How Hard is Inference for Structured Prediction?
(Supplementary Material)

A. Missing Proofs

Proof of Lemma 5.4: We first claim that Y agrees with the
data on at least half the edges of 0(F'(B;)). The reason is
that flipping the label of every vertex of F'(B;) increases
the agreement with the data by the number of disagreeing
edges of 0(F(B;)) minus the number of agreeing edges of
d(F(B;)), and this difference is non-positive by the opti-
mality of Y.

On the other hand, since BZ-A is maximal, every neighbor of
B; is correctly labeled in Y. Since the neighborhood of
F(B;) is a subset of B, this also holds for F'(B;). Thus,
Y disagrees with Y on every edge of §(F(B;)).

We conclude that at least half the edges of §(F(B;)) are
bad. It is easy to see that the proof works for f}?, since it
also maximizes Eq. 6 &

Proof of Lemma 5.5: By the definition of a bad set we have
that Pr[S is bad] is equal to the probability that at least half
of §(S) are bad edges. Since |0(.S)| = ¢ this is the proba-
bility that at least % edges are bad. Since these events are
IID, we can bound it via:
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where Z; is the indicator event of the j-th edge being bad.
The first inequality is a union bound on all events where a
specific set of size % is bad, and the other edges can take
any value. l

Proof of Lemma 5.6: If F'is a type 4 or 5 set, then |§(F')| >
v/N and the bound is trivial. If F'is a type 1 set, let U be the
smallest rectangle in the dual graph (Diestel, 1997) which
contains F. Let k, m denote the side lengths of U. Then:
|F| < km < 152k + 2m)? < $£|6(F)[. (To be clear,
km < & (2k+2m)? because 4k? +8km +4m?* —16km =
(2k — 2m)? > 0.) Similarly for type 2 sets we have |F| <
km < min {(2k + m)?, (k + 2m)*} < [§(F)|*. Finally
for type 3 sets: |F| < km < (k+m)? < |§5(F)>. &

Proof of Lemma 5.7: Recall that, by construction, a filled-
in set F € F is such that both G[F] and G[V \ F] are

connected. In a planar graph such as G, this translates to an
elegant characterization via the dual graph G. Recall that
the dual graph has a vertex per face in G edges crossing
the edges in G. Then it it easy to see that a set §(F) is
a boundary of a filled in set if and only if the dual edges
corresponding to the edges &(F) form a simple cycle in G¢
(e.g., see Section 4.6 of Diestel, 1997). Note that the dual
graph G%is justan (n — 1) x (n — 1) grid, with one vertex
per “grid cell” (i.e., face) of GG, plus an extra vertex z of
degree 4(v/N — 1) that corresponds to the outer face of G.
The type-1 sets of F are in dual correspondence with the
simple cycles of G? that do not include z, the other sets of
F are in dual correspondence with the simple cycles of G
that do include z. The cardinality of the boundary |§(F)|
equals the length of the corresponding dual cycle.

Part (a) follows from the fact that G¢ \ {z} is a bipartite
graph, with only even cycles, and with no 2-cycles.

For part (b), we count simple cycles of G¢ of length i that
do not include z. There are at most N choices for a starting
point. There are at most 4 choices for the first edge, at most
3 choices for the next (i — 2) edges, and at most one choice
at the final step to return to the starting point. Each simple
cycle of G¢\ {2} is counted 2i times in this way, once for
each choice of the starting point and the orientation.

For part (c), we count simple cycles of G of length 4 that
include z. We start the cycle at z, and there are at most
4+/N choices for the first node. There are at most 3 choices
for the next © — 2 edges, and at most one choice for the final
edge. This counts each cycle twice, once in each orienta-
tion. M

Additional details for Theorem 5.1 Here we prove
Equation (8) in the main text.

Let /1 C F denote the type-1 sets of F. Recall that the
random variable T is defined as:

T:Z‘F"lFisbad 2)
FeF

Then from linearity of expectation:

E(T] = ) |F|-Pr[F is bad] 3)
FeF
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Next, we sum by size of |§(F')|, separating into F; and the
rest of F.

> >
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|F| - Pr[F is bad] + (4)

|F| - Pr[Fisbad] (5)

Now use Lemmas 5.5 and 5.6 to bound both the size of | F|
and the probability that it is bad:
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Finally, we use Lemma 5.7 to bound the number of sets in
F with a given size, yielding:
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for a constant ¢ > 0 that is independent of p and N, and
assuming p < 1/81.

The factor ¢ can be improved as follows. First, we use the
tighter upper bound of (2ep)*/? for the probability that a
region of boundary size ¢ is bad (see Lemma 5.5). We
then replace the upper bound on the number of regions of
each type in Lemma 5.7 with tighter results from statisti-
cal physics. In particular, the number of type-1 sets with
boundary size i can be upper bounded by Ny’ (Eq. 3.2.5
of Madras & Slade, 1993), where p is the so-called con-
nective constant of square lattices and is upper bounded by
2.65 (Clisby & Jensen, 2012). The number of type 2-5 sets
with boundary length ¢ can similarly be upper bounded by
4v/N, uie“ﬁ for the same value of y and for some fixed
constant £ > 0 (Hammersley & Welsh, 1962).

