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A. Proofs of Technical Results
Proof of Theorem 3

Since, the output clusters (say, V1, . . . ,Vk) are disjoint, one
can immediately see that the columns of matrix H are or-
thonormal. The objective function in (4) is

Trace(W ×1 H
T ×2 . . .×m HT )

=

k∑
j=1

(W ×1 H
T ×2 . . .×m HT )j...j ,

where each term in the summation can be expressed using
Definition 2 as

(W ×1 H
T ×2 . . .×m HT )j...j

=

n∑
i1...im=1

Wi1...imHi1j . . . Himj

=
1

|Vj |m/2
n∑

i1...im=1

Wi1...im1{vi1 , . . . , vim ∈ Vj}

=
1

|Vj |m/2
∑

vi1 ,...,vim∈Vj

Wi1...im =
Assoc(Vj)
|Vj |m/2

.

Thus, summing over j, we can see that the objective is sim-
ply N-associativity(V1, . . . ,Vk).

Proof of Corollary 4

The relation in (6) follows from the derivation in above
proof. The fact that, at stationary, each column zj is a `2-
eigenvector can be argued as below. For each j,

zj = argmax
‖z‖2=1

W(z, . . . , z)

and hence, at zj , the derivative of the Lagrangian is zero,
which gives the defining equation of a `2-eigenvector

W(·, zj , . . . , zj) =
2λ

m
zj .

Proof of Corollary 6

Note that nmax = n
k . So, |Mn| ≤ 16n2 logn

δ2n
. We now

compute δn in this case, which is simply

δn =
p(nk )m−1

n(0.5m−1)
=
pn0.5m

km−1

since g = 0 in (15). Substituting δn in the error bound, we
have

|Mn| ≤
16k(2m−2)n2 log n

p2nm
= O

(
log n

p2nm−3+
1
m

)
when k = O(n1/2m).

Proof of Lemma 7

Let

A =W
(
·, ·, 1n√

n
, . . . ,

1n√
n

)
be the matrix computed in first step of Algorithm 1. From
the structure ofW given in (14), one can write

A =

k∑
j=1

pj(c
T
j 1n)m−2

n(m−2)/2
cjc

T
j +

q(1Tn1n)m−2

n(m−2)/2
1n1Tn

=

k∑
j=1

pjn
m−2
j

n(m−2)/2
cjc

T
j + qn(m−2)/21n1Tn ,

where the last step follows from the fact that cj ∈ {0, 1}n
with exactly nj ones. Further noting that 1n =

∑
j cj ,

we can write A = CS−1/2BS−1/2CT , where C =
[c1 . . . ck] ∈ Rn×k, and S = diag(nj) ∈ Rk×k is diag-
onal with entries being n1, . . . , nk. The matrix B ∈ Rk×k
is

B = diag

(
pjn

m−1
j

n(0.5m−1)

)
+ vvT ,
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where v ∈ Rk with jth component being
√
qnjn(0.5m−1).

We observe that CS−1/2 has orthonormal columns, and so,
A is rank-k with non-zero eigenvalues same as that of B.

Now, the above representation ofB as a rank-one perturba-
tion of a diagonal matrix allows one to bound the smallest
eigenvalue of B using (Ipsen & Nadler, 2009). Note that
this bound is tighter than Weyl’s inequality, which does not
provide useful bounds in certain situations, for instance,
when pk = 0. From Theorem 2.1 in (Ipsen & Nadler,
2009), one can claim that the smallest eigenvalue of B,

λk(B) ≥
pj∗n

m−1
j∗

n(0.5m−1)
+

g + qn0.5m −
√

(g + qn0.5m)2 − 4gqnjn(0.5m−1)

2

≥
pj∗n

m−1
j∗

n(0.5m−1)
+
gqnj∗n

(0.5m−1)

g + qn0.5m
,

where j∗ and g are as in (15). The second inequality is ob-
tained by observing that (a−

√
a2 − b) = b

a+
√
a2−b ≥

b
2a

for a, b ≥ 0. The above lower bound is defined as 2δn (15).

Thus, whenever λk(B) ≥ 2δn > 0, the largest k eigen-
values of A are strictly positive with eigen-gap between
non-zero spectrum and the eigenvalue 0 being at least 2δn.
Further, the corresponding eigenspace is spanned by the
columns of CS−1/2, which implies that two rows of the
eigenvector matrix Z are equal only when corresponding
rows of C are identical, i.e., the nodes lie in same partition.

