Algorithms for the Hard Pre-Image Problem of String Kernels and
the General Problem of String Prediction

Sébastien Giguere 12
Amélie Rolland 2*
Francois Laviolette 2
Mario Marchand 2

GIGUERE.SEBASTIEN @ GMAIL.COM
AMELIE.ROLLAND.1 @ULAVAL.CA
FRANCOIS.LAVIOLETTE @IFT.ULAVAL.CA
MARIO.MARCHAND @IFT.ULAVAL.CA

! Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Canada
2 Department of Computer Science and Software Engineering, Laval University, Quebec, Canada

* These authors contributed equally to this work.

Abstract

We address the pre-image problem encountered
in structured output prediction and the one of
finding a string maximizing the prediction func-
tion of various kernel-based classifiers and re-
gressors. We demonstrate that these problems re-
duce to a common combinatorial problem valid
for many string kernels. For this problem, we
propose an upper bound on the prediction func-
tion which has low computational complexity
and which can be used in a branch and bound
search algorithm to obtain optimal solutions. We
also show that for many string kernels, the com-
plexity of the problem increases significantly
when the kernel is normalized.

On the optical word recognition task, the exact
solution of the pre-image problem is shown to
significantly improve the prediction accuracy in
comparison with an approximation found by the
best known heuristic. On the task of finding
a string maximizing the prediction function of
kernel-based classifiers and regressors, we high-
light that existing methods can be biased to-
ward long strings that contain many repeated
symbols. We demonstrate that this bias is re-
moved when using normalized kernels. Finally,
we present results for the discovery of lead com-
pounds in drug discovery. The source code can
be found at https://github.com/a-ro/
preimage.

Proceedings of the 32™* International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

1. Introduction

This work addresses two combinatorial problems related to
string prediction. For both problems, let .4 be the set of all
symbols from an alphabet and .A* be the set of all possible
strings of symbols from that alphabet.

1.1. Structured Output Pre-image

In the structured output prediction framework, the learner
has accesstoasetS = {(x1,¥1)s---» Xm,¥Ym)} € XxY
of input-output pairs. The input space X is arbitrary but we
assume that the output space) is the set A* of strings from
an alphabet .A. We assume the existence of an input feature
map @ : X — Hx and an output feature map @y, : YV —
‘Hy, where both Hx and Hy are high-dimensional vector
spaces and, more generally, RKHS. The input kernel Ky :
X? — R is defined by the inner product between vectors
inHy,ie, Ky(x,x') = (pr(x),1 (X)) V(x,x) € X2
A similar definition holds for the output kernel Ky,.

We consider predictors that are linear operators W
Hx — Hy. Given any such W, and any x € X, the pre-
dicted output y™ (x) of W on input x is given by solving
the following structured output pre-image problem

yV(x) = arggn oy (y) = Wor(x)||. (D

where || - || denotes the Ly norm in #y. Hence, the pre-
image problem arises when trying to reconstruct the out-
put from the output feature vector predicted by W. A pre-
image is said to be exact when there exists y €) for which
its feature vector ¢,(y) is exactly equal to W¢ , (x). Un-
fortunately, an exact pre-image rarely exists for linear op-
erators obtained by vector-valued ridge regression. Hence,
in practice, we have to deal with a hard pre-image problem.

Let us consider normalized output feature vectors. Hence,

given any ¢, let us use 53; (y) £ L)

= Téy (1 Then, equa-

https://github.com/a-ro/preimage
https://github.com/a-ro/preimage

Algorithms for the Hard Pre-Image Problem of String Kernels and the General Problem of String Prediction

tion (1) becomes

y¥ (x) = argmax (py (y), Wy (x)). (2
yEY

Given any linear operator W obtained by vector-
valued ridge regression, we have W, (z) =
doimy 2oy @y(yi)Ai jKx(zj,z) for some m x m
matrix A (Cortes et al., 2007). In that case, yV(x)
becomes

argmax ZZ Ky(y:,y)

yeY i = 1\/Ky yi, Yi) Ky(y,y)

AiﬁjK_;y(Xj,X) .

3)
As we will see, this paper presents a branch and bound al-
gorithm for solving this combinatorial problem when the
output kernel Ky, belongs to some family of string kernels.

1.2. String prediction for Classification and Regression

The second problem addressed in this paper consists of
finding the string maximizing the prediction function of
kernel-based classifiers and regressors. For example, find-
ing the string maximizing the prediction function of a
support vector machine consists of finding the positively-
labeled string at greatest distance from the separating hy-
perplane. Alternatively, the string maximizing the predic-
tion function of a kernel ridge regressor is the string achiev-
ing the greatest predicted real value.

