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Abstract
We develop an automated technique for detecting
damped Lyman-˛ absorbers (DLAs) along spec-
troscopic sightlines to quasi-stellar objects (QSOs
or quasars). The detection of DLAs in large-scale
spectroscopic surveys such as SDSS–III is critical
to address outstanding cosmological questions,
such as the nature of galaxy formation. We use
nearly 50 000 QSO spectra to learn a tailored Gaus-
sian process model for quasar emission spectra,
which we apply to the DLA detection problem
via Bayesian model selection. We demonstrate
our method’s effectiveness with a large-scale vali-
dation experiment on over 100 000 spectra, with
excellent performance.

1. Introduction
Damped Lyman-˛ systems (DLAs) are large gaseous ob-
jects containing large amounts of neutral hydrogen (HI) gas.
DLAs emit little light and cannot be observed directly; how-
ever, they can be detected indirectly in the spectroscopic
measurements of high-redshift quasi-stellar objects (QSOs
or quasars), due to their leaving telltale wide absorption
phenomena.

DLAs currently represent our only probe of normal (nei-
ther high-mass nor star-forming) galaxies at high redshift.
DLAs are known to have dominated the neutral-gas content
of the Universe from redshift ´ D 5 (when the Universe
was 1.2 Gyr old) to today (Wolfe et al., 2005). These sys-
tems likely played a significant role in fueling star forma-
tion across the cosmic time. Due to their importance, it
is common practice for astronomers to visually inspect ev-
ery measured quasar spectrum to identify potential DLAs.
This is a daunting task: the large-scale Sloan Digital Sky
Survey III (SDSS–III) has measured nearly 300 000 quasar
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Figure 1. A cartoon of Lyman-˛ emission and absorption (Wright,
2004). Lyman-˛ photons are emitted by a high-redshift quasar
(top right). On their way to Earth, these photons travel through
clouds containing neutral hydrogen gas, each at a different redshift.
Each may absorb some photons, tracing an absorption feature in
the measured spectrum; these together form the Lyman-˛ forest.

spectra over its brief history (Eisenstein et al., 2011). With
several large-scale spectroscopic surveys of QSOs due to
start soon (including SDSS–IV and DESI1), which plan to
observe 1–2 million quasars, it would be unimaginable to
continue the status quo of visually inspecting every spec-
trum. We present a fully automated and scalable method to
find DLAs in quasar spectra, based on Gaussian processes
and Bayesian model selection, using a massive dataset from
the SDSS–III project.2

1.1. Relevant Spectroscopic Concepts

In spectroscopy, we use an instrument to measure the spec-
tral flux (electromagnetic radiation emitted per unit area per
unit wavelength) of an object over a range of wavelengths
of light, binned into discrete intervals called “pixels.” Due
to the expansion of the Universe, flux corresponding to a
wavelength �rest in the restframe of an observed object will
be observed on Earth at a redshifted wavelength �obs; the
relationship between these quantities is �obs D .1C ´/�rest,
where ´ is the cosmological redshift.

1http://desi.lbl.gov/
2http://www.sdss.org/
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Figure 2. A portion of an example spectrum for the object SDSS 020712.80+052753.4, ´QSO D 3:741. The Ly˛ emission is marked, oc-
curring at �obs D 5 763Å. This QSO is included in the DLA concordance catalog with .´DLA; log10NHI/ D .3:283; 20:39/, corresponding
to central absorption wavelength �obs D 5 206Å or �rest D 1 098Å in the QSO restframe.

Quasar emission spectra contain numerous emission lines,
large localized spikes in flux, corresponding to well-
understood atomic events. The most important of these in
the context of DLAs is the Lyman series, a series of emission
lines corresponding to photons emitted from a neutral hydro-
gen atom when its electron transitions from a higher-energy
orbital n > 1 to the ground state n D 1. Due to quantum me-
chanics, each of these transitions corresponds to a specific
amount of energy being released; this energy is conserved
via the emission of a photon of predictable wavelength. The
Lyman-˛ (Ly˛) transition is the n D 2 ! n D 1 mem-
ber of this series, which corresponds to a photon emission
with wavelength �rest D 1 216Å. Lyman-ˇ (Lyˇ) is the
n D 3! n D 1 transition, etc. The Lyman limit (Ly1) at
�rest D 912Å is the highest-energy member of the series,
equivalent to the energy required to strip the electron from
the atom completely.

