x*) — X\ < g¥ < V,;I(x*) + A < 0. Thus, we should
choose g¥ = o; f(x*) to make g¥o (vF)|p¥| achieve the maximum value.

(2) If v < 0, then o; f(x*) = V;l(x*) — A > 0 and hence 0 < V;I(x*) — X < gF < V,i(x*) + \. Thus, we should
choose gF = o, f(x*) to make gFo(vF)|p¥| achieve the maximum value.
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(3) If vF = 0, then gFo(vF)|p¥| = 0 for any gF € 0, f(x").

Combining the above three cases, we have:

&R = oif )l + > 0if(xF)o(vf)Ipf]

€A i€Af
=Y oif(F)pF+ > o f (X )pf
€A i€Af

=of (x")Tp* = ~(v/)"p" <0,
where the last inequality follows from that p* = 7(d*; v¥) and the condition p* # 0.
Based on Proposition 8, we prove Proposition 5 as follows:

Proposition 5 (a) For QN-step, let’s define

BkZ{i:mfpf<0}anda’f:{mm’esk b 1 Bu#0,

400, " otherwise.
Then for all « € (0, &%), we have
xF(a) = n(x* + ap®; £F) = x* + ap”. (35)
Define
s(a) — s(0)

s(@) = F(x* + apt), hla) = 22

Since f is convex, s(«) is convex. Let 0 < a < /. Then the convexity of s(«) leads to

o —«

s(a) < %s(a') + 5(0).

«

Thus,

which indicates that h(«) is an increasing function in the interval (0,00). Recalling the definition of the directional
derivative in Eq. (34), v € (0, 1) and Proposition 8, we have

li% s(a) — s(0) _ _(Vk)Tpk < _(Vk)lec < _7<Vk):rd/g7
« (0%

where the first inequality follows from Eq. (11) and the last inequality follows from vy € (0, 1) and (v¥)Td* > 0 whenever
x* is not a global minimizer of problem (1) [see Eq. (11) and Proposition 9]. Thus, there exists an &5 € (0, min(ag, a¥))

such that

—5(0
s(a) =s(0) _ —y(v)Td*, Y0 < a < ab. (36)
a
Recall that h(«) is continuous and increasing in the interval (0, co). Thus, considering Eq. (36) and the backtracking form
of the line search in QN-step (Eq. (7)), there exists an o with a > a* = Bak > 0 such that

s(a) ; s(0) < _,y(vk)Tdk' (37)

Substituting the definition of s(«) into Eq. (37) and considering that Eq. (35) holds for all o € (0, &¥), we obtain that there
exists an a € [@¥, ap] such that the line search criterion in Eq. (7) is satisfied.
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(b) For GD-step, we have
VI(x")T (x" (o) = x*) + illxk(a) = x" + Alx (@) [l < Al (38)
Noticing that VI(x) is Lipschitz continuous with constant L, we have
1(x" (@) < 1(x") + VI(x")T (x" (o) = x") + g”xk(a) - x"|?,

which together with Eq. (38) and f(x) = I(x) + A||x||; implies that

1—al
2c

f(xM(a)) < f(x*) = " () = x*|1%.
Thus, the line search in Eq. (8) is satisfied if
y<l—alLand0 < a < ag.

Considering the backtracking form of the line search in GD-step (Eq. (8)), we obtain that the line search criterion in Eq. (8)
is satisfied whenever o > S min(ay, (1 —v)/L).

D. More Optimality Conditions for Problem (1)

Proposition 9 Let d* = H*vE, p* = 7(d*;v¥), qf = L(n(x* + ap”;&F) — x*). Then for all a € (0,00), x* isa

[e3%

global minimizer of problem (1) < d* =0 & vF =0 pF =0 ¢ =0.

Proof Based on Proposition 3 and its proof, we know that x* is a global minimizer of problem (1) if and only if v¥ = 0.
Thus, we only need to prove the following equivalence to complete the proof of Proposition 9:

d"=0evF=0sp"=02d¢" =0
(i) We first prove d¥ = 0 < vF = 0.
This equivalence immediately follows from that d* = H*v* and H* is positive definite.
(i) We next prove vFE=0<pF=0.
e If v¥ = 0, then p* = 0 by the definition of p*.
e Ifp¥ =0, thenforalli € {1,---,n}, d*v¥ < 0 by the definition of p*. Thus, we have

(vk)THk'Vk = Z dfvf <0.
i=1

On the other hand, due to the positive definiteness of H k we have
(viTHEE > 0.
Thus, (vF)T H*vk = 0 and hence v¥ = 0.

(iii) We finally prove p* = 0 < q* = 0.
1
(1) If 2% = 0, then (¢*
(2) If 2% £ 0, then (¢*

(m(x*; &%) — x*). We consider the following two cases:

)i =(0—0)/a=0.
)i = (af —af)/a=0.

(3

e If p¥ =0, then ¢* =



A Modified Orthant-Wise Limited Memory Quasi-Newton Method

Combing the above two cases, we obtain that qg =0.

o If qg = 0, then w(x* + ap”; &F) = x*. We consider the following two cases:
(1) If 2% = 0, then m; (z¥ +apl; €F) = 0. Thus, (0+ap¥)EF = apfo(vF) < 0, which together with p¥ = 7, (d¥; v¥)
implies pFo(vF) = [p¥| < 0. Therefore, p¥ = 0.
(2) If z¥ # 0, then m;(x¥ + apl; €F) = 2¥. By the definition of ;(-), we have m;(z¥ + ap¥; £F) = z¥ + ap¥ or 0.
Thus, by recalling that ¥ # 0 and 7; (2¥ + ap¥; €F) = ¥, we must have 2¥ + ap¥ = z;. Therefore, p¥ = 0.

Combing the above two cases, we obtain that pk =0.