In that second framework, the learner has access to a set
S = {(y1,71)s---, (¥Ym,rm)} of m training examples
where y; is a string and r; is a scalar label. For example,
y; could be a peptide (a small sequence of amino acids)
and r; could quantify its ability to bind to a certain pro-
tein or to inhibit some biological process. Alternatively, r;
could represent one of two classes, namely +1 or —1. For
both cases, the first step is to build a real-valued prediction
function h whose value on any input y is given by

h(y) =Y iKy(yi,y),)

where the weight vector @ = (s, ..., @,) is obtained by
minimizing an objective function (such as those for support
vector machines or kernel ridge regression), and where Ky
is assumed to be a string kernel. In the regression case,
h(y) is the predicted real-valued label for input y. In the
classification case, the predicted class on input y is given
by sgn(h(y)). In both cases, given a predictor, we are in-
terested at finding the input y maximizing the value of the
prediction function h(y), i.e., when the inputs are strings
of length ¢, we want to solve

y" = argmax h(y). (5)
yeA?

/ K / Ky (y,y")
Y Y (y:¥) VEy (v) Ey 'y

AAB | AAB 5 1
AAA | AAB 6 0.89

Table 1. Example using the 1-gram kernel where Ky (y,y’) >
Ky(y'y') when y # y'. Here, ||y(228)[| = /5 and
llgy (an2)]| = V9.

Recently, an algorithm was proposed (Giguere et al., 2015)
to solve this problem in polynomial time for any predic-
tion function h in the form of Equation (4) when Ky, be-
longs to a family of unnormalized string kernels known as
the Generic String (GS) kernel. Their approach consists of
mapping this combinatorial problem to the problem of find-
ing the longest (weighted) path in a directed acyclic graph.
Because the graph is acyclic, this problem is solved by dy-
namic programming in O(¢) time, where n is the
maximum sub-string size considered by the GS kernel.

However, there exists an important problem for most string
kernels which can bias the solution of Equation (5) in an
undesirable way. Given two strings y and y’ of the same
length, the Euclidean norms of the feature vectors ¢,(y)
and ¢,(y’) induced by an unnormalized string kernel can

Ky(y.y) >

Ky(y’,y’) even if y and y’ have the same length.
Consider, for example, two strings AAAAA and ABCDE
and the n-gram kernel with n = 2 (also known as the
Spectrum kernel (Leslie et al., 2002)). String AAAAA
has a norm of V42 = 4, while ABCDE has a norm of
V12 +12 4+ 12 + 12 = 2. Hence the norm of the feature
vector induced by this kernel is sensitive to repetitions in
the string. The norm is also influenced by the length of the
string. This problem is shared by most string kernels that
are based on n-gram counts or comparisons.

differ substantially, i.e. we can have

Note that we can also have Ky(y,y’) > Ky(y,y) while
y # y’. Table 1 shows a simple example when this hap-
pens. Consequently, h(y) depends on the norm of ¢(y) and
y" is biased toward strings having a feature vector of large
norm, for example, a long string having many n-gram rep-
etitions. For most applications, this is not a desirable bias
which can be removed by normalizing the kernel. In this
case, the prediction function becomes

Ky(yi,y
=)oy ©
\/Ky YHyl)Ky(y Y)
Consequently, we are then interested at solving
yﬁ = argmax ﬁ(y) . @)

yEA*

We will see that, despite its similarity with optimization
problem (5), the increase in computational complexity of
problem (7) is striking.

Algorithms for the Hard Pre-Image Problem of String Kernels and the General Problem of String Prediction

1.3. Unified Optimization Problem

An important observation is that both Equation (7) and
Equation (3) reduce to solving

®)

y* = argmax
yEA*

\/TZ@K)} YY),

h L= 1vi E ti 7 , d
where [3;) or solving Equation (7), an
Bi = Bix) = XL, m[ﬁ((xﬁ x) for solving

Equation (3). Observe that for the pre-image problem, this
makes the problem independent of the input kernel K y.
Hence, the rest of this paper will focus on solving this uni-
fied problem defined by Equation (8).

The computational complexity of Problem (8) depends on
the choice of string kernel for Ky,. The use of the Generic
String (GS) kernel (Giguere et al., 2013) is appealing since,
depending on the chosen hyper-parameters, this kernel can
be specialized to eight different kernels; namely, the Ham-
ming kernel, the Blended Spectrum (Shawe-Taylor & Cris-
tianini, 2004), the Radial Basis Function (RBF), the Oligo
(Meinicke et al., 2004), and the Weighted degree (Rétsch &
Sonnenburg, 2004). Hence, any advance in solving Equa-
tion (8) would also be applicable to these eight string ker-
nels. The GS kernel was originally proposed for strings
of amino acids by comparing them using their physico-
chemical properties. Although we present the GS kernel
in a bioinformatics context, the concept of similarity be-
tween the elements of a sequence is not limited to this field.
For example, one could use phoneme similarity in speech
recognition, words similarity in part of speech tagging or
synonymous words in machine translation.

Given any pair (y,y’) of strings, the value of the GS kernel
is defined as

’

n lyl=lly'|-1

def)2
GS(y,y’,n,ap,op :ZZ exp(20.2)

=1 i= =0

— ([(Yis1,-i —Wy ol 2
exp(19" (it 1, yit1) =% (W) p195,0) 7

<.

202

9

where n controls the maximum length of the compared -
grams, 't/;l : A — R encodes the physico-chemical prop-
erties of [-grams by mapping each of the [amino acids to
a real-valued vector containing d components, o. controls
the penalty incurred when the physico-chemical properties
of two [-grams differ, and o}, controls the penalty incurred
when two [-grams are not sharing the same position in their
respective strings.

