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Abstract
We introduce a new anomaly detection method-
ology for data with latent dependency structure.
As a particular instantiation, we derive a hidden
Markov anomaly detector that extends the regu-
lar one-class support vector machine. We opti-
mize the approach, which is non-convex, via a
DC (difference of convex functions) algorithm,
and show that the parameter ν can be conve-
niently used to control the number of outliers in
the model. The empirical evaluation on artificial
and real data from the domains of computational
biology and computational sustainability shows
that the approach can achieve significantly higher
anomaly detection performance than the regular
one-class SVM.

1. Introduction
In the age of big data, effective filtering methodologies for
unlabeled data such as the framework of learning-based
anomaly detection (Markou & Singh, 2003; Chandola
et al., 2009) are gaining increasing interest by the machine
learning community (Blanchard et al., 2010; Saligrama &
Zhao, 2012; Kloft & Laskov, 2012; Görnitz et al., 2014).
Learning-based anomaly detection methods are at the heart
of several important applications areas, including, in com-
puter security, the detection of yet unsignatured attacks
and novel intrusions in computer networks (Jyothsna et al.,
2011) and, in computational biology, the characterization
of systematic anomalies in microarray analysis (Noto et al.,
2014) and deep sequencing data (Kukita et al., 2013).

Prominent approaches to learning-based anomaly detec-
tion include prevalent kernel-based approaches such as the
one-class support vector machine (OC-SVM) (Schölkopf
et al., 2001) or support vector data description (Tax & Duin,
2004). Such methods use a kernel approach to learn a non-
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linear representation of the class membership that can be
used to predict the anomaly score of new and yet unseen in-
puts. These methods are based on the fundamental assump-
tion that the nominal inputs xi are realized independently
from a common probability distribution P , without exploit-
ing any potential patterns contained in the outputs yi. How-
ever, in many real-world applications, the data is associated
with an inherently underlying output structure: e.g., in in-
trusion detection or speech and text recognition the data
naturally admits a language and grammar structure (Rieck
et al., 2010; Joachims et al., 2009); in bioinformatics, the
annotation into exonic, intronic, and intergenic regions in-
herently underlies genomic data (Schweikert et al., 2009).
It has been shown that methodologies exploiting such po-
tential structure such as the structured support vector ma-
chine (SSVM) (Tsochantaridis et al., 2005a) can substan-
tially help performance in such contexts (Rätsch & Son-
nenburg, 2007; Joachims et al., 2009; Rieck et al., 2010).

In this paper, we propose a novel kernel-based framework
for the detection of anomalies with underlying sequence
structure, called hidden Markov anomaly detection. This
approach can be introduced in a general way for data with
latent dependency structure, and, for a specific choice of
loss function and joint feature map, we obtain a hidden
Markov analogue to the one-class SVM. Just like the orig-
inal OC-SVM, the method has a parameter ν that con-
trols the fraction of the outliers, and enjoys deep theoretical
guarantees: we prove that a large deviation bound holds on
the generalization error (measured with respect to the loss
function).

The presented approach is general enough to work with
many problems that can be addressed within the structured
output prediction framework. In this paper though, we fo-
cus on using hidden Markov chain type structured output
models, as common in label sequence learning, to facilitate
the detection of anomalous sequences where changes fol-
low a hidden Markov model. That way, we achieve much
better performance compared to the standard OC-SVM,
which treats each position independently, as our empirical
evaluation shows.
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Figure 1. Factorization of hidden Markov models: the latent vari-
ables (z, green) can not be observed directly, instead, noisy ob-
servations (x, blue) and bindings between consecutive latent vari-
ables give rise to their current state.

The remainder of the paper is structured as follows: in Sec-
tion 2 we describe the problem setting. In Section 3 we
introduce the novel latent anomaly detection framework,
leading to hidden Markov anomaly detection (Section 4.2),
for which we develop an effective optimization algorithm.
Our method is evaluated on controlled artificial data and
two real-world data sets from bioinformatics and compu-
tational sustainable energy applications (Section 5). Sec-
tion 6 concludes. Additional run time experiments and
mathematical proofs are presented in the supplementary
material.

2. Anomaly Detection
In anomaly detection (Chandola et al., 2009) we are given
a set of input instances x1, . . . , xn ∈ X , which are com-
monly assumed to be realized from independent and identi-
cally distributed (i.i.d) random variables X1, . . . , Xn ∼ P ,
where P is a potentially unknown measure of probability.
The aim is to find a set containing the most typical instances
under the measure P , and instances lying outside of the set
are declared as anomalies. The task of anomaly detection
can be formally phrased within the framework of density
level set estimation (Tsybakov, 1997) as follows. Denoting
by X another i.i.d. copy according to P , the theoretically
optimal nominal set is Lν := {x ∈ X : p(x) ≥ bν} for
ν ∈]0, 1[ and bν such that P (X /∈ Lν) = ν, which is
called the ν density level set and can be interpreted as fol-
lows: Lν contains the most likely inputs under the density
p, while rare or untypical data (“anomalies”) are modeled
to lie outside of Lν . The parameter ν indicates the fraction
of outliers in the model.

