# **Supplementary Material for:**

# Algorithms for the Hard Pre-Image Problem of String Kernels and the General Problem of String Prediction

Sébastien Giguère <sup>1,2\*</sup> Amélie Rolland <sup>2\*</sup> François Laviolette <sup>2</sup> Mario Marchand <sup>2</sup>

GIGUERE.SEBASTIEN@GMAIL.COM AMELIE.ROLLAND.1@ULAVAL.CA FRANCOIS.LAVIOLETTE@IFT.ULAVAL.CA MARIO.MARCHAND@IFT.ULAVAL.CA

- <sup>1</sup> Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Canada
- <sup>2</sup> Department of Computer Science and Software Engineering, Laval University, Quebec, Canada
- \* These authors contributed equally to this work.

### 1. Algorithms

14: end function

The details of the branch and bound algorithm are given in Algorithm 1. The best first search is detailed in Algorithm 2.

# **Algorithm 1** Branch and bound for finding $\mathbf{y}^\star \in \mathcal{A}^\ell$

```
1: function branch_and_bound(\ell, n, A)
       Q: empty priority queue ordering (string, bound)
       pairs in descending order of bound values
       best \leftarrow Node(empty\_string, 0)
 3:
 4:
      for all s \in \mathcal{A}^n do
          Q.push(Node(s, F(s, \ell)))
 5:
 6:
      end for
 7:
       while node \leftarrow \mathcal{Q}.pop() &
                                             node.bound >
       best.bound do
         node \leftarrow bf_search(node, best, Q, \ell, A)
 8:
         if node.bound > best.bound then
 9:
10:
            best \leftarrow node
         end if
11:
       end while
12:
       return best.string, best.bound
13:
```

#### Algorithm 2 Best first search

```
1: function bf_search(node, best, Q, \ell, A)
       while |node.string| < \ell &
                                               node.bound >
       best.bound do
 3:
          best\_child \leftarrow Node(empty-string, 0)
         for all a \in \mathcal{A} do
 4:
             s' \leftarrow \text{concatenate}(a, node.string)
 5:
            if F(s', \ell) > best.bound then
 6:
               if F(s', \ell) > best\_child.bound then
 7:
                  best\_child \leftarrow Node(s', F(s', \ell))
 8:
 9:
10:
                Q.push(Node(s', F(s', \ell)))
            end if
11:
12:
          end for
         node \leftarrow best\_child
13:
14:
          Q.remove(best_child)
       end while
15:
16:
       return node
17: end function
```

#### 2. Bounds

## **2.1. Details of** f when $\sigma_p > 0$ and $\sigma_c = 0$

Let us recall that f must lower bound  $K_{\mathcal{Y}}(\mathbf{y}, \mathbf{y})$ , given that string  $\mathbf{y}$  has  $\mathbf{y}'$  as suffix:

$$f(\mathbf{y}', \ell) \le \min_{\mathbf{y} \in \mathcal{A}^{\ell-p} \times \{\mathbf{y}'\}} K_{\mathcal{Y}}(\mathbf{y}, \mathbf{y}).$$
 (1)

The main idea behind the bound is that each l-gram in string  $\mathbf{y}$  is indexed by a starting position that varies between 0 and  $\ell-l$ , where  $\ell=|\mathbf{y}|$ . The kernel value is obtained by summing the comparison of all l-gram pairs. To get the bound, we decide to split the comparison of the l-gram pairs in three groups that depend on their starting positions. Each group is bounded independently. The final bound is defined as

$$f(\mathbf{y}', \ell) \stackrel{\text{def}}{=} GS(\mathbf{y}', \mathbf{y}', n, \sigma_p, \sigma_c) + 2YY'(\mathbf{y}', \ell, n, \sigma_p, \sigma_c) + YY(\ell - |\mathbf{y}'|, n, \sigma_p, \sigma_c).$$
(2)

The first group of l-grams are those in position  $\ell - |\mathbf{y}'|$  to  $\ell - l$ . All these l-grams belong to the suffix  $\mathbf{y}'$  and are compared with themselves using the GS kernel function. This part of the bound is exact.

The second group compares those in positions 0 to  $\ell - |\mathbf{y}'| - 1$  with those of the suffix  $\mathbf{y}'$  in position  $\ell - |\mathbf{y}'|$  to  $\ell - l$ . A lower bound on the comparison of these l-gram pairs is given by the function

$$YY'(\mathbf{y}', \ell, n, \sigma_p, \sigma_c)$$

$$= \sum_{l=1}^{n} \sum_{i=0}^{\ell-|\mathbf{y}'|-1} \min_{\mathbf{y} \in \mathcal{A}^l} \sum_{j=0}^{|\mathbf{y}'|-l} \exp\left(\frac{-(i-(j+\ell-|\mathbf{y}'|))^2}{2\sigma_p^2}\right)$$
(3)
$$\times I(y_1, ..., y_l = y'_{j+1}, ..., y'_{j+l}).$$

This function effectively lower bounds the contribution of l-grams in positions 0 to  $\ell - |\mathbf{y}'| - 1$  when compared to the suffix  $\mathbf{y}'$  as it always selects the l-gram in  $\mathcal{A}^l$  minimising the contribution. Observe that the index j refers to positions in  $\mathbf{y}'$ . For that reason, in the position penalty term  $\exp\left(\frac{-(i-j)^2}{2\sigma_p^2}\right)$ , j was offset by  $\ell - |\mathbf{y}'|$  to correspond to positions in  $\mathbf{y}$ .