Our ability to efficiently solve the Problem (8) could con-
tribute to many discoveries. If h predicts the binding affin-

ity of a peptide to some protein involved in a certain dis-
ease, finding the peptide yﬁ having the highest predicted
binding affinity could have significant impact on our abil-
ity to design new drugs. Alternatively, if h predicts the
anti-microbial activity of a peptide, finding the peptide y”
having the greatest predicted anti-microbial activity could
be a valuable tool in the fight of new infectious diseases.

Most structured output prediction algorithms need to solve
the pre-image for inference, some also during the training
phase. The the accuracy of these algorithms will improve
with a faster and more accurate pre-image solver.

In the next section, we present low computational complex-
ity upper bounds on Equation (8). The bounds are later
used in a branch and bound search to obtain exact solutions
to the unified string prediction problem (8).

2. Method

The computational complexity of Problem (8) depends on
the values of the parameters defining the GS kernel. Pa-
rameters o, and o, each control the variance of one Gaus-
sian function. Whenever one of these parameters equals 0,
the related Gaussian function becomes a Dirac delta func-
tion. These simpler cases allow for algorithmic optimiza-
tions and tighter bounds. For that reason, we consider sep-
arately three different cases; from the easiest to the hardest.

2.1. Case when o, = 0

—(i=4)®
202

In that case, exp () is the identity function and is

equalto 1 if ¢ = j and 6 otherwise. Recall that 7 and j are
the positions of the [-grams in the strings y and y’. Hence,
only [-grams that are at the same position contribute to the
GS kernel of Equation (9). We recover the Hamming kernel
if (c. = 0 and n = 1), the Weighted Degree kernel (Rétsch
& Sonnenburg, 2004) if (o, = 0 and n > 0), and, finally,
a variant of the Weighted Degree (Toussaint et al., 2010) if
(0. > 0andn > 0).

All these kernels have the property that Ky, (y,y) is a con-
stant ¢ for all strings y of the same length. When searching
for a string y having a fixed length ¢, Equation (8) becomes

m

y* = = argmax \/Z&Ky yiy), (10)
with §; defined as in Equation (8). In that case, we re-
cover the problem studied by Giguere et al. (2015). Their
approach uses a graph, similar to a De Bruijn graph, that
has a source and a sink node. The graph has three ma-
jor properties. First, a single source-sink path is associ-
ated to every possible string in A’. Next, the number of
edges and arcs in the graph are dependant of |A™]|, not
|.A%|. Finally, the length (or weight) of a path (a string) is

Algorithms for the Hard Pre-Image Problem of String Kernels and the General Problem of String Prediction

exactly >, 3;Ky(y;,y). Consequently, the solution y*
of Equation (8) is given by the longest path which can be
found by dynamic programming since the graph is acyclic.
For a string of unknown length, the procedure can be re-
peated and the string achieving the highest score is kept.

2.2.Case wheno, > 0and o, =0

When o, > 0, the optimization problem becomes harder
because Ky (y,y) is no longer constant for all y € A’
However, when o, = 0, exp (M) in turn
becomes the identity function and is eqlclal to 1 if the [-
grams s and s’ are identical and 0 otherwise. For that rea-
son, we recover the well known Blended Spectrum kernel
(Shawe-Taylor & Cristianini, 2004) if o, = oo and the n-
gram kernel if, in addition, we keep only the term [= n
in the summation over [in Equation (9). When o, is finite,
we recover the Oligo kernel (Meinicke et al., 2004).

In these cases, the approach of Giguere et al. (2015) is
no longer guaranteed to find the optimal solution of Prob-
lem (8). However, it can still be used to compute an upper
bound on partial solutions in a branch and bound search.

Let us now describe the approach of Cortes et al. (2007)
for the n-gram pre-image to which we will compare later.
Then, we will explain the branch and bound algorithm we
used. Next, we will demonstrate how a tight bound can be
obtained when o, = 0. Later, in Section 2.3, we present a
similar but looser bound for the case when o, > 0.

2.2.1. EULERIAN PATH HEURISTIC

Cortes et al. (2007) solved the exact pre-image problem of
the n-gram kernel by finding an Eulerian circuit in a graph.
To find y%¥(x), the components of the predicted feature
vector W, (x) are first rounded to obtain a vector z of
integer values. Each component of z should represent the
number of times each of the possible n-grams appears in
the string y™ (x). Then, they define a graph G, similar to
a De Bruijn graph, composed of a vertex for each possible
(n—1)-gram in A"~ 1. Next, the number of edges between
the vertex a1, .., a,—1 and the vertex as, .., a, is given by
the count of the n-gram a;, .., a,, in z. Finally, they predict
astring by constructing the Eulerian circuitin G, (assum-
ing that it exists). However, the exact pre-image does not
exist when some components of W . (x) are not integers.
Also, the rounded integer-valued vector z might not give
an Eulerian graph. When facing this problem, the authors
proposed to merge multiple paths together. There is thus no
guarantee on the optimality of the predicted string. Finally,
this heuristic is in O(¢ 4 |.A|™) if an Eulerian circuit exists.