The line of sight from Earth to a quasar must pass through a
vast expanse of the intergalactic medium. Along the line of
sight will be numerous objects containing neutral hydrogen.
When a Ly˛ photon emitted by the quasar passes through
such an object, it can be absorbed by a neutral hydrogen
atom, exciting it (inducing the reverse n D 1! n D 2 tran-
sition of its electron). Such absorption causes corresponding
dips in the observed flux. Again, due to the expansion of the
Universe, each of these objects will be located at a different
redshift, necessarily less than the quasar itself. The result is
the so-called Lyman-˛ forest, a series of dips in quasar emis-
sion spectra bluewards (that is, at lower wavelengths) from
the Ly˛ emission line. Figure 1 shows a cartoon illustration
of this process.

When a very dense cloud containing neutral hydrogen gas
(column density surpassing NHI > 2 � 1020 cm�2 along
the line of sight), the absorption profile exhibits characteris-
tic “damping wings,” and the object is classified a damped
Lyman-˛ absorber (DLA). Figure 2 shows a an example
quasar spectrum gathered by the SDSS–III project that con-

tains a DLA along the line of sight. The entire Lyman-˛
forest is also visible.

1.2. Notation

We will briefly establish some notation. Consider a QSO
with redshift ´QSO; we will always assume that ´QSO is
known, allowing us to work in the quasar restframe. We
will notate a QSO’s true emission spectrum by a function
f WR! R, where f .�/ represents the flux corresponding
to rest wavelength �. Without subscript, � will always refer
to quasar rest wavelengths rather than observed wavelengths.
Note that the emission function f is never directly observed,
both due to measurement error and due to absorption by in-
tervening matter along the line of sight. We will denote the
observed flux by a corresponding function y.�/.

Our approach to DLA detection will depend on Bayesian
model selection, which will allow us to directly compute
the probability that a given quasar sightline contains a DLA.
We will develop two probabilistic models for a given set
of spectroscopic observations D: one for sightlines with
an intervening DLA (MDLA), and one for those without
(M:DLA). Then, given the available data, we will compute
the posterior probability that the former model is correct.
Both models will be based on Gaussian processes, which
we describe below.

2. Gaussian Processes
The main object of interest we wish to perform inference
about is a given QSO’s emission function f .�/. This is in
general a complicated function with no simple parametric
form available, so we will instead use nonparametric infer-
ence techniques to reason about it. Gaussian processes (GPs)
provide a powerful nonparametric framework for modeling
unknown functions, which we will adopt for this task. See
(Rasmussen & Williams, 2006) for an extensive introduction
to GPs.
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Let X be an arbitrary input space, for example the real
line R, and let f WX ! R be a real-valued function on
X we wish to model. Given an arbitrary mean function
�WX ! R and positive semidefinite covariance function
KWX � X ! R, we may endow f with a Gaussian pro-
cess prior distribution p.f / D GP.f I�;K/. The defining
characteristic of a GP is that given a finite set of inputs �,
the corresponding vector of function values f D f .�/ is
multivariate Gaussian distributed:

p.f / D N
�
f I�.�/;K.�;�/�: (1)

Consider a set of noisy observations of f at �, D D .�; y/.
We will assume these observations are generated by cor-
rupting the true latent values f by zero-mean, independent
Gaussian noise. We assume that the noise variance associ-
ated with each of our measurements is known3 and given
by a corresponding vector �, with �i D �.�i /

2. Given
the noise independence assumption, the entire observation
model is given by

p.y j �; f ; �/ D N .y I f ;N/; (2)

where N D diag �. Note that we do not make a homoskedas-
ticity assumption; rather, we allow the noise variance to de-
pend on �. This capability to handle heteroskedastic noise
is critical for the analysis of emission spectra, where noise
levels can vary widely as a function of observed wavelength.

