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A. Missing Proofs

Proof of Lemma 5.4: We first claim that bY agrees with the
data on at least half the edges of �(F (Bi)). The reason is
that flipping the label of every vertex of F (Bi) increases
the agreement with the data by the number of disagreeing
edges of �(F (Bi)) minus the number of agreeing edges of
�(F (Bi)), and this difference is non-positive by the opti-
mality of bY .

On the other hand, since Bi is maximal, every neighbor of
Bi is correctly labeled in bY . Since the neighborhood of
F (Bi) is a subset of Bi, this also holds for F (Bi). Thus,
bY disagrees with Y on every edge of �(F (Bi)).

We conclude that at least half the edges of �(F (Bi)) are
bad. It is easy to see that the proof works for �bY , since it
also maximizes Eq. 6 ⌅

Proof of Lemma 5.5: By the definition of a bad set we have
that Pr[S is bad] is equal to the probability that at least half
of �(S) are bad edges. Since |�(S)| = i this is the proba-
bility that at least i

2 edges are bad. Since these events are
IID, we can bound it via:
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where Zj is the indicator event of the j-th edge being bad.
The first inequality is a union bound on all events where a
specific set of size i

2 is bad, and the other edges can take
any value. ⌅

Proof of Lemma 5.6: If F is a type 4 or 5 set, then |�(F )| �p
N and the bound is trivial. If F is a type 1 set, let U be the

smallest rectangle in the dual graph (Diestel, 1997) which
contains F . Let k,m denote the side lengths of U . Then:
|F |  km  1

16 (2k + 2m)2  1
16 |�(F )|2. (To be clear,

km  1
16 (2k+2m)2 because 4k2+8km+4m2�16km =

(2k � 2m)2 � 0.) Similarly for type 2 sets we have |F | 
km  min

�
(2k +m)2, (k + 2m)2

 
 |�(F )|2. Finally

for type 3 sets: |F |  km  (k +m)2  |�(F )|2. ⌅

Proof of Lemma 5.7: Recall that, by construction, a filled-
in set F 2 F is such that both G[F ] and G[V \ F ] are

connected. In a planar graph such as G, this translates to an
elegant characterization via the dual graph Gd. Recall that
the dual graph has a vertex per face in G edges crossing
the edges in G. Then it it easy to see that a set �(F ) is
a boundary of a filled in set if and only if the dual edges
corresponding to the edges �(F ) form a simple cycle in Gd

(e.g., see Section 4.6 of Diestel, 1997). Note that the dual
graph Gd is just an (n� 1)⇥ (n� 1) grid, with one vertex
per “grid cell” (i.e., face) of G, plus an extra vertex z of
degree 4(

p
N � 1) that corresponds to the outer face of G.

The type-1 sets of F are in dual correspondence with the
simple cycles of Gd that do not include z, the other sets of
F are in dual correspondence with the simple cycles of Gd

that do include z. The cardinality of the boundary |�(F )|
equals the length of the corresponding dual cycle.

Part (a) follows from the fact that Gd \ {z} is a bipartite
graph, with only even cycles, and with no 2-cycles.

For part (b), we count simple cycles of Gd of length i that
do not include z. There are at most N choices for a starting
point. There are at most 4 choices for the first edge, at most
3 choices for the next (i�2) edges, and at most one choice
at the final step to return to the starting point. Each simple
cycle of Gd \ {z} is counted 2i times in this way, once for
each choice of the starting point and the orientation.

For part (c), we count simple cycles of Gd of length i that
include z. We start the cycle at z, and there are at most
4
p
N choices for the first node. There are at most 3 choices

for the next i�2 edges, and at most one choice for the final
edge. This counts each cycle twice, once in each orienta-
tion. ⌅

Additional details for Theorem 5.1 Here we prove
Equation (8) in the main text.

Let F1 ✓ F denote the type-1 sets of F . Recall that the
random variable T is defined as:

T =
X

F2F
|F | · 1F is bad (2)

Then from linearity of expectation:

E[T ] =
X

F2F
|F | · Pr[F is bad] (3)
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Next, we sum by size of |�(F )|, separating into F1 and the
rest of F .

E[T ] =
1X

i=2

X

F2F1 : |�(F )|=2i

|F | · Pr[F is bad] + (4)

1X

j=2

X

F2F\F1 : |�(F )|=j

|F | · Pr[F is bad] (5)

Now use Lemmas 5.5 and 5.6 to bound both the size of |F |
and the probability that it is bad:

E[T ] 
1X

i=2

X

F2F1 : |�(F )|=2i

i2

4
· (3pp)2i + (6)

1X

j=2

X

F2F\F1 : |�(F )|=j

j2 · (3pp)j (7)

Finally, we use Lemma 5.7 to bound the number of sets in
F with a given size, yielding:

E[T ] 
1X

i=2

N · 2 · 3
2i�2

i

i2

4
· (3pp)2i + (8)

1X
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2
p
N · 3j�2 · j2 · (3pp)j (9)

= N
1X

i=2

i

16
(81p)i +

p
N
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9
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p)j

= N(cp2) +O(p
p
N), (10)

for a constant c > 0 that is independent of p and N , and
assuming p < 1/81.