2.2.2. BRANCH AND BOUND

A branch and bound algorithm starts by dividing the search
space into disjoint subspaces. For example, one subspace
could be all strings ending with the string DE. For a max-
imization problem, an upper bound on the best achievable
solution is computed for each subspace. Then, the subspace
with the highest upper bound is further divided. Finally,
the search in a subspace stops when the subspace can no
longer be divided (a leaf is reached in the search tree), or
when the upper bound value is lower than the value of an
already achieved solution (i.e., an already reached leaf in
the search tree). A branch and bound approach can thus
avoid exploring a large part of the search space.

The search algorithm used here differ slightly from a stan-
dard branch and bound. It alternates between a branch and
bound phase and a greedy phase. The later is important
to ensure that leaves of the search tree are quickly visited.
This allows good but sub-optimal solutions to be returned
by the algorithm if the allowed computational time expires.
Whenever a node is visited, the bound is computed for
all its children and they are added to a priority queue ac-
cordingly. This greedy process is repeated until a leaf is
reached. Then, the node with the largest bound is visited
and the greedy process starts again. At all time, the best
solution found so far is kept and the search stops when the
bound of the node on top of the priority queue is smaller
than the value of the best solution. The search algorithm is
detailed in the Supplementary Material.

2.2.3. UPPER BOUND WHEN ¢, > 0 AND . =0

An upper bound for a maximization problem takes as
input a partial solution and returns an upper bound of
the maximum achievable with that partial solution. In
our setting, a partial solution y' = yi,..,y, is the last
p characters of a possibly longer string of ¢ characters:
Y153 Y(e—p)s Y1» - Yp- That way, we can define AP x
{y’} as the set of all possible strings of length ¢ ending
with 4, ..., y,. Our goal is to have a function F' that up-
per bounds Equation (8) for every string in A*~P x {y'}.
In other words,

1 m
F(y',6)> max —————= % BiKy(yi,y).
AL yEAL—Px{y'} \/Ky(y,y); Ky yiy)
1D
To do so, let F(y’,) £ mg(y’j), where
f < min - Ky(y.y) (12)

yeA=rx{y'}

and

m

> BiKy(yiy). (13)

=1

' 0)> max
g(y',) > oA

Algorithms for the Hard Pre-Image Problem of String Kernels and the General Problem of String Prediction

Observe that the right hand side of the upper bound g(y’, ¢)
is the same optimization problem as in Equation (5). For
that reason, the approach of (Giguere et al., 2015) can be
used for the computation of that bound. Their approach
uses a weight table W) 4nx(¢—n+1) and a dynamic pro-
gramming table T} 4j» x (¢—n 1) to compute the longest path
in a graph and it is relatively easy to modify their algorithm
to return the tables instead of the solution. In that way,
given a string with suffix y’, it is possible to determine,
by accessing T, the value of the prefix from A‘~P maxi-
mizing the right hand side of Equation (13). This value is
given by the row corresponding to the n-gram y1i, ...,y
and the column ¢ — |y’| in T. To this we add the weights
of all the n-grams of y5, ..., y,,, respectively located at the
columns £ — |y’| 4+ 1 to £ — n in W. Thus, the algorithm in
O((¢ — n)|A|"*1) only needs to be executed once, before
the branch and bound search, to obtain the value of g(y’, ¢)
in constant time for any y’. Finally, g is the smallest pos-
sible upper bound and is exact since there always exists a

stringy € A Px{y'} withg(y,0) = Y 1", BiKy(yi, ¥).

Let us demonstrate how to obtain the lower bound f(y’, ¢)
when Ky is the GS kernel with hyper-parameters n , oy,
and o.. The bound is defined as follows (more details are
given in Supplementary Material):

f&y',0 o GS(y',y',n,op,0.) +2YY'(y', 4,n,0p,0.)

+YY(€_ |y/|7na Upvac)v (14)
where
YY/(y/7€7na0-pao'c)
n L—|y'|-1 ly'|-1 2
3 i Y e (R s
=1 im0 YA 50 P

X I(ylv Y= y_;'-‘,—la "7y_;'+l))

n d—1d-—1
YY(dn,0p,00) =D Y S04, d, 0p,00), (16)
=1 i=0 j=0
S(’i7j,l,d,0p,dc)
1 ifi =7,
= —& if |i — j| € {|A]%, 2|A], 3| Al
= dexp(ooy) itli—] € (A1 20AL BLAL],
Ip
0 otherwise.

Observe that when |A| > ¢, YY" is zero and YY is n(¢ —
|y’]). In contrast with g, the lower bound f is not always
attained since it can underestimate the value of the string
y AP x {y, ... ,Yp} minimizing Ky (y,y).

