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1. Algorithms Algorithm 2 Best first search

1: function bf_search(node, best, Q, ¢, A)
while |node.string)| < ¢ & node.bound >
best.bound do

The details of the branch and bound algorithm are given
in Algorithm 1. The best first search is detailed in Algo-

»

rithm 2. 3 best_child <— Node(empty-string,0)
4 for all a € Ado
5: s’ <+ concatenate(a, node.string)
6: if F(s',£) > best.bound then
7: if F'(s',£) > best_child.bound then
8 best_child <— Node(s', F(s', 1))
9: end if
10: Q.push(Node(s', F(s',£)))
11: end if
12: end for
13: node < best_child
14: Q.remove(best_child)
Algorithm 1 Branch and bound for finding y* € A’ 15  end while
1: function branch_and_bound(¢, n, A) 16:  return node

2:  Q : empty priority queue ordering (string, bound) 17: end function

pairs in descending order of bound values

3:  best « Node(empty_string,0)
4. forall s € A™ do
5: Q.push(Node(s, F(s, £))
6: end for

7:  while node < Q.pop() &  nodebound >

best.bound do

8: node < bf_search(node, best, Q, ¢, A)
9: if node.bound > best.bound then
10: best < node
11: end if

12:  end while
13:  return best.string, best.bound
14: end function
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2. Bounds
2.1. Details of f when o, > 0ando. =0

Let us recall that f must lower bound Ky (y,y), given that
string y has y’ as suffix:

f(y',6) < min

Ky(y,y). 1
L y(y,y) (1)

The main idea behind the bound is that each [-gram in
string y is indexed by a starting position that varies be-
tween 0 and ¢ — [, where £ = |y|. The kernel value is
obtained by summing the comparison of all [-gram pairs.
To get the bound, we decide to split the comparison of the
l-gram pairs in three groups that depend on their starting
positions. Each group is bounded independently. The final
bound is defined as

F 0 EGSY y n,0p,00) +2YY'(y £,n,0p,00)
+YY(£*|y/|vna(7p70'c)' )

The first group of [-grams are those in position £ — |y’| to
¢ — 1. All these [-grams belong to the suffix y’ and are
compared with themselves using the GS kernel function.
This part of the bound is exact.

The second group compares those in positions 0 to £—|y’|—
1 with those of the suffix y’ in position £ — |y’| to £ — .
A lower bound on the comparison of these [-gram pairs is
given by the function

N . (= 1y'])?
=3 Y min > e (FEULE) )
XIyla ayl_y]-',-h' ay]-‘,-l)

This function effectively lower bounds the contribution of
[-grams in positions 0 to £ — |y’| — 1 when compared to the
suffix y’ as it always selects the I-gram in .A' minimising
the contribution. Observe that the index j refers to posi-
tions in y’. For that reason, in the position penalty term

exp (
p0s1t10ns 1n y.

(¢ j) ) j was offset by ¢ — |y’| to correspond to

The last group compares those in positions 0 to £ — |y’| —
1 with themselves. A lower bound on the comparison of
these [-gram pairs is given by the function

n d—1d-1

ZZZ S(i,7,l,d,0p,00), (4)

=1 i=0 j=0

Y(d,n,op,0¢)

where

S(i,j, l,d, Op, O'c)

1 ifi = 7,
- —d if |i — j| € {]Al, 2| A]", 3| A|!
=qep | 5oz ) ifli— il e {JAL21AfBJAL -}
9
0 otherwise,

which accounts for the minimum number of [-gram repeti-
tions at largest distance.

Finally, since all [-gram pairs were considered in one of the
three functions, this makes f(y’, £) a valid lower bound.

2.2. Details of f when o, > 0and o, > 0

The strategy to obtain a bound in this case is the same as in
the previous case: the [-gram pairs are divided in the same
groups but the functions Y'Y’ and Y'Y that lower bound
their contributions are modified to take into account .

For YY", the identity function between [-grams is replaced
by the second exponential term of the GS kernel. Hence,

oS (it |02
:Z miAn, exp (%) 5)
=1 =0 Y& j=o P
— It (Y1) = g
X exp ( 507 J+1 g+l )

For Y'Y, only the function S needs to be redefined as

o a2 _UD(ij
S(t,4,1,d,0p,0.) = exp ( (;U%]) ) exp (%)
where
0 ifi = j,

D(.5) =1 max |[(a) — ()| otherwise.

(a,a’)eA?
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Figure 1. The cumulative moving average of norm ||¢,,(y)]|| for
the 1, 000 peptides having the highest predicted bioactivities for
the BPPs dataset.

3. Additional Figures

Figure 1 and Figure 2 present additional results for the
cumulative moving average of the norm of the 1000 top
peptides maximizing the un-normalized predictor h and
the normalized predictor h. For both BPPs and CAMPs
datasets, these results show that the norms of the peptides
maximizing h and 1 are similar. This was expected since
the chosen o}, values are small (o0, = 0.2 for BPPs and
op = 0.8 for CAMPs).

Figure 3 and Figure 4 compare the ability of each method
to handle strings of different lengths when o, = co. On
both datasets, the peptide with the highest bioactivity for
the un-normalized predictor h,,—o has the longest length.

For the normalized predictor ﬁgp:m, the best length is 7
for the BPPs dataset and 20 for the CAMPs dataset. As
explained previously, the longer a string y is, the larger
||¢y(y)|| generally is, which effectively influences h(y).
Consequently, if the length of the output string is not con-
strained, y" will be biased toward long strings, especially
when the value of o, is large.
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Figure 2. The cumulative moving average of norm ||¢,,(y)|| for
the 1,000 peptides having the highest predicted bioactivities for
the CAMPs dataset.
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Figure 3. Maximum predicted bioactivity as a function of the pep-
tide length for the BPPs dataset.
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Figure 4. Maximum predicted bioactivity as a function of the pep-
tide length for the CAMPs dataset.