The factor c can be improved as follows. First, we use the
tighter upper bound of (2ep)i/2 for the probability that a
region of boundary size i is bad (see Lemma 5.5). We
then replace the upper bound on the number of regions of
each type in Lemma 5.7 with tighter results from statisti-
cal physics. In particular, the number of type-1 sets with
boundary size i can be upper bounded by Nµi (Eq. 3.2.5
of Madras & Slade, 1993), where µ is the so-called con-
nective constant of square lattices and is upper bounded by
2.65 (Clisby & Jensen, 2012). The number of type 2–5 sets
with boundary length i can similarly be upper bounded by
4
p
Nµie

p
i for the same value of µ and for some fixed

constant  > 0 (Hammersley & Welsh, 1962).

Next, we recognize that the term in (10) which is linear in
N can be attributed to the type-1 regions. We expand the
sum in (4) over type-1 regions into two terms: one term
that explicitly enumerates over type-1 regions whose cor-
responding simple cycle in Gd is of length i = 2 to 100,
and a remainder term. The sum in the first term can be
computed exactly as follows. For each value of i, the prob-
ability that the region is bad is simply

Pi
k=i/2

�i
k

�
pk(1 �

p)i�k. We can then use the bound
P

F2F1:|�(F )|=i |F | 
N
Pi2/16

a=1 aca,i, where ca,i is the number of distinct cycles
in an infinite grid of length i and area a (up to translation).
These cycles also go by the name of self-avoiding poly-
gons in statistical physics, and the numbers ca,i have been
exhaustively computed up to i = 100 (Jensen, 2000). Fi-
nally, the infinite sum in the remainder can be shown to be
upper bounded by 512b51/(1�b)3 for b = 2ep(2.65)2. The
resulting function can then be shown to be upper bounded
by 8Np2 for p  0.017, yielding a constant c = 8 as men-
tioned in the main text.

Formal Analysis of Second Stage Our starting point is
E[H0]  N · cp2, where H0 is the Hamming error of the
better of bY and �bY . To calculate the error of the second
stage, we need to consider the probability that it chooses
the better of the two.

First, Markov’s inequality implies that
Pr
h
H0 � 1

kp2Ncp2
i
 kp2, where k is a free parameter.

For the second stage, let B0 be the set of wrong node obser-
vations. Chernoff bounds imply that, for sufficiently large
N , Pr[|B0| � (1 + �)Nq]  1

N2 . Observe that if the sum
of the number of bad node observations and number of mis-
classified nodes for the better of bY and �bY is less than
N/2, the two phase algorithm would choose the better of
bY and �bY . Hence with probability 1 � kp2 � 1

N2 the al-
gorithm would choose the better of bY and �bY , provided
1

kp2Ncp2 + (1 + �)Nq < N
2 , or equivalently,

c

k
+ (1 + �)q <

1

2

For small � and k > c
1/2�(1+�)q , this inequality would

be satisfied and the better of bY and �bY would be chosen.
Thus,

E[H]  1 ·Ncp2 + (kp2 +
1

N2
) ·N (11)

 N · ((c+ 1)p2 + kp2)  N · Cp2 (12)

for N > N0(p, q) where H is the error of the 2-step algo-
rithm. (in the second inequality we use N > 1

p .)

Full proof of lower bound In the main paper, we give a
proof sketch of the lower bound, Theorem 5.8. Here, we
include a full proof of the fact that every binary classifi-
cation algorithm suffers worst-case (over the ground truth)
expected error ⌦(p2N).

Let G = (V,E) denote an n ⇥ n grid with N = n2 ver-
tices. Let Y : V ! {�1,+1} denote the ground truth.
We consider the case where Y is chosen at random from
the following distribution. Color the nodes of G with black
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and white like a chess board. White nodes are assigned bi-
nary values uniformly and independently. Black nodes are
assigned the label +1.

Given Y , input is generated using the random process de-
scribed in Sec. 2.

Consider an arbitrary function from inputs to labelings of
V . We claim that the expected error of the output of this
function, where the expectation is over the choice of ground
truth Y and the subsequent random input, is ⌦(p2N). This
implies that, for every function, there exists a choice of
ground truth Y such that the expected error of the function
(over the random input) is ⌦(p2N).

Given Y , call a white node ambiguous if exactly two of the
edges incident to itself are labeled “+1” in the input. A
white node is ambiguous with probability 6p2(1 � p)2 �
5.1p2 for p  0.078. Since there are N/2 white nodes,
and the events corresponding to ambiguous white nodes are
independent, Chernoff bounds imply that there are at least
5p2

2 N ambiguous white nodes with very high probability.

Let L denote the error contributed by ambiguous white
nodes. Since the true labels of different white nodes are
conditionally independent (given that all black nodes are
known to have value +1), the function that minimizes E[L]
just predicts each white node separately. The algorithm
that minimizes the expected value of L simply predicts that
each ambiguous white node has true label equal to its input
label. This prediction is wrong with constant probability,
so E[L] = ⌦(p2N) for every algorithm. Since L is a lower
bound on the Hamming error, the result follows.

B. Illustration of Filled In Sets
Recall that for every subset S we defined a corresponding
filled in set F (S). The figures on the next page illustrate the
transformation from a subset S to the filled in set F (S).
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Figure 1. An example of type 1 set and corresponding filled-in set (left) and an example of type 2 set and corresponding filled-in set
(right).

Figure 2. An example of type 3 set and corresponding filled-in set (left) and an example of type 4 set and corresponding filled-in set
(right).

Figure 3. An example of type 5 set and corresponding filled-in set (left) and an example of type 6 set.


