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Supplementary Material

A. Comparison to Structured SVMs (SSVM)
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Figure A.1. Without the need for constraint generation, our hid-
den Markov anomaly detection easily outperforms the structured
SVM.

We report run time comparisons of the structured output
SVM (SSVM) and our hidden Markov anomaly detection
in the same setting as in the controlled experiment in Sec-
tion 5.1 in Figure A.1. Since the HMAD does not need
to add constraints in each iteration, it easily outperforms
the SSVM. However, it does require multiple iterations that
include Viterbi decoding as well as solving a vanilla one-
class SVM and therefore is slower than the OC-SVM (for
a comparison see Fig. 2).

B. Comparison to Fisher Kernels
Fisher kernels (Jebara et al., 2004) have been proposed as
a way of incorporating graphical models into the frame-
work of kernel-based learning (Müller et al., 2001) and
therefore benefit from the vast amount of kernel machines.
A practical Fisher kernel is defined as the gradient of the
log-likelihood of the probabilistic model with respect to its
model parameters.

There is a strong connection of Fisher kernels and our
HMAD, in the sense, that we use the same representation of
graphical models. However, our method HMAD includes
the parameter optimization procedure. Specifically, given
the same model parameters learned by our method, the cor-
responding Fisher kernel employed in an one-class SVM
leads to the same solution. Of course, learning the right
model parameter is the key to good performance.

To cope with a variety of parameter learning settings and
hence, have a realistic comparison against multiple param-
eter estimation methodologies for Fisher kernels, we use
the very same model as in Section 4.2 and derive an upper
and a lower bound for the maximum likelihood estimation
for Fisher kernels. Here, a lower bound can be easily ob-
tained by using random model parameters, whereas an up-
per bound uses the ground truth latent states information
for parameter estimation.

The results in Fig. B.1 and Fig. B.2 show the range of pos-
sible solutions for the Fisher kernel (gray area) with the up-

per bound (red) and (unsurprisingly unstable) lower bound
(magenta), in the same setting as in Section 5.1. Moreover,
it shows that our method HMAD performs nearly as good
as the upper bound in absence of any label information.
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Figure B.1. Comparison for an increasing amount of disorganiza-
tion of our method HMAD (blue) against a variety of Fisher ker-
nels (gray area), including a lower bound (magenta) based on ran-
dom model parameters and an upper bound (red) that was trained
on ground truth data.
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Figure B.2. Comparison for an increasing amount of anomalies
of our method HMAD (blue) against a variety of Fisher kernels
(gray area), including a lower bound (magenta) based on random
model parameters and an upper bound (red) that was trained on
ground truth data.

C. Sensibility to Number of Hidden States
To assess the stability of the found solution, we did ex-
periments with an increasing number of hidden states for
our proposed method HMAD in the same setting as in Sec-
tion 5.1. The results in Fig. C.1 show, that our method is
not sensible to the number of hidden states.
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Figure C.1. Performance evaluation for an increasing number of
hidden states of our method HMAD (blue).

D. Proofs of Results in Section 3.2
We show the equivalence of (1) and (P) for loss l(t) =
max(0, t).

(P′)

Proof of equivalence of (1) and (P) for l(t) = max(0, t).
First note that for loss l(t) = max(0, t) the problem (1)
becomes the structured one-class SVM problem (P′) from
Section 4.2. To see that (1) is equivalent to (P′), we employ
a variable substitution w̃ := w/ρ∗ in (1). This yields

Eq. (P′) = − ρ∗ + ρ∗ min
w̃∈H

(
1

2
‖w̃‖2

+
1

νn

n∑
i=1

max
(

0, 1−max
z∈Z
〈w̃,Ψ(xi, z)〉+ δ(z)′

))
,

(D.1)

where δ(z)′ = δ(z)/ρ∗ and ρ∗ is optimal in (P′). Thus, in
order to solve (D.1) (and thus (P′)), it is sufficient to solve

min
w∈H

1

2
‖w‖2 +

1

νn

n∑
i=1

max
(

0, 1

−max
z∈Z
〈w,Ψ(xi, z)〉+ δ(z)

)
. (D.2)

By Lemma 1 below, for each ν ∈]0, 1], there exists aC > 0
such that (D.2) is, indeed, equivalent to (1).

Lemma 1. Let D ⊂ Rd be a set, let f, g : D → R be
arbitrary functions. Consider the optimization tasks

min
x∈D

f(x) + σg(x), (D.3)

min
x∈D:g(x)≤τ

f(x). (D.4)

Assume that the minima exist. Then we have that for each
σ > 0 there exists τ > 0 such that OP (D.3) is equivalent

to OP (D.4), that is, each optimal solution x∗ of one is an
optimal solution of the other, and vice versa.

Proof. The proof is similar to the one of Proposition 12 in
(Kloft et al., 2011). Let be σ > 0 and x∗ be the optimal of
(D.3). We have to show that there exists a τ > 0 such that
x∗ is optimal in (D.4). We set τ = g(x∗). Suppose x∗ is
not optimal in (D.4), that is, it exists x̃ ∈ D : g(x̃) ≤ τ
such that f(x̃) < f(x∗). Then we have

f(x̃) + σg(x̃) < f(x∗) + στ,

which by τ = g(x∗) translates to

f(x̃) + σg(x̃) < f(x∗) + σg(x∗).