2.3. Case when o, > 0and 0. > 0

When o, > 0 and 0. > 0, the functions YY’ and S are
modified to take in account the similarity between the n-

grams. In that case,

YY’(y’,ﬂ,n,ap,ac)

n L=ly'|-1 ly'|=1 o
_ : —(i—j+ly'|=0)
= oy €xp 202 (17)
=1 i=0 Y& j=o P
_||1pl(y17~wyl)_wl(y}+17“)y;+l)”2
X eXp 20_3 5

S(i,j,1,d,0p,0:) = exp (7(21.;5)2) exp <_*l(§g(;vj)))

c

and
0 if i = j,

D(i,j) = IIp(a) —(a))]|> otherwise.

max
(a,a’)eA?

The computational complexity of Y'Y is thus unchanged
since the computation to identify the couple (a,a’) only
has to be done once for an alphabet.

3. Results and Discussion

We report the results of our approach on two distinct prob-
lems. The first one corresponds to the structured output
pre-image problem and consists of predicting the word as-
sociated to an image representation. The second one cor-
responds to the prediction function maximization problem
and consists of finding the peptide with the greatest pre-
dicted bioactivity value.

3.1. Pre-image string prediction

In the first set of experiments, we compared our approach
with the one proposed by Cortes et al. (2007) to solve the
pre-image problem on the optical word recognition task
(Taskar et al., 2004). This task consists of predicting the
handwritten word contained in a binary pixel image. We
used the same 10 folds division as (Taskar et al., 2004),
where each fold has approximately 600 training and 5500
testing examples. The performances were measured ac-
cording to the percentage of errors on words (0/1 risk),
the percentage of errors on letters (letter risk), and the per-
centage of character edits (insertions, deletions, substitu-
tions) required to change the predicted words into the cor-
rect words (Levenshtein risk). The results were averaged
over the 10 folds.

For both approaches, we used multiple-output ridge re-
gression (Cortes et al., 2007) (with parameter \) as the
learning algorithm and the polynomial kernel of degree d.
The parameters A and d were chosen using standard cross-
validation in each fold. The parameters o, and n of the GS
kernel were fixed to obtain the Hamming (o, = 0, n = 1),
the Weighted degree (0, = 0, n = 2, 3), and the n-gram

Algorithms for the Hard Pre-Image Problem of String Kernels and the General Problem of String Prediction

0/1 risk | Letter risk | Levenshtein
risk

Y Hamming 8.10 +.62 4.97 .56 4.95 155
y:’\’eighted Degree-2 5.77 11 3.80 +.81 3.78 +.79
YWeighted Degree-3 519 +.01 375 +.77 3.73 176
Yés 5.22 +.03 3.78 +.76 375 .75
Y3-gram 18.82 +.72 | 12.38 +.54 9.76 +.50
Eulerian;.gram 20.86 +.67 | 13.66 +.43 10.93 +.45
Y3 gram 6.18 +1.2 4.26 +.80 4.17 +.85
Eulerian;_gram 6.95 +.80 484 +.n 4.59 +.69

Table 2. Empirical results on the optical word recognition task
when [y| is known at prediction time.

(0p = 00, n = 2,3) kernels. Also, to obtain the n-gram
kernel, we fixed [= n in the summation over / in Equa-
tions (9), (15), and (16). Otherwise, substrings of length 1
to n would contribute to the kernel, in which case, this is
known as the Blended Spectrum kernel. Finally, we also
present results obtained using the GS kernel where o, o,
and n are chosen by cross-validation. Note that for all ex-
periments, the branch and bound search was limited to 30
seconds by prediction.

The pre-image heuristic of Cortes et al. (2007) is based on
Eulerian paths and is only valid for the n-gram kernel. We
used the n-gram with n = 2,3 when comparing with this
approach. Also, for non-unique pre-images, the solution
was randomly chosen among the equivalent solutions.

3.1.1. CASE WHEN THE LENGTH IS KNOWN

We first considered the case where ¢, the length of y, is
known at prediction time. For the Eulerian path heuristic,
we normalized and rounded the predicted n-gram counts
to obtain the correct number of n-grams in y. The results
for this setting are summarized in the second and third part
of Table 2. Despite using the same learning algorithm and
n-gram kernel, the accuracies of both methods differ sig-
nificantly. The heuristic of rounding the predicted n-gram
counts into integer values probably explains the decrease
in accuracy. This suggests that, when possible, the exact
computation of the pre-image is preferable.

The best results were obtained when using the Weighted
degree kernel with n = 3. This suggests that, for this task,
the positions of the n-gram in the words are important. Pre-
viously lacking a pre-image algorithm for this kernel, this
is the first time it has been used for optical word recogni-
tion. Interestingly, the Weighted degree is among the cases
where its pre-image is computable in polynomial time.

3.1.2. CASE WHEN THE LENGTH IS UNKNOWN

The second setting consists of a more difficult pre-image
problem where /¢, the length of the output word y, is un-

0/1 risk | Levenshtein
risk

yﬁamming 8.25 t.63 5.15 £.54
YWeighted Degree2 | 0-01 #1.1 3.78 +.60
y*Veighted Degree-3 5.46 1 .95 3.79 +.58
Yés 5.47 +.96 393 +.73
yﬁ_gram 22.29 +.85 11.67 +.42
Eulerian;_gram 64.11 +2.0 32.62 +1.6
y§_gmm 9.07 +.65 6.01 .50
Eulerian;_gram 34.76 +2.5 17.25 +1.2

Table 3. Empirical results on the optical word recognition task
when |y| is unknown at prediction time.

known at prediction time. For this task, the search algo-
rithm was modified to take as parameters the minimum
length /i, and the maximum length ¢, observed in the
training set instead of the exact length ¢. We then created
a priority queue for each of the fi,ax — fmin + 1 lengths.
At every iteration, the best node of each priority queue was
explored. Only the best solution over all lengths was kept.
This allowed the algorithm to stop exploring the solutions
for a specific length if the node on top of that priority queue
had a smaller bound than the best solution found.