Given our GP prior on f (1) and the Gaussian noise obser-
vation model (2), we may compute the marginal likelihood
of the data in closed form:

p.y j �; �/ D N
�
y I�.�/;K.�;�/CN/:

In typical applications of GP inference, the prior mean �
and prior covariance K would be selected from numerous
off-the-shelf solutions available; however, none of these
would be directly appropriate for modeling QSO emission
spectra, due to their complex nature. For example, strong
off-diagonal correlations must exist between potentially dis-
tant emission lines, such as members of the Lyman series.
Rather, we will construct a custom GP prior distribution for
modeling these spectra in the next section.

3. Learning a GP Model for QSO Spectra
We wish to construct a Gaussian process prior for QSO
spectra, specifically, those that do not contain an intervening
DLA along the line of sight. This will form the basis for our
null model M:DLA. We will later extend this to form our
DLA model MDLA.

3This is a valid assumption for spectroscopic surveys such as
SDSS–III, which typically generate pixelwise noise estimates for
each measurement.

A Gaussian process is defined entirely by its first two mo-
ments, � and K. Our goal in this section will be to derive
reasonable choices for these functions. We adopt a data-
driven approach and learn an appropriate model given over
48 000 examples contained in a previously compiled catalog
of quasar spectra recorded by the BOSS spectrograph (Smee
et al., 2013).

3.1. Description of Data

We used the QSO spectra from the BOSS DR9 Lyman-˛
forest sample (Lee et al., 2013) to train our GP model. Later,
we will use the spectra from the corresponding DR10 sample
(Lee et al., 2014) to evaluate our proposed DLA finding
approach. The DR9 sample comprises 54 468 QSO spectra
with ´QSO � 2:15 from the SDSS DR9 release appropriate
for Lyman-˛ forest analysis; the DR10 sample comprises
101 167 spectra. 53 490 QSOs are contained in both catalogs.

Both catalogs have been augmented with a previously com-
piled “concordance” DLA catalog (Carithers, 2012), com-
bining the results of three previous DLA searches. These in-
clude a visual-inspection survey (Slosar et al., 2011) and two
previous semi-automated approaches: a template-matching
approach (Noterdaeme et al., 2012), and an approach using
Fisher discriminant analysis (Carithers, 2012). Any sight-
line flagged in at least two of these catalogs is included in the
concordance. A total of 5 854 lines of sight are flagged as
containing an intervening DLA in the DR9 catalog (10.7%);
9 531 are flagged in the DR10 catalog (9.4%).

3.2. Modeling Decisions

To avoid effects due to redshift, we will build our emission
model for wavelengths in the rest frame of the QSO. Further-
more, to account for arbitrary scaling of flux measurements,
we will build a GP prior for normalized flux. Specifically,
given the observed flux of a QSO, we normalize by dividing
by the median flux observed bluewards of the Ly˛ emission.

We model emissions in the range �rest 2 Œ800Å; 1 216Å�,
where DLAs are most likely to be observed. Our approach
will be to learn a mean vector and covariance matrix on
a dense grid of wavelengths in this range, which we will
then interpolate as required by a particular set of observed
wavelengths. The chosen grid was this set of wavelengths
with a linearly equal spacing of�� D 0:25Å. This resulted
in a vector of input locations � with j�j D Npixels D 1 665
pixels.

Given a GP prior for QSO emission spectra, p.f / D
GP.f I�;K/, the prior distribution for emissions on the
chosen grid �, f D f .�/ is a multivariate Gaussian:

p.f j �; ´QSO/ D N .f I�;K/; (3)

where � D �.�/ and K D K.�;�/. Note that we must
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condition on the QSO redshift ´QSO because it is required for
shifting into the quasar restframe.