The aim is to compute, based on the data x1, . . . , xn ∈ X ,
a good approximation of Lν , that is, to determine a func-
tion f : X → R giving rise to an estimated density level
set L̂ν := {x ∈ X : f(x) ≥ 0} . It is desirable that L̂ν
closely approximates the true density level set Lν , i.e., L̂ν
converges to Lν in probability, that is,

P (L̂ν\Lν ∪ Lν\L̂ν)→ 0 for n→∞.

This implies that L̂ν has asymptotically probability mass ν,
that is, P (X /∈ L̂ν) → ν for n → ∞. Classic approaches
to anomaly detection include kernel-based ones (Müller
et al., 2001) such as the one-class support vector machine
(Schölkopf et al., 2001) (OC-SVM). The OC-SVM is one
of the most prominent and successful anomaly detectors
and employs linear models fw,ρ(x) = 〈w, φ(x)〉 − ρ,

where the data is mapped into a reproducing kernel Hilbert
space (RKHS) H via a feature map φ : X → H. It subse-
quently separates a fraction of 1− ν many inputs from the
origin with maximum margin:

max
w,ρ,ξ≥0

‖w‖2 − ρ+
1

νn

n∑
i=1

ξi (OC-SVM)

s.t. ξi ≥ −fw,ρ(xi) ∀ i = 1, . . . , n.

However, this approach does not exploit latent dependency
structure of the data. Latent dependencies, however, are
prevalent in many real-world applications, e.g., network
intrusion detection (Rieck et al., 2010; Kloft & Laskov,
2010; Görnitz et al., 2009a;b; Görnitz et al., 2013; Kloft
et al., 2008), speech and text recognition (Joachims et al.,
2009), and gene finding (Rätsch & Sonnenburg, 2007). In
this case, the i.i.d. postulate no longer holds: having a la-
tent dependency structure means that there are unobserved
latent variables Zi such that, only when conditioned on Zi,
the Xi become conditionally independent. In other words,
if the latent structures Zi are unknown, the input variables
Xi are dependent.

Many real-world problems are sequential by nature, with
observations stemming from probability distributions ac-
cording to a corresponding hidden state sequence. E.g. the
goal in gene finding is the segmentation of the DNA input
sequence into genic and intergenic regions where the ob-
served sequence of nucleotides (A,C,G,T) changes its dis-
tribution whenever we enter or leave a genic region. In this
paper, we focus on problems that exhibit sequence struc-
ture where observations change their distribution according
to a corresponding latent state sequence and can be tack-
led with hidden Markov models (see Figure 1). We show
that exploiting latent structure directly, leads to significant
improvements over state-of-the-art methods. This problem
can be solved in a generic way for latent dependencies, as
we show in the next section.

3. Latent Anomaly Detection
In the problem setting of latent anomaly detection,
we extend the expressiveness of the model given in
Eqn. (OC-SVM) by considering models of the form
fw,ρ(x) = maxz∈Z〈w,Ψ(x, z)〉 + δ(z) − ρ, where Ψ :
X × Z → H is a joint feature map into a reproducing
kernel Hilbert space H that corresponds to a kernel func-
tion k : (X × Z) × (X × Z) → R , and δ : Z → R
is a prior weight function of the instances z ∈ Z . This
is a principled way of approaching the encoding prob-
lem for arbitrary dependencies between x and z as it is
common in the structured output literature (Tsochantaridis
et al., 2005b). Albeit, it has been already used to encode
hidden Markov and hidden semi-Markov models (Görnitz
et al., 2011; Rätsch & Sonnenburg, 2007), it is not restricted
to those and has been applied to Markov random fields
(Nowozin & Lampert, 2010), weighted context-free gram-
mars and taxonomies (Tsochantaridis et al., 2005b). Here,
the maximization step for the latent variable z acts as a fre-
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quentist’s equivalent to marginalization in basic probability
theory (Nowozin & Lampert, 2010).

Employing the above notation, we phrase the primal opti-
mization problem of latent anomaly detection as follows:

Problem 1 (PRIMAL LATENT ANOMALY DETECTION
OPTIMIZATION PROBLEM). Given a monotonically non-
decreasing loss function l : R→ R, minimize, with respect
to w ∈ H and ρ ∈ R,

1

2
‖w‖2 − ρ+

1

νn

n∑
i=1

l
(
ρ−max

z∈Z

(
〈w,Ψ(xi, z)〉+ δ(z)

))
.