For the Eulerian path algorithm, we followed the procedure
as explained in Cortes et al. (2007). That is, we chose a
threshold ¢; for each n-gram and rounded to one the count
of the j-th predicted n-gram if (Wé¢,(x)); > ¢;. Each
threshold ¢; was selected using the training set in a way
that 3700 T[(Wey(xi)); > 5] = 3207, 6y (yi);- When
no components of W . (x) were above the thresholds, we
rounded to one the /i, — 1 + 1 highest (W@ 1 (x));.

Table 3 reports the results for this setting. A decrease in
accuracy was observed for both approaches, but is substan-
tially greater for the Eulerian path algorithm. This could
be explained by the difficulty of finding the thresholds for
which all test examples would have the correct predicted
number of n-grams. As for the branch and bound algo-
rithm, the increased number of possible solutions over all
lengths made it harder to find the exact pre-image during
the 30 seconds allowed for the search. However, as seen in
Table 3, the solutions returned by the best-first scheme of
the branch and bound generally outperformed the approxi-
mations made by the Eulerian path algorithm.

Note that, for this setting, Cortes et al. (2007) have reported
a 0/1 risk of 34.7 £ 2.3 by using a different kernel over
the input x, and a 0/1 risk of 24.4 £ 1.5 by combining the
predictions obtained with different values of n. However,
even with these improvements, the proposed approach still
achieve better accuracy. Given the popularity of the n-gram
kernel, the fact that it is outperformed by the Weighted De-
gree and other kernels (see Tables 2 and 3) is noteworthy.

Algorithms for the Hard Pre-Image Problem of String Kernels and the General Problem of String Prediction

Predictor | BPPs CAMPs
h 0.6134 | 0.5916
h 0.6128 | 0.5918
oo | 05111 | 05222
hoy—oo | 0.5589 | 0.5351

Table 4. 10-fold cross-validation R? of the predictors on the BPPs
and CAMPs datasets. Computed using the union of the 10 valida-
tion sets.

3.1.3. EXECUTION TIME ANALYSIS

For the Hamming and the Weighted degree, with n = 2, it
took an average of 15 milliseconds (ms) per prediction in
both settings. For the Weighted degree, when n = 3, the
time increased to 35 ms and 50 ms in the first and second
setting respectively. The branch and bound search for the
n-gram, with n = 2, 3, was allowed a maximum of 30 sec-
onds. In the known length case, the search ended in the al-
lowed time 99.94% of the time, with an average of 159 ms
per prediction for the 2-gram and 70 ms for the 3-gram. In
the unknown length case, the branch and bound was forced
to terminate most of the time. However, as shown in Ta-
ble 3, the correct output string was generally found. The
branch and bound for the unknown length case was exe-
cuted on one core of an Intel Xeon X5560 CPUs (2.8GHz).
All other results were computed on one core of an Intel
Core 17 (1.9GHz).

In comparison with the results of Table 2, the initial depth
first search guided by the bounds gave a 0/1 loss of 44.48%
for the 2-gram and 7.94% for the 3-gram. Demonstrating
the usefulness of the full branch and bound procedure.

3.2. String prediction for Classification and Regression

We followed the protocol suggested in Giguere et al. (2015)
and used the same two bioactivity regression datasets they
used. The first contains 101 cationic antimicrobial pen-
tadecapeptides (CAMPs) (Wade & Englund, 2002). The
second dataset consists of 31 bradykinin-potentiating pen-
tapeptides (BPPs) (Ufkes et al., 1982).

Asin Giguere et al. (2015), we used kernel ridge regression
as the learning algorithm. Except when stated otherwise,
all hyper-parameters for the GS kernel (n, 0., o) and the
kernel ridge regression (\) were chosen by standard cross-
validation. For each dataset, we learned two predictors, the
first denoted by & uses an unnormalized kernel (the predic-
tor used in Giguere et al. (2015)). The second, denoted by
ﬁ, was trained using a normalized kernel. For some exper-
iments, all hyper-parameters except o, = oo were chosen
by cross-validation. When this is the case, we will refer
to the two predictors by Ay, —o and E,p:oo. The R? (co-
efficient of determination) of all predictors are shown in
Table 4.

As explained in Section 2.1, whenever o, = 0, the so-

lutions y”* and y”" are the same. The motivations behind
presenting results obtained from the predictors hq,—o and

he,=cc are two folds. First, it highlights the regime in

which y" and y” differ the most. Second, many kernels,
including the n-gram and the Blended Spectrum, are only
obtained when o, = oco. These kernels are commonly
used, it this thus important to evaluate the proposed ap-
proach when using these even if they were not selected by
cross-validation for the specific task studied here.