Next, we recognize that the term in (10) which is linear in
N can be attributed to the type-1 regions. We expand the
sum in (4) over type-1 regions into two terms: one term
that explicitly enumerates over type-1 regions whose cor-
responding simple cycle in G is of length i = 2 to 100,
and a remainder term. The sum in the first term can be
computed exactly as follows. For each value of 4, the prob-
ability that the region is bad is simply 3=} _; » (Pt —

p)*~F. We can then use the bound Yo rersm)=i [Fl <

N Z */16 Zy acq,i, where ¢, ; is the number of distinct cycles
in an infinite grid of length ¢ and area a (up to translation).
These cycles also go by the name of self-avoiding poly-
gons in statistical physics, and the numbers ¢, ; have been
exhaustively computed up to ¢ = 100 (Jensen, 2000). Fi-
nally, the infinite sum in the remainder can be shown to be
upper bounded by 5126%! /(1—b)3 for b = 2ep(2.65)2. The
resulting function can then be shown to be upper bounded
by 8N p? for p < 0.017, yielding a constant ¢ = 8 as men-
tioned in the main text.

Formal Analysis of Second Stage Our starting point is
E[Hy] < N - cp?, where Hy is the Hamming error of the
better of Y and —Y. To calculate the error of the second
stage, we need to consider the probability that it chooses
the better of the two.

Markov’s
1 2
rpchp

First,
Pr |:H 0 >

inequality implies that

< kpz, where k is a free parameter.

For the second stage, let B’ be the set of wrong node obser-
vations. Chernoff bounds imply that, for sufficiently large
N, Pr[|B'| > (1+6)Ng] < . Observe that if the sum
of the number of bad node observations and number of mis-
classified nodes for the better of Y and —Y is less than
N/2, the two phase algorithm would choose the better of
Y and —Y. Hence with probability 1 — kp? — W the al-

gorithm would choose the better of Y and Y, provided
#Nch +(146)Ng< % or equivalently,

c 1
— 1 —
k+( +5)q<2

For small § and £ > this inequality would

12— (1+5)
be satisfied and the better of ¥ and —Y would be chosen.
Thus,

E[H]

IN

1-Nep? + (kp* + N (11)

N2)
< N-((c+1Dp*+kp*) < N-Cp* (12)

for N > Ny(p, q) where H is the error of the 2-step algo-
rithm. (in the second inequality we use N > %.)

Full proof of lower bound In the main paper, we give a
proof sketch of the lower bound, Theorem 5.8. Here, we
include a full proof of the fact that every binary classifi-
cation algorithm suffers worst-case (over the ground truth)
expected error Q(p?N).

Let G = (V, E) denote an n x n grid with N = n? ver-
tices. LetY : V' — {—1,41} denote the ground truth.
We consider the case where Y is chosen at random from
the following distribution. Color the nodes of G with black
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and white like a chess board. White nodes are assigned bi-
nary values uniformly and independently. Black nodes are
assigned the label +1.

Given Y, input is generated using the random process de-
scribed in Sec. 2.

Consider an arbitrary function from inputs to labelings of
V. We claim that the expected error of the output of this
function, where the expectation is over the choice of ground
truth Y and the subsequent random input, is Q(p?N). This
implies that, for every function, there exists a choice of
ground truth Y such that the expected error of the function
(over the random input) is Q(p?N).

Given Y, call a white node ambiguous if exactly two of the
edges incident to itself are labeled “+1” in the input. A
white node is ambiguous with probability 6p?(1 — p)? >
5.1p2 for p < 0.078. Since there are N/2 white nodes,
and the events corresponding to ambiguous white nodes are
independent, Chernoff bounds imply that there are at least

57”2N ambiguous white nodes with very high probability.

Let L denote the error contributed by ambiguous white
nodes. Since the true labels of different white nodes are
conditionally independent (given that all black nodes are
known to have value +1), the function that minimizes E[L]
just predicts each white node separately. The algorithm
that minimizes the expected value of L simply predicts that
each ambiguous white node has true label equal to its input
label. This prediction is wrong with constant probability,
so E[L] = Q(p?N) for every algorithm. Since L is a lower
bound on the Hamming error, the result follows.

B. Ilustration of Filled In Sets

Recall that for every subset .S we defined a corresponding
filled in set £'(S). The figures on the next page illustrate the
transformation from a subset S to the filled in set F'(S).
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Figure 1. An example of type 1 set and corresponding filled-in set (left) and an example of type 2 set and corresponding filled-in set
(right).

Figure 2. An example of type 3 set and corresponding filled-in set (left) and an example of type 4 set and corresponding filled-in set
(right).

Figure 3. An example of type 5 set and corresponding filled-in set (left) and an example of type 6 set.