(P)

The interpretation of the above formulation is as follows.
The loss function could be, e.g., l(t) = max(0, t), in which
case the above detection method extends the one-class sup-
port vector machine (Schölkopf et al., 2001) to the latent
domain (this is extensively discussed in the upcoming Sec-
tion 4.2). Variants of this detection method can be obtained
from the above general formulation by employing different
loss functions, e.g., of logistic or exponential type (l(t) =
log(1 + exp(t)) and l(t) = exp(t), respectively). It is im-
portant to note that, when contrasted to the classical kernel-
based hypothesis model fw,ρ(φ(x)) = 〈w, φ(x)〉 − ρ, the
above detection method employs a latent hypothesis model
of the form fw,ρ(x) = maxz∈Z〈w,Ψ(x, z)〉 + δ(z) − ρ,
which allows for additional flexibility.

3.1. Dual Optimization Problem

To obtain a dual representation of the Problem 1, we start
by equivalently re-writing (P) as

min
w∈H,ρ∈R,ξ∈Rn

1

2
‖w‖2 − ρ+

1

νn

n∑
i=1

l(ξi)

s.t. ξi ≥ ρ−max
z∈Z

(
〈w,Ψ(xi, z)〉+ δ(z)

)
, ∀i

Denote, for all α ∈ Rn with α ≥ 0,1 the Lagrangian by

L(w, ρ, ξ,α) :=
1

2
‖w‖2 − ρ+

1

νn

n∑
i=1

l(ξi) +

n∑
i=1

αi(
ρ− ξi −max

z∈Z

(
〈w,Ψ(xi, z)〉+ δ(z)

))
.

By weak duality (e.g., Boyd & Vandenberghe, 2004, Chap-
ter 5),

1For vectors x ∈ Rn, we denote by x ≥ 0 as the component-
wise inequalities xi ≥ 0, i = 1, . . . , n.

Eq. (P) ≥ max
α:α≥0

min
w∈H,ρ∈R,ξ∈Rn

L(w, ρ, ξ,α) =

max
α:α≥0

(
− 1

νn

n∑
i=1

max
ξi∈R

(
αiνnξi − l(ξi)

)
+ min

ρ∈R
ρ
(
− 1 +

n∑
i=1

αi

)
− max
w∈H,zi∈Z
i=1,...,n

n∑
i=1

αi
(
〈w,Ψ(xi, zi)〉+ δ(zi)

)
− 1

2
‖w‖2

︸ ︷︷ ︸
(∗)

)

Let wα and (zαi )i=1,...,n be the maximizing ar-
guments in (∗). Thus maxzi∈Z 〈wα,Ψ(xi, zi)〉 +
δ(zi) = 〈wα,Ψ(xi, z

α
i )〉 + δ(zαi ), and, moreover,

maxzi∈Z 〈w,Ψ(xi, zi)〉+δ(zi) ≥ 〈w,Ψ(xi, z
α
i )〉+δ(zαi )

for all w ∈ H and i = 1, . . . , n. Hence, for all α ∈ Rn+,

(∗) = max
w∈H

n∑
i=1

αi
(
〈w,Ψ(xi, z

α
i )〉+ δ(zαi )

)
− 1

2
‖w‖2 ,

from which it follows wα =
∑n
i=1 αiΨ(xi, z

α
i ), and thus

(∗) = max
zi∈Z

i=1,...,n

1

2

n∑
i,j=1

αiαjk
(

(xi, zi), (xj , zj)
)

+

n∑
i=1

αiδ(zi).

Hence,

max
α:α≥0

min
w∈H,ρ∈R,ξ∈Rn

L(w, ρ, ξ,α)

= max
α:α≥0

(
− 1

νn

n∑
i=1

max
ξi∈R

(
αiνnξi − l(ξi)

)
+ min

ρ∈R
ρ
(
− 1 +

n∑
i=1

αi

)
− max

zi∈Z
i=1,...,n

(
1

2

n∑
i,j=1

αiαjk
(

(xi, zi), (xj , zj)
)

+

n∑
i=1

αiδ(zi)

))

(†)
= max

α:α≥0,
∑n

i=1 αi=1

(
− 1

νn

n∑
i=1

l∗(αiνn)

− max
zi∈Z

i=1,...,n

(
1

2

n∑
i,j=1

αiαjk
(

(xi, zi), (xj , zj)
)

+

n∑
i=1

αiδ(zi)

))

where for (†) we employ the notion of the Fenchel-
Legendre convex conjugate function f∗(a) :=
supb 〈a, b〉 − f(b) (Rifkin & Lippert, 2007) and ex-
ploit that the function w 7→ 1

2 ‖·‖
2 is self-conjugated; as

well as we observe that minρ∈R ρ
(
− 1 +

∑n
i=1 αi

)
= 0

if
∑n
i=1 αi = 1 and −∞ else-wise, which enforces the

constraint
∑n
i=1 αi = 1 when maximizing with respect

to α. Thus we obtain the following dual optimization
problem of (P).
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Problem 2 (DUAL LATENT ANOMALY DETECTION OP-
TIMIZATION PROBLEM). Given a monotonically non-
decreasing loss function l : R → R, and denoting by the
l∗ : R → R the dual loss function, maximize, with respect
to α ∈ Rn and subject to α ≥ 0 and

∑n
i=1 αi = 1,

− min
zi∈Z

i=1,...,n

(
1

2

n∑
i,j=1

αiαjk
(
(xi, zi), (xj , zj)

)

+

n∑
i=1

αiδ(zi)

)
− 1

νn

n∑
i=1

l∗(αiνn) .