3.2.1. COMPARING THE SOLUTIONS FOUND

The first experiment compares the peptides found by both
approaches under two different settings: the first uses h and
h, while the second uses hy,—oo and hg,—co-

In the first setting, the method of Giguere et al. (2015) was
used to identify y"* € A" and y" € A, respectively for
the CAMPs and BPPs dataset. The branch and bound was
used to identify y* € A'® and y" € A5. The results are
shown in the first half of Table 5. On the two datasets,
both methods identified the same peptides. On the CAMPs
and the BPPs datasets, the values of o, chosen by cross-
validation, are respectively 0.8 and 0.2. Since the values of
o, are so close to 0, it is normal that both methods found
the same solutions. This also suggests that the method
of Giguere et al. (2015) offers some resistance to variation
in the norm of ¢,(y) when o, is small.

In the second setting, we used the predictors hq,—oo and

?LUP:OO.The solutions found by both methods are shown
in the second half of Table 5. In that setting, the solu-
tion y"er=>= contains many n-gram repetitions. On the
BPPs dataset, the solution contained two times the 2-gram
WA. On the CAMPs dataset, the solution is basically the
repetition of the 2-grams FK and KI. Hence, in situations
where the norm of feature vectors can vary a lot, A favors
strings having repetitions, thus a feature vector of large
norm. However, this bias is generally unjustified and not

biologically founded for peptides. In contrast, the solution

y"*=»== found by the branch and bound contains no repeti-

tion for the BPPs dataset and fewer for the CAMPs dataset.
Finally, the solutions found by the branch and bound share
many substructures with the most bioactive peptides of the
training sets.

3.2.2. COMPARING THE NORMS AND THE LENGTHS

The second experiment quantitatively —compares
|6y (y"er=)[| with [|¢(y"7»=)||. To make the
comparison more informative, we use the fact that the
method of Giguere et al. (2015) can output a rank of the
k sequences having the greatest predicted value, such that
[h(y}) > h(y%) > ... > h(y})]. This is also possible for

Algorithms for the Hard Pre-Image Problem of String Kernels and the General Problem of String Prediction

Method BPPs CAMPs

y" IEWAK | WWKWWKRLRRLFLLV
yh IEWAK | WWKWWKRLRRLFLLV
ylor=> | WAKWA | FKKIFKKIFKKIFKF
yher== | VEWAK | WKKIFKKIWKFRVFK

Table 5. Predicted peptides with highest bioactivity on BPPs and
CAMPs datasets

the branch and bound by stopping the search only when
the bound on top of the priority queue is lower than the
k-th string found. For both datasets, we found the 1000 top
peptides maximizing the un-normalized predictor Ay, —oo

and the normalized predictor EUP:OO. Then, we compared
the cumulative moving average norm of the feature vectors
for all peptides.

The results on both datasets are shown in Figure 1. We
observe that the branch and bound favored solutions with
feature vectors of smaller norm.

The last experiment compares the ability of each method to
handle strings of different lengths. This experiment is sim-
ilar to the optical word recognition case where the length
of the output word is unknown. Using both methods, we

found y" € A* and yﬁ € A* for different string lengths /.

The results for both datasets are shown in Figure 2. The
maximum bioactivity of h as a function of ¢, increases,
then stabilizes. In contrast, the maximum bioactivity of
h peaks near the optimal length, then decreases. This co-
incides more closely with our current understanding of the
biology. This synthetic experiment suffices to highlight that
when kernels are not normalized the solution y” will be bi-
ased towards the longest possible string, a bias that y"* does
not suffer from. Finally, the same comparison is done for
he, =00 and /f;(,—p:oo in the Supplementary Material.

3.2.3. EXECUTION TIME ANALYSIS

The branch and bound search for the 7 predictor took 5 sec-
onds and 48 seconds respectively for the BPPs and CAMPs
datasets. The time increased to 10 seconds and 23 minutes
to find the 1000 best peptides. The search for the h,, =0
predictor on the BPPs dataset took 8 seconds for the best
peptide and 15 seconds for the 1000 best peptides. The
branch and bound did not terminate for the ﬁ%zoo predic-
tor on the CAMPs dataset. However, the best peptide found
after 10 minutes was the same as after 20 hours, suggesting
that proving optimality might be the crux of the problem.

4. Conclusion

First, we demonstrated that the structured output pre-image
problem and the string prediction problem with normalized

ol ——— 18] — hop=co |
< G| " hop=co
% 12 L4
e 4 I
] [-
23.8 11
Z36]) 0| e -
34 [| [| | |
0 500 1,000 O 500 1,000
Peptide rank Peptide rank

Figure 1. Cumulative moving average of ||¢,,(y)|| for the 1,000
peptides with highest predicted bioactivities for the BPPs (left)
and the CAMPs (right) datasets.