As mentioned previously, however, we can never observe
f directly, both due to measurement error and absorption
by intervening matter. The former can be handled easily for
our spectra by using the SDSS pipeline error estimates in
the role of the noise vector �. The latter is more problem-
atic, especially in our selected region, which includes the
Lyman-˛ forest. In principle, if we knew the exact nature
of the intervening matter, we could model this absorption
explicitly, but this is unrealistic. We will instead model the
effect of small absorption phenomena (absorption by objects
with column density below the DLA limit) by an additive
wavelength-dependent Gaussian noise term, which we will
learn. Therefore the characteristic “dips” of the Lyman-˛
forest will be modeled as noisy deviations from the true un-
derlying smooth continuum. Later we will explicitly model
larger absorption phenomena to build our DLA model.

The mathematical consequence of this modeling decision is
as follows. Consider the arbitrary GP model in (3). We wish
to model the associated spectroscopic observation values on
the chosen grid, y D y.�/ with measurement noise vector
� D �.�/2. The model we adopt here will involve a global
additional noise vector ! modeling absorption deviations
from the quasar continuum. The observation model resulting
from this choice is

p.y j f ; �;!;M:DLA/ D N .y I f ;�CN/;

where � D diag!. Therefore, given our chosen input
grid �, the prior distribution of associated spectroscopic
observations y is

p.y j �; �;!; ´QSO;M:DLA/ D N .y I�;KC�CN/: (4)

Our goal now is to learn appropriate values for �, K, and
!, which will fully specify our null model M:DLA.

3.3. Learning Appropriate Parameters

To build our null model, we took the Nspec D 48 614 spec-
tra from the BOSS DR9 Lyman-˛ forest sample that are
putatively absent of intervening DLAs. We linearly interpo-
lated the normalized flux and noise variance measurements
of each spectrum onto the chosen wavelength grid �, af-
ter masking problematic pixels as indicated by the SDSS
pipeline. Note that we did not “interpolate through” masked
pixels. We also did not extrapolate beyond the range of
wavelengths present in each spectrum.

We collect the resulting vectors into .Nspec � Npixels/ ma-
trices Y and N, containing the normalized flux and noise
variance vectors, respectively. For QSO i , we will write yi

and �i to represent the corresponding observed flux and
noise variance vectors, and will define Ni D diag �i . Due

to masked pixels and varying redshifts of each QSO, these
matrices contain numerous missing values, especially on
the blue end.

3.3.1. LEARNING THE MEAN

Identifying an appropriate mean vector � is straightforward
with so many example spectra. We simply found the median
recorded value for each rest wavelength in our grid across
the available measurements:

�j D median
yij¤NaN

yij :

Note that the sample mean is the maximum-likelihood esti-
mator for �; however, here we used the median to be more
robust to large outliers that typically appear on the blue end
of QSO spectra. The learned mean vector � is plotted in
Figure 3.

3.3.2. LEARNING THE COVARIANCE

We will use standard unconstrained optimization techniques
to learn the covariance matrix K and absorption “noise”
vector !. We use a low-rank decomposition to limit the
number of free variables in our model:

K DMM>;

where M is an .Npixels � k/ matrix with k � Npixels. This
decomposition allows unconstrained optimization for M.
Here we took k D 10, noting that the first 10 principal
components of the flux matrix Y explain approximately
99.9% of the total variance.

We assume that our measured flux vectors are independent
realizations drawn from a common prior (4):

p.Y j �;�;M;!;N; zQSO;M:DLA/ D
NspecY
iD1

N .yi I�;KC�CNi /;

where all missing values are ignored. That is, in the i th
entry of the product, we only use the entries of �, �i , and
!, and only the rows of M, corresponding to non-masked
values in yi .

We define the log likelihood of the data, L, as a function of
the covariance parameters M and !:

L.M;!/ D logp.Y j �;�;M;!;N; zQSO;M:DLA/:

We will maximize L.M;!/ with respect to the covariance
parameters to derive our model, giving the emission model
most likely to have generated our data. To enable uncon-
strained optimization, we parameterize ! entrywise by its
natural logarithm.
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Figure 3. The learned mean vector � derived by taking the median across the stacked spectra. The vector has been smoothed with a
11-pixel (2:75Å) boxcar function for clarity on the blue end. Members of the Lyman series are marked.