(D)

Remark 1 (Dual complexity). The minimization over z ∈
Z can be expanded into slack variables, so the above dual
becomes a quadratically constrained program (QCQP) with
n · |Z| many quadratic constraints.
Remark 2 (Prediction function f(x) and estimated density
level set L̂ν). By the above dualization the prediction func-
tion can be written as

f(x) = max
z∈Z

( n∑
i=1

αik
(
(xi, z

α
i ), (x, z)

)
+ δ(z)

)
− ρ.

where ρ can be calibrated by line search such that exactly
a fraction of 1 − ν training points satisfy f(xi) ≥ 0. The
corresponding estimated density-level set is given by L̂ν :=
{x ∈ X : f(x) ≥ 0}.

3.2. Theoretical Analysis
For the theoretical analysis, we consider a slight variation
of latent anomaly detection,

min
w∈H

1

n

n∑
i=1

l
(

1−max
z∈Z

(
〈w,Ψ(xi, z)〉+ δ(z)

))
s.t. ‖w‖ ≤ C .

(1)

For the important choice of l(t) = max(0, t) studied in
Section 4.2, the above reformulation is equivalent to the
original problem (P), in the sense for any choice of ν in
(P), there exists a choice of C > 0 in (1) such that both
problems have the same solution in the variable w. This is
shown in Supplementary Material D.

To analyze (1) theoretically, note that (1) corresponds to
performing empirical risk minimization (ERM), f̂ :=
argminf∈F

1
n

∑n
i=1 l(f(xi)) over the class F := {fw =(

x 7→ 1−maxz∈Z(〈w,Ψ(x, z)〉+δ(z))
)

: ‖w‖ ≤ C} . In
the following theorem, we show that the solution of (1) has
asymptotically the same loss as the theoretically optimal
quantity f∗ := argminf∈F E l(f(X)).
Theorem 3 (LATENT ANOMALY DETECTION GENERAL-
IZATION BOUND). The following generalization bound
holds for the latent anomaly detection method (D.1). Let
l : R → R be a non-negative and L-Lipschitz contin-
uous loss function. Denote A := maxz∈Z |δ(z)| and
B := maxx∈X ,z∈Z ‖Ψ(x, z)‖. With probability at least
1− ε over the draw of the sample, the generalization error
is bounded as:

E l(f̂)− E l(f∗) ≤ 8L
1 +A+BC |Z|√

n

+ L(1 +A+BC)

√
2 log(2/ε)

n
.

Proof. The full proof is shown in supplemental material
D.

Remark 3. While the present analysis considers a worst-
case bound that is independent of the structure of the latent
space Z , it would be interesting to analyze the bound also
for special choices of the joint feature map and discrete loss
functions. Such an analysis was presented in Mcallester &
Keshet (2011), who showed asymptotic consistency of the
update direction of a perception-like structured prediction
algorithm.

Remark 4. Note that the requirements on the loss function
are, in particular, fulfilled by the loss l(t) = max(0, t),
which is employed both by the one-class SVM and by the
proposed hidden Markov anomaly detector that is intro-
duced in Section 4.2 below. Indeed in that case, l is non-
negative and Lipschitz continuous with constant L = 1.

4. Hidden Markov Anomaly Detection
In this section, we derive the proposed hidden Markov
anomaly detection (HMAD) methodology that is capable
of dealing with sequence data that exhibits latent state
structure. We therefore need to settle for an appropriate
loss function l and a joint feature map Ψ(x, z).

4.1. Latent One-class SVM

Setting l(t) := max(0, t), we can derive a latent ver-
sion of the one-class support vector machine (OC-SVM)
(Schölkopf et al., 2001). Contrary to (Lampert & Blaschko,
2009), structures need not to be known. We derive the la-
tent version of the OC-SVM as follows.

Problem 4 (PRIMAL LATENT OC-SVM OPTIMIZATION
PROBLEM). Given the monotonically non-decreasing
hinge loss function l : R → R, l(t) = max(0, t), mini-
mize, with respect to w ∈ H and ρ ∈ R,

1

2
‖w‖2 − ρ +

1

νn

n∑
i=1

max
(

0, ρ (P′)

−max
z∈Z

(
〈w,Ψ(xi, z)〉+ δ(z)

))
.

It is easy to check that the dual loss of l(t) = max(0, t) is
the function l∗(t) = 0 if 0 ≤ t ≤ 1 and∞ else, and thus
the corresponding dual optimization problem is as follows.