&) g &
2 921 |1 |
=
g
S15 h 0.5 |- h i
= B B
| I | | | | I I
4 6 8 10 5 10 15 20
Peptide length Peptide length

Figure 2. Maximum predicted bioactivity as a function of the pep-
tide length for the BPPs (left) and the CAMPs (right) datasets.

kernels both reduce to a unique combinatorial problem. We
showed that for some string kernels, it is sometimes possi-
ble to solve this problem in polynomial time. When it is
not possible, we proposed a low computational complexity
upper bound for this problem. We demonstrated the useful-
ness of the bound in a branch and bound algorithm.

On the practical task of optical word recognition, the pro-
posed approach significantly outperforms an existing pre-
image heuristic whether the lengths of the words in the
testing set are known or unknown. Also, empirical results
show that the method proposed by Giguere et al. (2015) is
biased toward strings having a feature with a large norm,
a problem common to most string kernels. In these situ-
ations, the proposed method was shown to overcome this
bias and new applications in structured output and string
prediction are thus expected.

The g(y’, £) bound was shown to be optimal. However, the
f(y’,¢) bound could benefit from improvement, specifi-
cally in the case when o, > 0 and o, > 0. Finally, to
further improve F'(y’,£), one could explore dual decom-
position and Lagrangian relaxation methods (Fisher, 2004;
Rush & Collins, 2014) to exploit the difference between
the solution approaching g(y’, £) and the one approaching

fy's0).

Algorithms for the Hard Pre-Image Problem of String Kernels and the General Problem of String Prediction

Acknowledgments

The authors would like to thank Claude-Guy Quimper for
his insightful recommendations on the branch and bound.
This work was supported in part by NSERC Discovery
grants (FL:262067 , MM: 122405), by Fonds de recherche
du Québec (FRQNT) (FL, MM: 2013-PR-166708), by
Compute Canada, and by an award to Michael Tyers from
the Ministere de 1’enseignement supérieur, de la recherche,
de la science et de la technologie du Québec through
Génome Québec. AR is recipient of a Master’s Scholar-
ship from the FRQNT.

References

Cortes, Corinna, Mohri, Mehryar, and Weston, Jason.
A general regression framework for learning string-to-
string mappings. In Bakir, Gokhan, Hofmann, Thomas,
Scholkopf, Bernhard, Smola, Alexander J., Taskar, Ben,
and Vishwanathan, S. (eds.), Predicting Structured Data,
chapter 8, pp. 143-168. MIT Press, Cambridge, MA,
2007.

Fisher, Marshall L. The lagrangian relaxation method for
solving integer programming problems. Management
science, 50(12_supplement):1861-1871, 2004.

Giguere, Sébastien, Marchand, Mario, Laviolette,
Francois, Drouin, Alexandre, and Corbeil, Jacques.
Learning a peptide-protein binding affinity predictor
with kernel ridge regression. BMC Bioinformatics, 14,
2013.

Giguere, Sébastien, Laviolette, Francois, Marchand,
Mario, Tremblay, Denise, Moineau, Sylvain, Liang,
Xinxia, Biron, Eric, and Corbeil, Jacques. Machine
learning assisted design of highly active peptides for
drug discovery. PLoS Comput Biol, 11(4):e1004074, 04
2015. doi: 10.1371/journal.pcbi.1004074.

Leslie, Christina S, Eskin, Eleazar, and Noble,
William Stafford. The spectrum kernel: A string
kernel for svm protein classification. In Pacific sympo-
sium on biocomputing, volume 7, pp. 566-575. World
Scientific, 2002.

Meinicke, P., Tech, M., Morgenstern, B., and Merkl, R.
Oligo kernels for datamining on biological sequences:
A case study on prokaryotic translation initiation sites.
BMC Bioinformatics, 5, 2004.

Rétsch, Gunnar and Sonnenburg, Séren. Accurate Splice
Site Detection for Caenorhabditis elegans. In B and Vert,
J. P. (eds.), Kernel Methods in Computational Biology,
pp. 277-298. MIT Press, 2004.

Rush, Alexander M and Collins, Michael. A tutorial on
dual decomposition and lagrangian relaxation for infer-
ence in natural language processing. arXiv preprint
arXiv:1405.5208, 2014.

Shawe-Taylor, John and Cristianini, Nello. Kernel methods
for pattern analysis. Cambridge university press, 2004.

Taskar, Ben, Guestrin, Carlos, and Koller, Daphne. Max-
margin Markov networks. In Thrun, Sebastian, Saul,
Lawrence, and Scholkopf, Bernhard (eds.), Advances in
Neural Information Processing Systems 16. MIT Press,
Cambridge, MA, 2004.

Toussaint, Nora, Widmer, Christian, Kohlbacher, Oliver,
and Ritsch, Gunnar. Exploiting physico-chemical prop-
erties in string kernels. BMC bioinformatics, 11(Suppl
8):57, 2010.

Utfkes, Jan G.R., Visser, Berend J., Heuver, Gerritdina,
Wynne, Herman J., and Meer, Cornelis Van Der. Fur-
ther studies on the structure-activity relationships of
bradykinin-potentiating peptides. European Journal of
Pharmacology, 79(12):155 — 158, 1982.

Wade, David and Englund, Jukka. Synthetic antibiotic pep-
tides database. Protein and peptide letters, 9(1):53-57,
2002.