An important feature of our particular choice of model is
that we can solve linear systems with and compute the log
determinant of the prior observation covariance

KC�CNi

quickly via the Woodbury identity and the Sylvester deter-
minant theorem, respectively. This allows very fast compu-
tation of L despite the very large number of training spectra
and pixels.

To maximize our joint log likelihood, we applied the L-BFGS
algorithm, a gradient-based quasi-Newton algorithm for un-
constrained optimization. The initial value for M was taken
to be the top-10 principal components of Y ; the initial value
of each entry in ! was taken to be the log sample variance
of the corresponding column of Y , ignoring missing values.

The learned prior covariance matrix MM> C� is shown
in Figure 4 (normalized to show correlations rather than raw
covariances). Features corresponding to the Lyman series
are clearly visible, including strong off-diagonal correlations
between pairs of emission lines and an especially prominent
correlation feature above the Lyman limit, Ly1. Such
features are highly atypical of off-the-shelf covariances.

To apply our model to spectroscopic observations corre-
sponding to a set of input wavelengths differing from the
grid we used to learn the model, we simply interpolate (lin-
early) the learned �, K, and! onto the desired wavelengths.
We may also account for redshift trivially should we wish
to work in the �obs domain.

3.4. Model Evidence

We note that our null model M:DLA has no parameters
beyond those already learned and fixed. Consider a set of
spectroscopic observations of a QSO sightline D D .�; y/
with known observation noise variance vector �. The model
evidence for M:DLA given by these observations can be
computed directly:

p.y j �; �; ´QSO;M:DLA/ D N .y I�;KC�CN/; (5)
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Figure 4. The observation correlation matrix (normalized KC�)
corresponding to the learned parameters.

where the �, K, and ! learned above have been appropri-
ately interpolated onto �.

4. A Model for Intervening DLAs
In the previous section, we learned a GP model for QSO
spectra without intervening DLAs. Here we will extend that
model to create a model for sightlines containing intervening
DLAs.

Consider a quasar with redshift ´QSO, and suppose that there
is a DLA along the sightline with redshift ´DLA and column
density NHI. The effect of this on our observations is to
multiply the emitted flux f .�/ by an absorption function:

y.�/ D f .�/ exp
���.�I ´DLA; NHI/

�C ".�/;
where ".�/ is additive Gaussian noise due to measurement
error and � is a Voigt profile for Lyman-˛ absorption for
the specified system, which can be computed explicitly via
physical modeling (Draine, 2011).
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Thankfully, Gaussian processes are closed under linear trans-
formation. Suppose that we wish to model the observed flux
along the sightline with a DLA with known redshift and
column density. First we compute the theoretical absorption
function with these parameters at �; call this vector a:

a D exp
���.�I ´DLA; NHI/

�
:

Now the prior for y with the specified DLA is

p.y j �; �; ´QSO; ´DLA; NHI;MDLA/

D N
�
y I a ı �;A.KC�/ACN

�
;

where a D diag A and ı represents the Hadamard (element-
wise) product.

4.1. Model Evidence

Unlike our null model, which was parameter free, our DLA
model MDLA contains two parameters describing the puta-
tive DLA: the redshift ´DLA and column density NHI. We
will denote the model parameter vector by � D .´QSO; NHI/.
To compute the model evidence, we must compute the fol-
lowing integral:

p.y j �; �; ´QSO;MDLA/ DZ
p.y j �; �; ´QSO; �;MDLA/p.� j ´QSO;MDLA/ d�; (6)

where we have marginalized the parameters given a prior
distribution p.� j ´QSO;MDLA/. Before we describe the
approximation of this integral, we will first describe the
prior distribution used in our experiments.