Problem 5 (DUAL LATENT ONE-CLASS SVM OPTI-
MIZATION PROBLEM). Given the monotonically non-
decreasing hinge loss function l : R → R, l(t) =
max(0, t), and denoting by l∗ : R→ R the dual hinge loss
function, maximize, with respect to α ∈ Rn and subject
to 0 ≤ α ≤ 1

νn and
∑n
i=1 αi = 1,
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− min
zi ∈ Z

i = 1, . . . , n

(
1

2

n∑
i,j=1

αiαjk
(
(xi, z

α
i ), (xj , z

α
j )
)

−
n∑
i=1

αiδ(z
α
i )

) (D′)

4.2. Hidden Markov Anomaly Detection (HMAD)
In hidden Markov anomaly detection, we are interested in
inferring the hidden state sequence z = (z1, . . . , zT ) ∈ Z ,
with single entries zt ∈ Y , associated with an observed
feature sequence x = (x1, . . . , xT ), i.e., each element of
the sequence is a feature vector xt = (xtl)l=1,...,d ∈ Rd.
Hidden Markov models have been introduced as a certain
class of probability density functions P with chain-like fac-
torization (Rabiner, 1989) and parameters w:

P (x, z|w) = π(x1, z1|w)

T∏
t=2

(
P (zt|zt−1,w)P (xt|zt,w)

)
.

(2)

Based on the corresponding log-probability and condi-
tioned on the inputs, logP (z|x) = log π(z1, x1|w) +∑T
t=2 logP (zt|zt−1,w) + logP (zt|xt,w), we introduce

the matching scoring function G : X × Z × H → R that
decomposes into Gtrans : Y × Y × H → R and Gem : X ×
Y ×H → R:

logP (z|x) = G(x, z,w) =

T∑
t=2

Gtrans(zt, zt−1,w) +

T∑
t=1

Gem(xt, zt,w),
(3)

such thatG(x, z,w) ∝ 〈w,Ψ(x, z)〉. This motivates defin-
ing a joint feature map as follows:
Definition 1 (HIDDEN MARKOV JOINT FEATURE MAP).
Given a feature map φ : X → F , define the Hidden
Markov joint feature map Ψ : X × Z → H as

Ψ(x, z) =

(
(
∑T
t=2 1[zt = i ∧ zt−1 = j])i,j∈Y ,

(
∑T
t=1 1[zt = i]φ(xt))i∈Y

)
.

To better understand the above feature map, observe that
the weight vector w = (wem,wtrans) decomposes into a
transition vector wtrans = (wtrans

i,j )i,j∈Y and an emission
vector wem = (wem

i )i∈Y , so the linear model becomes

〈w,Ψ(x, z)〉 =

T∑
t=2

∑
i,j∈Y

1[zt = i ∧ zt−1 = j]wtrans
i,j

+

T∑
t=1

∑
i∈Y

1[zt = i]〈wem
i , φ(xt)〉 ,

which is reminiscent of the log probability associated with
HMMs and given by (3).

Definition 2 (HIDDEN MARKOV ANOMALY DETECTION
(HMAD)). Hidden Markov anomaly detection (HMAD)
is defined as the latent OC-SVM (Problem 4 and 5) together
with the hidden Markov joint feature map (Definition 1).

Note that thus, because of the specific form of the joint fea-
ture map occuring in HMAD, the problem of maximizing
over the latent variables in Eqn. (P′) can be solved by find-
ing the most probable state sequence of the corresponding
hidden Markov model, which can be efficiently computed
using, e.g., Viterbi’s algorithm (Rabiner, 1989).

4.3. Properties
Similar to its non-structured counterpart, the structured
one-class SVM enjoys interesting properties, as we show
below. Recall that for an input x and prediction function f
the following cases can occur:

1. f(x) > 0 (then x is strictly inside the density level
set)

2. f(x) = 0 (then x is right at the boundary of the set)
3. f(x) < 0 (then x is outside of the density level set,

i.e., x is an outlier)

The following theorem shows that the parameter ν controls
the number of outliers.

Theorem 6. The following statements hold for the struc-
tured one-class SVM and the induced decision function f :

(a) The fraction of outliers (inputs xi with f(xi) < 0) is
upper bounded by ν.

(b) The fraction of inputs lying strictly inside the density
level set (inputs xi with f(xi) > 0) is upper bounded
by 1− ν.

The theorem is proven in Appendix E and shows that the
quantity ν can be interpreted as the fraction of outliers
predicted by the learning algorithm. In particular this
shows, together with theoretical analysis of Section 3.2,
that for well behaved problems (where there is no proba-
bility mass exactly on the decision region and where the
true decision boundary is contained in the hypothesis set,
e.g., via the use of universal kernels (Steinwart & Christ-
mann, 2008)), the estimated density level set L̂ν asymp-
totically equals the truly underlying density level set Lν :
P (L̂ν\Lν ∪ Lν\L̂ν)→ 0 for n→∞ .

