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1. Algorithms
The details of the branch and bound algorithm are given
in Algorithm 1. The best first search is detailed in Algo-
rithm 2.

Algorithm 1 Branch and bound for finding y? ∈ A`

1: function branch and bound(`, n,A)
2: Q : empty priority queue ordering (string, bound)

pairs in descending order of bound values
3: best← Node(empty string, 0)
4: for all s ∈ An do
5: Q.push(Node(s, F (s, `))
6: end for
7: while node ← Q.pop() & node.bound >

best.bound do
8: node← bf search(node, best,Q, `,A)
9: if node.bound > best.bound then

10: best← node
11: end if
12: end while
13: return best.string, best.bound
14: end function

Algorithm 2 Best first search
1: function bf search(node, best,Q, `,A)
2: while |node.string| < ` & node.bound >

best.bound do
3: best child← Node(empty-string, 0)
4: for all a ∈ A do
5: s′ ← concatenate(a, node.string)
6: if F (s′, `) > best.bound then
7: if F (s′, `) > best child.bound then
8: best child← Node(s′, F (s′, `))
9: end if

10: Q.push(Node(s′, F (s′, `)))
11: end if
12: end for
13: node← best child
14: Q.remove(best child)
15: end while
16: return node
17: end function
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2. Bounds
2.1. Details of f when σp > 0 and σc = 0

Let us recall that f must lower bound KY(y,y), given that
string y has y′ as suffix:

f(y′, `) ≤ min
y∈A`−p×{y′}

KY(y,y) . (1)

The main idea behind the bound is that each l-gram in
string y is indexed by a starting position that varies be-
tween 0 and ` − l, where ` = |y|. The kernel value is
obtained by summing the comparison of all l-gram pairs.
To get the bound, we decide to split the comparison of the
l-gram pairs in three groups that depend on their starting
positions. Each group is bounded independently. The final
bound is defined as

f(y′, `)
def
= GS(y′,y′, n, σp, σc) + 2Y Y ′(y′, `, n, σp, σc)

+ Y Y (`− |y′|, n, σp, σc) . (2)

The first group of l-grams are those in position ` − |y′| to
` − l. All these l-grams belong to the suffix y′ and are
compared with themselves using the GS kernel function.
This part of the bound is exact.

The second group compares those in positions 0 to `−|y′|−
1 with those of the suffix y′ in position ` − |y′| to ` − l.
A lower bound on the comparison of these l-gram pairs is
given by the function

Y Y ′(y′, `, n, σp, σc)

=

n∑
l=1

`−|y′|−1∑
i=0

min
y∈Al

|y′|−l∑
j=0

exp
(−(i−(j+`−|y′|))2

2σ2
p

)
× I(y1, .., yl = y′j+1, .., y

′
j+l) .

(3)

This function effectively lower bounds the contribution of
l-grams in positions 0 to `−|y′|− 1 when compared to the
suffix y′ as it always selects the l-gram in Al minimising
the contribution. Observe that the index j refers to posi-
tions in y′. For that reason, in the position penalty term
exp

(
−(i−j)2

2σ2
p

)
, j was offset by ` − |y′| to correspond to

positions in y.

The last group compares those in positions 0 to ` − |y′| −
1 with themselves. A lower bound on the comparison of
these l-gram pairs is given by the function

Y Y (d, n, σp, σc) =

n∑
l=1

d−1∑
i=0

d−1∑
j=0

S(i, j, l, d, σp, σc), (4)

where

S(i, j, l, d, σp, σc)

=


1 if i = j,

exp

(
−d2

2σ2
p

)
if |i− j| ∈ {|A|l, 2|A|l, 3|A|l, ...},

0 otherwise,

which accounts for the minimum number of l-gram repeti-
tions at largest distance.

Finally, since all l-gram pairs were considered in one of the
three functions, this makes f(y′, `) a valid lower bound.

2.2. Details of f when σp > 0 and σc > 0

The strategy to obtain a bound in this case is the same as in
the previous case: the l-gram pairs are divided in the same
groups but the functions Y Y ′ and Y Y that lower bound
their contributions are modified to take into account ψl.

For Y Y ′, the identity function between l-grams is replaced
by the second exponential term of the GS kernel. Hence,

Y Y ′(y′, `, n, σp, σc)

=

n∑
l=1

`−|y′|−1∑
i=0

min
y∈Al

|y′|−l∑
j=0

exp
(−(i−j+|y′|−`)2

2σ2
p

)
× exp

(
−‖ψψψl(y1,..,yl)−ψψψl(y′j+1,..,y

′
j+l)‖

2

2σ2
c

)
.

(5)

For Y Y , only the function S needs to be redefined as

S(i, j, l, d, σp, σc) = exp
(−(i−j)2

2σ2
p

)
exp

(−l(D(i,j))
2σ2

c

)
where

D(i, j) =

0 if i = j,

max
(a,a′)∈A2

||ψψψ(a)−ψψψ(a′)||2 otherwise.
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Figure 1. The cumulative moving average of norm ||φφφY(y)|| for
the 1, 000 peptides having the highest predicted bioactivities for
the BPPs dataset.

3. Additional Figures
Figure 1 and Figure 2 present additional results for the
cumulative moving average of the norm of the 1000 top
peptides maximizing the un-normalized predictor h and
the normalized predictor ĥ. For both BPPs and CAMPs
datasets, these results show that the norms of the peptides
maximizing h and ĥ are similar. This was expected since
the chosen σp values are small (σp = 0.2 for BPPs and
σp = 0.8 for CAMPs).

Figure 3 and Figure 4 compare the ability of each method
to handle strings of different lengths when σp = ∞. On
both datasets, the peptide with the highest bioactivity for
the un-normalized predictor hσp=∞ has the longest length.
For the normalized predictor ĥσp=∞, the best length is 7
for the BPPs dataset and 20 for the CAMPs dataset. As
explained previously, the longer a string y is, the larger
||φφφY(y)|| generally is, which effectively influences h(y).
Consequently, if the length of the output string is not con-
strained, yh will be biased toward long strings, especially
when the value of σp is large.
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Figure 2. The cumulative moving average of norm ||φφφY(y)|| for
the 1, 000 peptides having the highest predicted bioactivities for
the CAMPs dataset.
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Figure 3. Maximum predicted bioactivity as a function of the pep-
tide length for the BPPs dataset.
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Figure 4. Maximum predicted bioactivity as a function of the pep-
tide length for the CAMPs dataset.