4.2. Parameter Prior

First, we make the assumption that absorber redshift and
column density are independent and that the column density
is independent of the QSO redshift ´QSO:

p.� j ´QSO;MDLA/ D p.´DLA j ´QSO;MDLA/p.NHI jMDLA/:

We define the following range of allowable ´DLA:

´min D .min�obs/=.1 216Å/ � 1I ´max D ´QSO;

that is, we insist the absorption center be within the range
of the observed wavelengths (after restricting to the chosen
domain �rest 2 Œ800Å; 1216Å�). Given these, we simply
take a uniform prior distribution on this range:

p.´DLA j ´QSO;MDLA/ D U Œ´min; ´QSO�:

The column density prior p.NHI jMDLA/ is slightly more
complicated. Rather than selecting a parametric distribution
for this prior, we make a nonparametric estimate of the

density. Due to the large dynamic range of column densities,
we chose a prior on its base-10 logarithm, log10NHI. We use
the reported values for the NDLA D 5 854 DLAs contained
in the DR9 sample to make a kernel density estimate of
the density p.log10NHI j MDLA/. Here we selected the
univariate Gaussian probability density function for our
kernels, with bandwidth selected via a plug-in estimator that
is asymptotically optimal for normal densities.

4.3. Approximating the Model Evidence

Given our choice of parameter prior, the integral in (6) is un-
fortunately intractable, so we resort to numerical integration.
In particular, we use quasi-Monte Carlo (QMC) integration
(Caflisch, 1998), taking N D 1 000 samples generated from
a scrambled Halton sequence (Kocis & Whiten, 1997) to de-
fine our parameter samples. Note that the Halton sequence
gives values approximately evenly distributed on the unit
square Œ0; 1�2, which (after a trivial transformation) agrees
in density with our redshift prior, but not our column den-
sity prior. To correct for this, we used inverse transform
sampling to endow the generated samples with the appro-
priate distribution via the approximate inverse cumulative
distribution function implied by our kernel density estimate
of p.log10NHI jMDLA/.

5. Model Prior
Given a set of spectroscopic observations D, our ultimate
goal is to compute the probability the QSO sightline contains
an DLA: p.MDLA j D/. Bayesian model selection requires
two components: the data-independent prior probability
that sightline contains a DLA, Pr.MDLA/, and the ability to
compute the ratio of model evidences p.D jM:DLA/ and
p.D j MDLA/. The GP models built above allows us to
compute the latter; in this section we focus on the former.

Only approximately 10% of the QSO sightlines in the DR9
and DR10 releases contain DLAs. A simple approach would
be to use a fixed value of Pr.MDLA/ � 1=10. However, we
are less likely to observe a DLA in low-redshift QSOs due
to the wavelength coverage of the SDSS and BOSS spectro-
graphs being limited to �obs � 3 800Å and �obs � 3 650Å,
respectively, on the blue end. Therefore, here we will use a
slightly more sophisticated approach and derive a redshift-
dependent model prior Pr.MDLA j ´QSO/.

Our prior is simple and data driven. Consider a QSO with
redshift ´QSO. Let N be the number of QSOs in the training
sample with redshift less than ´QSOC ´0, where ´0 is a small
constant; here we took ´0 D 0:1. Let M be the number of
the sightlines of these containing DLAs. We define

Pr.MDLA j ´QSO/ D M
N
:

The constant ´0 serves to ensure that QSOs with very small
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redshift have sufficient data for estimating the prior. The re-
sulting prior ranges from roughly 2% for the lowest-redshift
quasars to around 10% for high-redshift objects.

6. Experiment
We have now developed all the machinery required to com-
pute the posterior odds that a given quasar sightline contains
an intervening DLA, given a set of noisy spectroscopic ob-
servations D. Briefly, we summarize the steps below, using
the example from Figure 2.

Consider a quasar with redshift ´QSO, and suppose we have
made spectroscopic observations of the object D D .�; y/,
with known observation noise variance vector �. First, we
compute the prior probability of the DLA model MDLA,
Pr.MDLA j ´QSO/ and thus the prior odds in favor of the
DLA model; for our example, Pr.MDLA j ´QSO/ D 10:3%;
giving prior odds of 0.115 (9-to-1 against the DLA model).

Next, we compute the Bayes factor in favor of MDLA:

p.y j �; �; ´QSO;MDLA/

p.y j �; �; ´QSO;M:DLA/
: (7)

See (5) for how to compute the model evidence for the
null model and Section 4.3 for our approximation to the
DLA model evidence. For our example, the Bayes factor
overwhelmingly supports the DLA model, with a value of
exp.136/ � 1059. The computation of the Bayes factor is
illustrated in Figure 5.