4.4. Optimization Algorithm
A first difficulty occurring when trying to solve the op-
timization problem (P′) consists in the function g :
(w, ρ) 7→ ρ − maxz∈Z

(
〈w,Ψ(xi, z)〉 + δ(z)), which

is concave and thus renders the optimization problem
non-convex. However, note that any concave function
h : R → R can be decomposed into convex and
concave parts, max(0, h(x)) = max(0,−h(x)) + h(x).
Hence, putting g(w, ρ) = ρ − maxz∈Z

(
〈w,Ψ(xi, z)〉 +

δ(z), we can write Eq. (P′) = 1
2 ‖w‖

2 − ρ +
1
νn

∑n
i=1

(
max

(
0,−g(w, ρ)

)
+ g(w, ρ)

)
. The above de-

composition consists of a convex term followed by a con-
cave term, which admits the optimization framework of DC
programming (difference of convex functions) (Tao & An,
1998). Although the function −g is not differentiable, it
admits, at any point (w0, ρ0) ∈ H × R, a subdifferential
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∂(w0,ρ0)g(w0, ρ0) := {v ∈ H × R : g(w, ρ)− g(w0, ρ0)

≥ 〈v, (w, ρ)− (w0, ρ0)〉 ,∀(w, ρ) ∈ H × R} .

One can verify—using the sub-differentiability of the
maximum operator—that, for any z ∈ Z , the
point (Ψ(xi, z),−1) is contained in the subdifferential
∂(w0,ρ0)g(w0, ρ0). Thus, we can linearly approximate,
for any z ∈ Z , via g(x) ≈ 〈w,Ψ(xi, z)〉 + δ(z) −
ρ. In the optimization algorithm we will thus construct
a sequence of variables (wt, ρt, zt), t = 1, 2, 3, . . .,
where we use this approximation with z chosen as zt =
argmaxz∈Z

〈
wt−1,Ψ(xi, z)

〉
+ δ(z) , wherewt−1 is con-

veniently computed by solving a regular one-class SVM
problem. The resulting optimization algorithm is described
in Algorithm 1.

Algorithm 1 Hidden Markov Anomaly Detection
input data x1, . . . , xn
put t = 0 and initialize wt (e.g., randomly)
repeat

t:=t+1
for i = 1, . . . , n do
zti := argmaxz∈Z〈wt−1,Ψ(xi, z)〉+ δ(z)
(i.e. use Viterbi algorithm)

end for
let (wt, ρt) be the optimal arguments when solving
one-class SVM with φ(xi) := Ψ(xi, z

t
i)

until ∀ i = 1, . . . , n : zti = zt−1i
Return optimal model parameters w := wt, ρ = ρt ,
and zi := zti ∀ i = 1, . . . , N

Despite the non-convex nature of the optimization problem,
we found in our experiments that the algorithm tends to
converge often faster than the standard column-generation
approach of the supervised structured SVM (Tsochan-
taridis et al., 2005a), since no storage of constraints is nec-
essary, which in turn leads to constant time and space com-
plexity for each iteration of Algorithm 1.

5. Empirical Analysis
We conducted experiments for the scenario of label se-
quence learning where we have full access to the ground
truth as well as two real-world scenarios from computa-
tional biology and computational sustainability. Our inter-
est is to assess the anomaly detection performance of our
hidden Markov anomaly detection (HMAD) method. As
baseline methods that excel in one-class classification set-
tings, we chose one-class support vector machines (OC-
SVM) with appropriate kernels. For initialization, we ran-
domly choose a vector w0 for each run of our algorithm
which is sufficient, since no initialization of structures is
needed, as those are deduced from the parameter vector.

5.1. Controlled Experiment

For the controlled experiments, we aim to gain insights into
the behavior of our method. We investigate the anomaly de-

tection performance for low to very high (up to 30%) frac-
tion of anomalies. Furthermore, we are interested in the
anomaly detection performance for an increasing amount
of disorganization in the input sequences. Since HMAD
exploits latent structure, it is not clear how it performs
when less structure is present. Vanilla OC-SVMs does not
exploit latent dependencies and should be unaffected by
this. Additionally, we are interested in the runtime behavior
for various training set sizes.

We generated Gaussian noise sequences of length 600 with
unit variance for the nominal bulk of the data. Non-trivial
anomalies (see Fig. 3) were induced as blocks of Gaussian
noise with non-zero mean and a total, cumulative length of
120 per anomalous example. We vary either the fraction of
anomalies in the training data set or the number of blocks,
depending on the amount of structure that is modeled into
the data (see Figure 3: from 120 sub-blocks of length 1
(100% disorganization) to a single block of length 120 (0%
disorganization). We employ a binary state model consist-
ing of 2 states and 4 possible transitions with an constant
prior δ(·). We report on the average area under the ROC
curve (AUC) for the anomaly detection performance over
50 repetitions of the experiment. Since we know the un-
derlying ground truth we can exactly compute the Bayes
classifier,2 which in our case lies within the set of linear
classifiers, and serves as a hypothetical upper performance
bound for the maximal achievable detection performance.