Proof of Lemma 9

When Algorithm 1 is run on a random hypergraph, one
computes eigen-decomposition of a random matrix A in-
stead of A. Considering W = W + E , the perturbation of
A from A in terms of the spectral norm can be bounded as

‖A−A‖2 ≤
∥∥∥∥E (·, ·, 1n√

n
, ...,

1n√
n

)∥∥∥∥
2

= max
‖x1‖2=‖x2‖2=1

∣∣∣∣E (x1, x2, 1n√
n
, ...,

1n√
n

)∣∣∣∣
≤ ‖E‖op

since the other argument above is 1n√
n

that has unit `2-norm.

We can combine Davis-Kahan sin Θ theorem (see Proposi-
tion 2.1 in (Rohe et al., 2011)) with above bound to obtain

‖ sin Θ(Z,Z)‖2 ≤
2‖A−A‖2
λk(B)

≤ ‖E‖op
δn

, (19)

when ‖E‖op < δn. Here sin Θ(Z,Z) is a matrix of
the sines of the canonical angles between the subspaces
spanned by columns of Z and Z , and λk(B) ≥ 2δn is
the eigen-gap between largest k eigenvalues of A and the
remaining spectrum.

A more convenient form of the above bound is required for
our purpose. Let θ1 ≥ θ2 ≥ . . . ≥ θk denote the canonical
angles, all of which lie in [0, π/2]. Then sin Θ(Z,Z)‖2 =
sin θ1. Now, the singular values of the matrix ZTZ are
cosines of the above angles. Let ZTZ = UΣV T be the
svd of ZTZ , i.e., the diagonal entries of Σ are cos θj , j =
1, . . . , k. Then

‖Z −ZV UT ‖2F
= Trace

(
(Z −ZV UT )T (Z −ZV UT )

)
= 2

k∑
j=1

(1− cos θj) ≤ 2

k∑
j=1

(1− cos2 θj)

since cos2 θj ≤ cos θj . Thus,

‖Z −ZV UT ‖2F ≤ 2

k∑
j=1

sin2 θj ≤ 2k sin2 θ1.

Note that Q = V UT ∈ Rk×k is an orthonormal (rotation)
matrix. The result follows by combining above inequality
with the Davis-Kahan perturbation bound (19).

Proof of Lemma 10

From Definition 8, we have

‖E‖op = max
‖x‖2=1

|E(x, . . . , x)| .

Thus, we need to find a bound on

P

(
max
‖x‖2=1

|E(x, . . . , x)| > λ

)
,

where the maximum is taken over the unit ball in Rn.
Since, the maximum is over an uncountable set, a direct
use of union bound does not yield reasonable bound. This
is taken care of by using an ε-net argument.

Let Sε be a maximal ε-net on the unit ball in Rn, i.e., for
any x, y ∈ Sε, ‖x − y‖2 > ε and for any x /∈ Sε with
‖x‖2, Sε ∪ {x} is not an ε-net. It is easy to see that such a
maximal ε-net always exists, and its size |Sε| ≤ ( 2

ε + 1)n.

We claim that, choosing ε = 1
m ,

P(‖E‖op > λ) ≤
∑
x∈Sε

P(|E(x, . . . , x)| > λ/m). (20)

To prove (20), it suffices to show that whenever ‖E‖op > λ,
there exists some x ∈ Sε such that |E(x, . . . , x)| > λ

m . If
this holds, then (20) follows from union bound.

Note that there exists some y in the unit ball which achieves
the maximum, i.e., |E(y, . . . , y)| = ‖E‖op. Given ‖E‖op >
λ, if y ∈ Sε, then the above condition trivially holds. If
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y /∈ Sε, then by maximality of Sε, there exists x ∈ Sε such
that ‖y − x‖2 ≤ ε = 1

m . Now, we can write

E(y, . . . , y) = E(x, . . . , x) +

m−1∑
i=1

E(x, .., x, y-x, y, .., y),

where the ithm-linear functional in the sum contains (i−1)
arguments as x, one argument as (y − x), and (m − i)
arguments as y. One can verify that for the ith term

E(x, .., x, y − x, y, .., y) ≤ ‖E‖op‖x‖i−12 ‖y − x‖2‖y‖m−i2

≤ ‖E‖op
m

since ‖x‖2 = ‖y‖2 = 1. Thus,

‖E‖op = |E(y, . . . , y)| ≤ |E(x, . . . , x)|+ (m− 1)‖E‖op
m

.

Hence, we have |E(x, . . . , x)| ≥ 1
m‖E‖op >

λ
m .