The last group compares those in positions 0 to  $\ell - |\mathbf{y}'| - 1$  with themselves. A lower bound on the comparison of these l-gram pairs is given by the function

$$YY(d, n, \sigma_p, \sigma_c) = \sum_{l=1}^{n} \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} S(i, j, l, d, \sigma_p, \sigma_c), \quad (4)$$

where

$$S(i, j, l, d, \sigma_p, \sigma_c)$$

$$= \begin{cases} 1 & \text{if } i = j, \\ exp\left(\frac{-d^2}{2\sigma_p^2}\right) & \text{if } |i - j| \in \{|\mathcal{A}|^l, 2|\mathcal{A}|^l, 3|\mathcal{A}|^l, \dots\}, \\ 0 & \text{otherwise.} \end{cases}$$

which accounts for the minimum number of l-gram repetitions at largest distance.

Finally, since all l-gram pairs were considered in one of the three functions, this makes  $f(\mathbf{y}', \ell)$  a valid lower bound.

#### **2.2. Details of** f when $\sigma_p > 0$ and $\sigma_c > 0$

The strategy to obtain a bound in this case is the same as in the previous case: the l-gram pairs are divided in the same groups but the functions YY' and YY that lower bound their contributions are modified to take into account  $\psi^l$ .

For YY', the identity function between l-grams is replaced by the second exponential term of the GS kernel. Hence,

$$YY'(\mathbf{y}', \ell, n, \sigma_p, \sigma_c)$$

$$= \sum_{l=1}^{n} \sum_{i=0}^{\ell-|\mathbf{y}'|-1} \min_{\mathbf{y} \in \mathcal{A}^l} \sum_{j=0}^{|\mathbf{y}'|-l} \exp\left(\frac{-(i-j+|\mathbf{y}'|-\ell)^2}{2\sigma_p^2}\right)$$

$$\times \exp\left(\frac{-\|\boldsymbol{\psi}^l(y_1, ..., y_l) - \boldsymbol{\psi}^l(y'_{j+1}, ..., y'_{j+l})\|^2}{2\sigma_c^2}\right).$$
(5)

For YY, only the function S needs to be redefined as

$$S(i, j, l, d, \sigma_p, \sigma_c) = \exp\left(\frac{-(i-j)^2}{2\sigma_p^2}\right) \exp\left(\frac{-l(D(i,j))}{2\sigma_c^2}\right)$$

where

$$D(i,j) = \begin{cases} 0 & \text{if } i = j, \\ \max_{(a,a') \in \mathcal{A}^2} ||\boldsymbol{\psi}(a) - \boldsymbol{\psi}(a')||^2 & \text{otherwise.} \end{cases}$$



Figure 1. The cumulative moving average of norm  $||\phi_{\mathcal{Y}}(\mathbf{y})||$  for the 1,000 peptides having the highest predicted bioactivities for the BPPs dataset.

## 3. Additional Figures

Figure 1 and Figure 2 present additional results for the cumulative moving average of the norm of the 1000 top peptides maximizing the un-normalized predictor h and the normalized predictor  $\hat{h}$ . For both BPPs and CAMPs datasets, these results show that the norms of the peptides maximizing h and  $\hat{h}$  are similar. This was expected since the chosen  $\sigma_p$  values are small ( $\sigma_p=0.2$  for BPPs and  $\sigma_p=0.8$  for CAMPs).

Figure 3 and Figure 4 compare the ability of each method to handle strings of different lengths when  $\sigma_p = \infty$ . On both datasets, the peptide with the highest bioactivity for the un-normalized predictor  $h_{\sigma_p=\infty}$  has the longest length. For the normalized predictor  $\hat{h}_{\sigma_p=\infty}$ , the best length is 7 for the BPPs dataset and 20 for the CAMPs dataset. As explained previously, the longer a string y is, the larger  $||\phi_{\mathcal{Y}}(\mathbf{y})||$  generally is, which effectively influences  $h(\mathbf{y})$ . Consequently, if the length of the output string is not constrained,  $\mathbf{y}^h$  will be biased toward long strings, especially when the value of  $\sigma_p$  is large.



Figure 2. The cumulative moving average of norm  $||\phi_{\mathcal{Y}}(\mathbf{y})||$  for the 1,000 peptides having the highest predicted bioactivities for the CAMPs dataset.



Figure 3. Maximum predicted bioactivity as a function of the peptide length for the BPPs dataset.



Figure 4. Maximum predicted bioactivity as a function of the peptide length for the CAMPs dataset.