We compare the detection performance of our method to
the one achieved by OC-SVMs with RBF kernels, his-
togram kernels, and linear kernels using l1- and l2-feature
normalization, and optimal kernel parameters (1.0 for the
RBF kernel, 8 for the histogram kernel, and l1 for the lin-
ear kernel). The results of the anomaly detection exper-
iment are shown in Figure 2 (left and center). As can
be seen in the figure, our method achieves tremendously
higher detection rates than the OC-SVMs using linear or
RBF kernel, which perform similar bad as random guess-
ing. Most competitive baseline methods are OC-SVMs
with histogram kernels and optimal bin size (8 bins). There
exists a strong relation between our method HMAD and
Fisher kernels (Jebara et al., 2004) in the sense, that the
same representation is used. Unlike Fisher kernels, our
methodology includes the parameter optimization proce-
dure, and therefore, given the same model parameters both
methods are on par. For a more detailed comparison we
refer the reader to Appendix B. Remarkably, our method
achieves stable on-par performance with the Bayes classi-
fier for all levels of disorganization, even when there is no
structure to be exploited in the data (see Figure 2 center)
and outperforms significantly all competitors for varying
fraction of anomalies (see Figure 2 left).

2For data that is i.i.d. realized from a distribution (which is
the case in our synthetic experiment), the Bayes classifier is de-
fined as the classifier achieving the maximal accuracy among all
measurable functions.
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Figure 2. Results for the controlled experiment: (left) anomaly detection performance for various fractions of anomalies in the training
set, (center) anomaly detection performance for increasing amount of disorganization, and (right) runtime behavior. All settings show
results for our hidden Markov anomaly detection (HMAD) as well as a set of competitors (using optimal kernel parameters). Noticeable,
the detection performance of HMAD is not affected by increasing amounts of disorganization in the input data (center).
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Figure 3. Examples of observation sequences for two extreme
cases of our controlled experiments: even in the easy setting (top),
the true state sequence is barely visible to the naked eye in the
noisy observed sequence, while in the challenging setting (bot-
tom) it is almost impossible for humans to extrapolate the truly
underlying state sequence.

Exemplary, we depict two typical anomalous observation
sequences of length 600 and anomalous block length 120
of the experiment in Fig. 3 for the 0% (top) and 100% disor-
ganization (bottom) settings. As can be seen, anomalies are
not trivially detectable. We also conducted runtime experi-
ments (Fig. 2 right) to compare the runtime of our method
HMAD against that of the baseline methods. We used the
same two-state model as in the previous controlled exper-
iment, but with training set size varying from 100 to 1000
examples. We used a fraction 10% of anomalies to ensure
there is a sufficient number of anomalies in the data. As ex-
pected, absolute computational runtime is higher than for
vanilla OC-SVMs. This is due to the iterative approach
that includes Viterbi decoding of the sequences and solv-
ing a vanilla OC-SVM in each step. However, computa-
tional complexity grows with increasing number of exam-
ples comparable to OC-SVM which gives a total complex-
ity of O(OC-SVM) +O(c), where c is a constant.

5.2. Bioinformatics Application: Procaryotic Gene
Prediction

In prokaryotes (mostly bacteria and archaea) gene struc-
tures consist of the protein coding region that starts by
a start codon (one out of three specific 3-mers in many
prokaryotes) followed by a number of codon triplets (of
three nucleotides each) and is terminated by a stop codon
(one out of five specific 3-mers in many prokaryotes) (Al-
berts et al., 2002). Genic regions are first transcribed

to RNA and then translated into a protein. Since genes
are separated from one another by intergenic regions, the
problem of identifying genes can be posed as a label se-
quence learning task, were one assigns a label (out of in-
tergenic, start, stop, exonic) to each position in the genome
(Schweikert et al., 2009).

Intergenic IntergenicStart StopExonic

IGE Start StopEx2

Ex3

Ex1

Figure 4. State model of prokayotic gene finding.

We downloaded the genome of the widely studied es-
cherichia coli bacteria, which is publicly available.3 Ge-
nomic sequences were cut between neighboring genes
(splitting intergenic regions equally), such that a minimum
distance of 6 nucleotides between genes was maintained.
Intergenic regions have a minimum distance of 50 nu-
cleotides to genic regions. Features were derived from the
nucleotide sequence by transcoding it to a numerical repre-
sentation of triplets. All examples have a minimum length
of 500 nucleotides and do not exceed 1200 nucleotides.