Next, we derive an upper bound for

P(|E(x, . . . , x)| > λ/m),

where x ∈ Rn is arbitrary with ‖x‖2 = 1. Recall that
E = W−E[W]. Hence, each entry of E has mean zero and
varies over an unit length interval. But all the entries are not
independent due to the symmetric structure. However, the
random variables {Ei1i2...im : i1 ≤ i2 ≤ . . . ≤ im} are
independent. So for any i1 ≤ i2 ≤ . . . ≤ im, we define

E{i1,i2,...,im} = N{i1,i2,...,im}Ei1i2...im ,

whereN{i1,i2,...,im} is the number of possible permutations
of (i1, i2, . . . , im) that are distinct in the sense of n-tuples.
Note that N{i1,i2,...,im} ≤ m! for any i1, i2, . . . , im. One
can exploit the symmetry of E to write

E(x, . . . , x) =

n∑
i1,i2,...,im=1

Ei1i2...imxi1xi2 . . . xim

=
∑

i1≤i2≤...≤im

E{i1,i2,...,im}xi1xi2 . . . xim ,

where {(E{i1,...,im}xi1 . . . xim) : i1 ≤ . . . ≤ im} is a col-
lection of mean zero independent random variables, each
varying over an interval of length |N{i1,...,im}xi1 . . . xim |.

The above representation shows that one can directly use
Hoeffding’s inequality to find a bound on the tail probabil-

ity for |E(x, . . . , x)| as

P(|E(x, . . . , x)| > λ/m)

≤ 2 exp

− 2(λ/m)2∑
i1≤...≤im

N2
{i1,...,im}x

2
i1
. . . x2im


≤ 2 exp

− 2(λ/m)2

m!
∑

i1≤...≤im
N{i1,...,im}x

2
i1
. . . x2im



= 2 exp

− 2(λ/m)2

m!
n∑

i1,...,im=1

x2i1 . . . x
2
im


since N{i1,...,im} accounts for all the repetitions. Observe
that the sum in the denominator is ‖x‖2m2 = 1 since x ∈
Sε. Combining above bound with (20) and the fact that
Sε = (2m+ 1)n, we obtain the result.

B. Experiments on Motion Segmentation
In this section, we discuss an application of subspace clus-
tering in the problem of motion segmentation. We con-
duct experiments on the Hopkins 155 motion segmentation
database (Tron & Vidal, 2007). We consider 120 videos
that contain two independent affine motions. The videos
contain feature trajectories, each of which can be viewed
as a high-dimensional vector. It is known that the trajecto-
ries associated with same rigid body lie in an affine space of
dimension at most 3. Thus, each dataset is a union of vec-
tors from two affine subspaces. We try to fit 2-dimensional
affine spaces through the data, and use 4th-order affinity
tensors. The similarity among 4 vectors is e−βf(·), where
β > 0 is a tuning parameter and f(·) is the error of fitting
a 2-dimensional affine space through the 4 vectors, given
by the sum of smallest two squared singular values of the
centered data matrix for the 4 vectors. To reduce the com-
plexity, we use only sample 1000N entries of the tensor
for Algorithm 1, where N is the number of vectors in each
dataset. This is done by the sampling suggested in Sec-
tion 5.2. We approximate A in Algorithm 1 as a sum of
80 matrices, each obtained by randomly selecting a pairs
of vectors. We further compute only 25 columns for each
matrix, thus maintaining the sampling rate. We also tune β
and average the result over 20 trials, and report best result
over a set of values of parameter β in the range [0.001, 1],
as considered in (Ghoshdastidar & Dukkipati, 2014; 2015).

Table 3 reports the performance of some subspace clus-
tering algorithms that are popular in the vision commu-
nity. These include local subspace affinity (LSA), spec-
tral curvature clustering (SCC), low rank representation
with heuristic post-processing (LRR-H), low rank sub-
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Algorithm Mean error (%)
LSA 4.23
SCC 2.89

LRR-H 2.13
LRSC 3.69
SSC 1.52
SGC 1.03

HOSVD 1.83
HOSVDsampled 1.05
Algorithm 1 1.54

Table 3. Error for different algorithms. Results for the other algo-
rithms have been taken from (Ghoshdastidar & Dukkipati, 2015).

space clustering (LRSC), sparse subspace clustering (SSC),
sparse Grassmann clustering (SGC), tensor HOSVD based
clustering (HOSVD) and its column sampled variant
(HOSVDsampled). Table 3 shows that Algorithm 1 per-
forms better than most approaches, while the best re-
sults are obtained by SGC (Jain & Govindu, 2013) and
HOSVDsampled (Ghoshdastidar & Dukkipati, 2015). which
consider improved sampling techniques for the HOSVD al-
gorithm. Thus, improving the sampling for Algorithm 1
requires further study.


