A Provable Generalized Tensor Spectral Method
for Uniform Hypergraph Partitioning

(Supplementary material)

Debarghya Ghoshdastidar
Ambedkar Dukkipati

Departiment of Computer Science & Automation,
Indian Institute of Science, Bangalore — 560012, India

A. Proofs of Technical Results
Proof of Theorem 3

Since, the output clusters (say, Vi, . . ., Vi) are disjoint, one
can immediately see that the columns of matrix H are or-
thonormal. The objective function in (4) is
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where each term in the summation can be expressed using
Definition 2 as
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Thus, summing over j, we can see that the objective is sim-
ply N-associativity(Vy, ..., V).

Proof of Corollary 4

The relation in (6) follows from the derivation in above
proof. The fact that, at stationary, each column z; is a »-
eigenvector can be argued as below. For each j,

zj = argmaxW (z,...,2)
llzll2=1

and hence, at z;, the derivative of the Lagrangian is zero,
which gives the defining equation of a ¢5-eigenvector
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Proof of Corollary 6

2
Note that nyax = %. So, [M,| < 16”5%. We now

compute J,, in this case, which is simply

5 p(%)mfl B pn0.5m
n = =

n(0.5m—1) fm—1
since g = 0 in (15). Substituting §,, in the error bound, we
have
M, < 16k(2m;2)n2 logn O( logn 1 )
pen™ P23t

when k = O(n!/?™).

Proof of Lemma 7
Let
1 1
A=W/, 2
< Vvn \/ﬁ>
be the matrix computed in first step of Algorithm 1. From
the structure of WV given in (14), one can write

pj ¢ ln
A= Z (m—2)/2

Z EL
= m—2)72 %

where the last step follows from the fact that ¢; € {0,1}"
with exactly n; ones. Further noting that 1, = > ;i Cj»
we can writte A = CS~Y2BS~Y2CT where C =
[c1...ck) € R™F and S = diag(n;) € R** is diag-
onal with entries being 1, . .., ny. The matrix B € RF*F

is
B B d pjn;rb—l -
= diag (0sm-1) + v,
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where v € R¥ with j'" component being \/gn;n(0-5m-1).
We observe that C'S~!/2 has orthonormal columns, and so,
A is rank-k with non-zero eigenvalues same as that of B.

Now, the above representation of B as a rank-one perturba-
tion of a diagonal matrix allows one to bound the smallest
eigenvalue of B using (Ipsen & Nadler, 2009). Note that
this bound is tighter than Weyl’s inequality, which does not
provide useful bounds in certain situations, for instance,
when pr = 0. From Theorem 2.1 in (Ipsen & Nadler,
2009), one can claim that the smallest eigenvalue of B,

m—1
Ak(B) = %-ﬁ-
g+ qn0.5m _ \/(g T an.Sm)2 _ 4gqnjn(0'5m*1)
2
Pt ggnyn®omD
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where j* and g are as in (15). The second inequality is ob-

i i — 2 _ )= b > b
tained by observing that (& — va? — b) = T 2
for a, b > 0. The above lower bound is defined as 24,, (15).

Thus, whenever A\,(B) > 20,, > 0, the largest k eigen-
values of A are strictly positive with eigen-gap between
non-zero spectrum and the eigenvalue 0 being at least 26,,.
Further, the corresponding eigenspace is spanned by the
columns of C'S~1/2 which implies that two rows of the
eigenvector matrix Z are equal only when corresponding
rows of C' are identical, i.e., the nodes lie in same partition.

Proof of Lemma 9

When Algorithm 1 is run on a random hypergraph, one
computes eigen-decomposition of a random matrix A in-
stead of A. Considering W = W + &, the perturbation of
A from A in terms of the spectral norm can be bounded as

A=Al < e
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We can combine Davis-Kahan sin © theorem (see Proposi-
tion 2.1 in (Rohe et al., 2011)) with above bound to obtain

24— Al _ [1]on
/\k(B) - I, ’

when ||€|lop < 0,. Here sin©(Z, Z) is a matrix of
the sines of the canonical angles between the subspaces
spanned by columns of Z and Z, and A\p(B) > 2§, is
the eigen-gap between largest k eigenvalues of A and the
remaining spectrum.

since the other argument above is that has unit {5-norm.

[sin©(Z, Z)|2 < (19)

A more convenient form of the above bound is required for
our purpose. Let 61 > 0y > ... > 0} denote the canonical
angles, all of which lie in [0, 7/2]. Then sin O(Z, Z)||2 =
sin@,. Now, the singular values of the matrix Z7 Z are
cosines of the above angles. Let ZTZ = UXVT be the
svd of ZT Z, i.e., the diagonal entries of X are cos 8, j =
1,...,k. Then

1Z - 2vUT|%
= Trace ((Z — 2VUN)T(Z — ZVU™))

k k
= 22(1 —cosb;) < 22(1 — cos? 0;)
j=1

=1
since cos? §; < cos ;. Thus,

k
|1Z — ZVUTH% < QZ:sin2 0; < 2k sin® 6.

j=1

Note that @ = VUT € R*** is an orthonormal (rotation)
matrix. The result follows by combining above inequality
with the Davis-Kahan perturbation bound (19).

Proof of Lemma 10

From Definition 8, we have

I€llop = max |E(x,...,z)|.
lz]l2=1

Thus, we need to find a bound on

P(max IE(x, ... x| >)\>7

lzll2=1

where the maximum is taken over the unit ball in R”.
Since, the maximum is over an uncountable set, a direct
use of union bound does not yield reasonable bound. This
is taken care of by using an e-net argument.