For the OC-SVM we use matching spectrum kernels of or-
der 1,2, and 3 (resp. 64, 4160, and 266.304 dimensions),
while the SSVM and HMAD obtain a sequence of binary
entries as input data. A description of the used state model,
which is based on Görnitz et al. (2011), is given in Fig-
ure 4. Start and stop states use corresponding features that
encode start and stop codons. Any other states is using
all 64 binary input features. Furthermore, we choose δ(z)
to have a slightly higher probability towards the intergenic
state. For a more fair comparison, OC-SVM and HMAD
are given the true fraction of anomalies which varies from
2.5% up to 30%. The training set contained 200 exam-
ples of intergenic and genic examples with a total length of
>170.000 nucleotides, while the testing set contained 350
intergenic and 50 genic examples of length >330.000 nu-
cleotides, rending this a computationally challenging ex-
periment. The experiment was repeated 20 times where
training and test set are drawn randomly.

3
http://www.sanger.ac.uk...

.../resources/downloads/bacteria/escherichia-coli.html
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We further employ a simple feature selection procedure
where the 8 most distinctive genic- and intergenic features
are selected on a comparable labeled procaryote (e. fergu-
sonii), which increased performance for OC-SVM by more
than 10%. While performance for our HMAD remained
unchanged, training and prediction times dropped down to
15% when compared to the full model.

The results in Figure 5 show a vastly superior performance
of our method (HMAD) in terms of the detection accuracy:
HMAD achieves a perfect AUC of 1.00 (which means: it
exactly identifies every sequence containing a gene with
zero error) for all outlier fractions, while the classical one-
class SVM shows much worse performance with an AUC
of 0.85 at best and 0.66 in the worst case. Using higher
order spectrum kernels increases the detection performance
only marginally. This result is remarkable as it has been
reported that string kernels such as spectrum kernel achieve
state of the art performance in this application (Schweikert
et al., 2009).
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Figure 5. Detection performance for various fractions of outliers
in terms of AUC for the procaryotic gene finding experiment.
Clearly, the accuracy of our hidden Markov anomaly detection
exceeds the vanilla one-class SVM performance even when using
higher order (1,2 & 3 codons = 64, 4160 and 266.304 dimensions)
spectrum kernels.

5.3.Computational Sustainability Application:
Anomalous State Detection in Wind Turbines

In this anomaly detection task, the target objective is to
discriminate between two different wind turbine states de-
pending on the weather conditions. Such applications are
important, for example, to monitor machines for failures
or changes in underlying system state (Zaher et al., 2009).
We used the wind turbine simulator FAST (Jonkman et al.,
2005) to generate simulated sensor readings. The weather
conditions, i.e., wind speed and turbulence are modeled by
the wind turbulence simulator TurbSim (Jonkman & Buhl,
2012). We used 200 nominal and anomalous sequences of
length 800, consisting of 5 time series of sensor data each.
Nominal data consisted of a single wind speed and pertur-
bation class setting, while the anomalous data contained a
block of differing wind speed and perturbation class. From
this data we selected half for training with various anoma-
lous data fraction and the remaining for testing. The OC-
SVM employs histogram kernels with 4, 8, and 16 bins and
all methods are given the true fraction of outliers. As can
be seen in Fig. 6 the detection performance of our method
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Figure 6. Detection performance for various fractions of outliers
in terms of AUC for the computational sustainability experiment.
Clearly, the accuracy of our hidden Markov anomaly detection
exceeds the vanilla one-class SVM performance with histogram
kernels albeit detection performance deteriorates with increasing
amount of outliers in the training set.

vastly outperforms all OC-SVMs, which is the previously
best known performing method on this data. Detection per-
formances for all methods decrease with increasing amount
of anomalies.

6. Conclusion
We proposed a novel methodology for latent anomaly de-
tection on hidden Markov models, which combines ideas
from structured output learning and kernel-based anomaly
detection. Theoretical guarantees in the form of general-
ization error bounds underlie the proposed general latent
anomaly detection framework, which we optimized using
a DC approach. We empirically analyzed a specific instan-
tiation of our approach, hidden Markov anomaly detection
(HMAD), on controlled artificial and real data from the do-
mains of bioinformatics and computational sustainability.

The results show that the proposed HMAD significantly
outperforms the original one-class SVM on real output
sequence data. For gene finding, an increasingly impor-
tant application where a large amount of pre-knowledge
is incorporated, we showed that we can achieve a per-
fect detection rate (1.00 AUC), substantially outperform-
ing the vanilla one-class SVM (0.66 AUC at 30%). Simi-
lar, for the studied computational energy sustainability ap-
plication, the proposed method achieved almost optimal
accuracy (>0.99 AUC), while the regular one-class SVM
achieved only 0.92 AUC at best.

Finally and importantly, note that our approach is neither
restricted to hidden Markov models nor to the setting of
anomaly detection; it can be extended to tree- or graph-
structured joint feature maps and to clustering and dimen-
sionality reduction (e.g., hidden Markov PCA). A princi-
pal analysis of this general framework will be presented in
forthcoming publications.
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