This contradicts the optimality of x∗ in (D.3), and hence
shows that x∗ is optimal in (D.4), which was to be shown.

Proof of Theorem 3. By (Bartlett & Mendelson, 2002) we
have that, if l isL-Lipschitz and ranges in [0, D], with prob-
ability at least 1− ε over the draw of the sample,

E l(f̂)− E l(f∗) ≤ 8LRn(F) +
l(0)

n
+D

√
2 log(2/ε)

n
,

(D.5)

where Rn(F) := E supf∈F
1
n

∑n
i=1 σif(Xi) is the

Rademacher complexity of the class F and σ1, . . . , σn de-
note i.i.d. Rademacher variables (random signs). For many
learning algorithms Rn(G) is of the order O(1/

√
n), when

employing appropriate regularization, and thus so is (D.5).
We will show that also the latent anomaly detection method
of (1) enjoys this favorable rate, too: By definition of the
Rademacher complexity of F ,

Rn(F) = E max
f∈F

1

n

n∑
i=1

σif(Xi)

= E max
w∈H:‖w‖≤C

1

n

n∑
i=1

σi

(
1

−max
z∈Z

(
〈w,Ψ(Xi, z)〉+ δ(z)

)
=
(

1 + max
z∈Z
|δ(z)|

)
E

[∣∣∣∣ 1n
n∑
i=1

σi

∣∣∣∣]︸ ︷︷ ︸
(∗)

+ E max
w∈H:‖w‖≤C

1

n

n∑
i=1

σi max
z∈Z
〈w,Ψ(Xi, z)〉︸ ︷︷ ︸

(∗∗)

We bound the two summands in the above expres-
sion separately: on one hand, by Jensen’s inequal-
ity, E

∣∣ 1
n

∑n
i=1 σi

∣∣ ≤
√
E 1
n2

∑n
i,j=1 σiσj = 1√

n

because Eσiσj = 0 when i 6= j, which shows
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(∗) ≤ 1+A√
n

. To bound the second summand, note
that (∗∗) ≤ Rn(F ′) with F ′ defined as F ′ :={
fw =

(
x 7→ maxz∈Z 〈w,Ψ(x, z)〉

)
: ‖w‖ ≤ C

}
.

Furthermore put F ′′ :={
fw =

(
x 7→ maxz∈Z fz

)
: fz ∈ Fz, z ∈ Z

}
and

Fz :=
{
fw =

(
x 7→ 〈w,Ψ(x, z)〉

)
: ‖w‖ ≤ C

}
. Clearly,

F ′ ⊂ F ′′ and thus Rn(F ′) ≤ Rn(F ′′). By Lemma 2
in the supplemental material, Rn(F ′′) is itself bounded
by Rn(F ′′) ≤

∑
z∈Z Rn(Fz), and the terms Rn(Fz),

for each z ∈ Z are known from (Bartlett & Mendelson,
2002) to be bounded as Rn(Fz) ≤ B√

n
.4 This shows

(∗∗) ≤ BC|Z|√
n

. The result is then obtained from (D.5) by
noting, thatD can be chosen asD := L(1+A+BC).

In the proof of Theorem 3 above, we use the following re-
sult.
Lemma 2 (Lemma 8.1 in (Mohri et al., 2012)). Let
F1, . . . ,Fl be sets of functions f : X → R, and let
F := {max(f1, . . . , fl} : fi ∈ Fi, i ∈ {1, . . . , l}}. Then,

Rn(F) ≤
l∑

j=1

Rn(Fj).

Sketch of proof (Mohri et al., 2012). The idea of the proof
is to write max(h1, h2) = 1

2 (h1 + h2 + |h1 − h2|), and
then to show that

E

[
sup

h1∈F1,h2∈F2

1

n

n∑
i=1

|h1(xi)− h2(xi)|

]
≤ Rn(F1)+Rn(F2).

This proof technique also generalizes to l > 2. For the
complete proof see Section 8 in (Mohri et al., 2012).

E. Proofs of Results in Section 4.3
Proof of Theorem 6. First observe that it holds
α∗i max(0, f(xi)) = 0 for all i = 1, . . . , n in the op-
timal point of the Lagrangian saddle point problem.5 This
implies that we have f(xi) ≤ 0 if xi is a support vector
(that is, α∗i > 0) (Müller et al., 2001; Schölkopf & Smola,
2002). Since

∑n
i=1 α

∗
i = 1 and α∗i ≤ 1

νn there must at
least dνne many such points (the function d·e rounds a
real number up to the next large integer). Hence there can
be no more than n − bνnc many points with f(xi) > 0,
which corresponds to a fraction of n−bνnc

n ≤ 1 − ν, and
thus shows the assertion (b). Next observe that if we
have f(xi) < 0 then α∗i = 1

νn (to see this, note that if
α∗i <

1
νn we could increase the objective of the Lagrangian

4 Again this quickly follows from Jensen’s inequality because
Eσiσj = 0 when i 6= j.

5 For convex problems, this statement is known as the KKT
condition complementary slackness. The argument holds, how-
ever, for the solution of the Lagrangian saddle point problem, re-
gardless of whether or not the problem is convex, and for arbitrary
objective and constraint functions.

by increasing α∗i , which would contradict the optimality
of α∗i ). Since

∑n
i=1 α

∗
i = 1 there can be no more than

bνnc many such points, which corresponds to a fraction of
bνnc
n ≤ ν, thus showing the assertion (a).