Let S, be a maximal e-net on the unit ball in R", i.e., for
any 2,y € Se, |2 — y|2 > € and for any x ¢ S. with
|]|2, Se U {z} is not an e-net. It is easy to see that such a
maximal e-net always exists, and its size | S| < (2 +1)™.

We claim that, choosing € = L
m

PI€llop > A) < Y P(E(, ..., 2)| > A/m).  (20)

TES,

To prove (20), it suffices to show that whenever ||€||,, > A,
there exists some z € S such that |E(z,...,z)| > 2. If
this holds, then (20) follows from union bound.

Note that there exists some 3 in the unit ball which achieves
the maximum, ie., |E(y,...,y)| = ||€]lop- Given ||E]|op >
A if y € S, then the above condition trivially holds. If
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y ¢ Se, then by maximality of S, there exists z € S, such
that ||y — z[2 < e = L. Now, we can write

where the i*" m-linear functional in the sum contains (i—1)
arguments as x, one argument as (y — z), and (m — i)
arguments as . One can verify that for the i* term

E@, o,y = 2,, . y) < [Ellopllzllz Iy — zll2llyllz ™
_ €y
m
since ||z||2 = ||y||]2 = 1. Thus,
m—1)||€
1oy = G, 0)] < Gz .., a)] + D Een,
Hence, we have [E(z, ..., 2)| > L[|&],, > %

Next, we derive an upper bound for
P(E(x,...,x)| > A/m),

where x € R™ is arbitrary with ||z||2 = 1. Recall that
& = W —E[W]. Hence, each entry of £ has mean zero and
varies over an unit length interval. But all the entries are not
independent due to the symmetric structure. However, the
random variables {&;,;,. 4., 41 < i2 < ... < iy} are
independent. So for any 47 <19 < ... < 7,,, we define

Elivsinyrmrim} = Niivsin,onsim }Eiriz.im

where Ny;, 4,.....4,,1 18 the number of possible permutations
of (i1,142,...,%,) that are distinct in the sense of n-tuples.
Note that Ny;, ,....i,,3 < m! for any iy,ia,...,%,,. One
can exploit the symmetry of £ to write

n

E(x,...,x) = Z

01,42, 0m =1
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where {(Eq;, i3y - @,,) ti1 < ... < i} is acol-
lection of mean zero independent random variables, each
varying over an interval of length [Ny, ; y@i, .. @, |

The above representation shows that one can directly use
Hoeffding’s inequality to find a bound on the tail probabil-

ity for |E(x, ..., z)| as

P(l€(x,...,z)| > A/m)
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since Ny, .4} accounts for all the repetitions. Observe
that the sum in the denominator is ||z||3™ = 1 since z €
S.. Combining above bound with (20) and the fact that
Se = (2m + 1)", we obtain the result.

B. Experiments on Motion Segmentation

In this section, we discuss an application of subspace clus-
tering in the problem of motion segmentation. We con-
duct experiments on the Hopkins 155 motion segmentation
database (Tron & Vidal, 2007). We consider 120 videos
that contain two independent affine motions. The videos
contain feature trajectories, each of which can be viewed
as a high-dimensional vector. It is known that the trajecto-
ries associated with same rigid body lie in an affine space of
dimension at most 3. Thus, each dataset is a union of vec-
tors from two affine subspaces. We try to fit 2-dimensional
affine spaces through the data, and use 4*"-order affinity
tensors. The similarity among 4 vectors is e /() where
B > 0 is a tuning parameter and f(-) is the error of fitting
a 2-dimensional affine space through the 4 vectors, given
by the sum of smallest two squared singular values of the
centered data matrix for the 4 vectors. To reduce the com-
plexity, we use only sample 1000V entries of the tensor
for Algorithm 1, where N is the number of vectors in each
dataset. This is done by the sampling suggested in Sec-
tion 5.2. We approximate A in Algorithm 1 as a sum of
80 matrices, each obtained by randomly selecting a pairs
of vectors. We further compute only 25 columns for each
matrix, thus maintaining the sampling rate. We also tune (3
and average the result over 20 trials, and report best result
over a set of values of parameter § in the range [0.001, 1],
as considered in (Ghoshdastidar & Dukkipati, 2014; 2015).

Table 3 reports the performance of some subspace clus-
tering algorithms that are popular in the vision commu-
nity. These include local subspace affinity (LSA), spec-
tral curvature clustering (SCC), low rank representation
with heuristic post-processing (LRR-H), low rank sub-
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’ Algorithm \ Mean error (%) ‘

LSA 4.23
SCC 2.89
LRR-H 2.13
LRSC 3.69
SSC 1.52
SGC 1.03
HOSVD 1.83
HOSVDgumpled 1.05
Algorithm 1 1.54

Table 3. Error for different algorithms. Results for the other algo-
rithms have been taken from (Ghoshdastidar & Dukkipati, 2015).

space clustering (LRSC), sparse subspace clustering (SSC),
sparse Grassmann clustering (SGC), tensor HOSVD based
clustering (HOSVD) and its column sampled variant
(HOSVDgumpieq). Table 3 shows that Algorithm 1 per-
forms better than most approaches, while the best re-
sults are obtained by SGC (Jain & Govindu, 2013) and
HOSVDgymplea (Ghoshdastidar & Dukkipati, 2015). which
consider improved sampling techniques for the HOSVD al-
gorithm. Thus, improving the sampling for Algorithm 1
requires further study.