Finally, the posterior odds in favor of the sightline contain-
ing an intervening DLA is the product of the prior odds and
the Bayes factor (7). The log odds in favor of MDLA for
the example from Figure 2 are 134 nats, and the probabil-
ity of the sightline containing a DLA is effectively unity.
The DLA parameter sample with the highest likelihood was
.´DLA; log10NHI/ D .3:286; 20:30/, closely matching the
values reported in the DLA catalog, .´DLA; log10NHI/ D
.3:284; 20:29/.

We note that despite the large number of parameter sam-
ples, our method is extremely scalable. The low-rank-plus-
diagonal structure of our observation covariance ensures
that fully processing a quasar spectrum takes under a second
on a standard desktop machine.

To verify the validity of our proposed method, we computed
the posterior odds in favor of MDLA for each of the 101 167
quasar sightlines in the BOSS DR10 Lyman-˛ forest sample,
using the GP emission model we built in Section 3 from the
corresponding DR9 catalog.

To evaluate our results, we examined the ranking induced on
the sightlines by the log posterior odds in favor of the DLA
model. If our method is performing correctly, true DLAs
should be at the top of this list, above the sightlines without
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Figure 6. The ROC plot for the ranking of the 101 167 QSO sight-
lines contained in the BOSS DR10 Lyman-˛ forest sample induced
by the log posterior odds of containing a DLA. The area under the
curve is 94.07%.

DLAs. To visualize the quality of our ranking, we seek to
create a receiver–operating characteristic (ROC) plot.

Creating an ROC plot requires knowledge of the ground-truth
labels for each of our objects, which of course we do not
have. For this reason, we used the DR10 DLA concordance
as a surrogate. The ROC plot for this surrogate is shown
in Figure 6. The area under the ROC curve (AUC) statistic
was 94.07%. The AUC is equivalent to the probability that
a positive example, chosen uniformly at random, will be
ranked higher than a negative example. Approximately 82%
of the DLAs flagged in the catalog appear in the top-10%
of the list. Clearly our approach is effective at identifying
DLAs. We also note that if we restrict to only objects not
appearing in the DR9 training sample, the AUC remains
nearly constant at 94.03%, so there does not seem to be
significant bias due to inclusion of some sightlines when
building our null model.

An important caveat to these results is that the DLA con-
cordance is unlikely to represent the absolute ground truth,
and many “false positive” sightlines could in fact contain
as-yet undiscovered DLAs. The conservative definition of
the concordance catalog also suggests many true DLAs are
not flagged. A visual scan of a sample of our “false posi-
tives” by domain experts suggested this is likely the case.
Many of these have low signal-to-noise ratio and are likely
to have been rejected by previous automated attempts. By
carefully modeling both flux correlations and heteroskedas-
tic measurement noise, our GP approach appears to be more
robust than previous methods.
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(c) DLA model: logp.y j �; �; ´QSO;MDLA/ D �2 453.

Figure 5. An illustration of the proposed DLA-finding procedure for the quasar sightline in Figure 2. (a) shows the normalized flux with the
prior GP mean for our learned null model M:DLA. (b) shows the log likelihoods for each of the parameter samples used to approximate
the marginal likelihood of our DLA model MDLA. (c) shows the normalized flux with the prior GP mean associated with the best DLA

sample, .´DLA; log10NHI/ D .3:286; 20:30/, corresponding to �obs D 1 099 Å.

7. Discussion
This work represents the first fully automated approach for
detecting DLAs in large-scale surveys of quasar spectra,
filling a critical need of the astronomical community. Our
method is highly efficient, and will scale easily to upcoming
massive surveys such as SDSS–IV.

We plan to compile a catalog of our results using the recently
released, final SDSS–III data release, DR12. We also plan
to make the parameters of our learned GP model, using the
full DR10 release, available for future research efforts.

We regard this collaboration as a successful application of
modern machine-learning methods to the myriad large-scale
data processing issues faced by modern astronomy, and hope
that techniques similar to those used here can be the basis
for future cooperation.
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