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Abstract

Topic models have become increasingly promi-
nent text-analytic machine learning tools for re-
search in the social sciences and the human-
ities. In particular, custom topic models can
be developed to answer specific research ques-
tions. The design of these models requires a non-
trivial amount of effort and expertise, motivat-
ing general-purpose topic modeling frameworks.
In this paper we introduce latent topic networks,
a flexible class of richly structured topic mod-
els designed to facilitate applied research. Cus-
tom models can straightforwardly be developed
in our framework with an intuitive first-order log-
ical probabilistic programming language. La-
tent topic networks admit scalable training via
a parallelizable EM algorithm which leverages
ADMM in the M-step. We demonstrate the broad
applicability of the models with case studies
on modeling influence in citation networks, and
U.S. Presidential State of the Union addresses.

1. Introduction

In the last decade topic models have become a core tool for
the analysis of text corpora. Their usage has spread beyond
machine learning to answer substantive questions in dis-
ciplines such as cognitive science (Griffiths et al., 2007),
political science (Grimmer & Stewart, 2013; Lucas et al.,
2015), and sociology (McFarland et al., 2013). The success
of these models is due in part to their extensibility. The la-
tent Dirichlet allocation (LDA) topic model of Blei et al.
(2003) is frequently used as a foundational building block
for constructing more sophisticated latent variable mod-
els (Grimmer, 2010; Gerrish & Blei, 2011; Nguyen et al.,
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2014). Topic models can also be extended to model addi-
tional structure such as correlations (Blei & Lafferty, 2007)
or covariates (Mimno & McCallum, 2008), which are key
for social science applications (Roberts et al., 2014).

However, the development of new topics models is a time-
consuming and challenging process. As well as designing
the model, a corresponding inference algorithm must be de-
rived and implemented in order to fit the model to data,
with the model/algorithm pair being carefully selected to
make inference tractable and efficient. The model and al-
gorithm then need to be evaluated, either relative to some
extrinsic task, or with respect to an intrinsic measure of
quality such as semantic coherence (Newman et al., 2010;
Mimno et al., 2011) or predictive performance (Wallach
et al., 2009; Foulds & Smyth, 2014), or by human judg-
ment (Chang et al., 2009). Depending on the outcome of
the evaluation, the entire process may need to be repeated
iteratively until the desired level of performance is reached.

The effort required for the development process motivates
general purpose modeling frameworks for building and in-
ferring custom topic models. From a practical perspec-
tive, the challenge is to design a topic modeling frame-
work which (7) is general enough to be widely applicable
to many latent variable modeling applications, while (2) re-
maining scalable. We would also like the framework to be
(3) easy to use by non-specialist domain scientists, which
suggests a probabilistic programming approach.

Regarding (/), Roberts et al. (2013; 2014) argue that a
general-purpose topic modeling framework for applied so-
cial science needs to model covariates as well as dependen-
cies/correlations between documents and topics, for which
they propose the structural topic model (STM). The STM
combines several previous models into a unified frame-
work, and its application-focused design represents a sub-
stantial and useful step towards a general social science
topic modeling toolkit. This model does not however pro-
vide the capability for including additional latent variables
to build more sophisticated latent variable models. Another
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Table 1. A comparison of general-purpose topic modeling frameworks.

Correlations / | Observed Additional Constraints | Probabilistic
Dependencies | Covariates | Latent Variables Programming
Systems for Encoding Domain Knowledge, Covariates and Correlations
CTM (Blei & Lafferty, 2007) v X X X X
DMR (Mimno & McCallum, 2008) X v X X X
Dir. Forests (Andrzejewski et al., 2009) X X X v X
xLDA (Wahabzada et al., 2010) v v v X X
SAGE (Eisenstein et al., 2011) X v X X X
STM (Roberts et al., 2013; 2014) v v X X X
Graphical Modeling and Probabilistic Programming Systems
CTRF (Zhu & Xing, 2010) Intractable v X X X
Fold.all (Andrzejewski et al., 2011) v v xb X v
Logic LDA (Mei et al., 2014) X v X v v
LTN (this paper) v v v v v

“Conditional topic random fields (CTRFs) are tractable when the graph structure is a chain, but are intractable for general graphs.
b Andrzejewski et al. (2011) mention the possibility of latent query variables as a possible future direction.

desirable property missing from the STM is the ability to
encode domain knowledge using constraints, as in Andrze-
jewski et al. (2009). Other general-purpose topic modeling
frameworks have been proposed, some of which use prob-
abilistic programming systems (Andrzejewski et al., 2011)
and/or represent problem-specific domain knowledge via
posterior constraints (Mei et al., 2014), but none of these
frameworks satisfy all of our desiderata (Table 1).

To address these limitations, this article introduces a flex-
ible probabilistic programming framework for designing
custom topic models. Using the framework, an analyst can
specify models using a declarative first-order logical prob-
abilistic programming language called probabilistic soft
logic (Bach et al., 2015). The resulting models, which we
refer to as latent topic networks, directly generalize LDA,
but add prior structure, dependency relationships, and ad-
ditional latent and observed variables, using a tractable
class of graphical models called hinge-loss Markov ran-
dom fields (HL-MRFs) (Bach et al., 2013). We show how
to fit latent topic networks using an EM algorithm which
is highly parallelizable without approximation, leveraging
an alternating direction method of multipliers (ADMM)
(Boyd et al., 2011) algorithm in the M-step. We demon-
strate the system with several case studies, including a
model for exploring influence between scientific articles,
and for modeling State of the Union addresses.

2. Latent Topic Networks

The proposed models extend latent Dirichlet allocation
(LDA) topic models (Blei et al., 2003). LDA encodes the
semantic themes of a text corpus with K “topics” ¢(*),
each of which is a discrete (categorical) distribution over
the M words in the dictionary. It associates each document
d with a discrete distribution (*) over the K topics. The
model then posits the following generative process:

e For each documentd, 1,...,D

e For each word token 4, 1,..., Ny
e Draw a latent topic assignment,
zi(d) ~ Discrete(6(4)
e Draw the word token,
() ; (2
w,; ~ Discrete(¢'% V) .
In LDA, the parameters ® and ® are given Dirichlet priors
02 ~ Dirichlet(cv) ) ~ Dirichlet(3) . (1)

The independence assumptions implicit in the Dirichlet pri-
ors are what prevents LDA from capturing complex de-
pendencies (Blei & Lafferty, 2007). The priors are there-
fore our point of attack in developing a rich, flexible class
of topic models. In our proposed models, we replace the
Dirichlet priors of Equation 1 with a tractable class of con-
ditional random field (CRF) models over continuous ran-
dom variables, known as hinge-loss Markov random fields
(HL-MRFs) (Bach et al., 2013). While we are not the first
to employ undirected graphical models to encode structure
in topic models, c¢f. Zhu & Xing (2010) and Andrzejew-
ski et al. (2011), HL-MRFs admit tractable MAP inference
regardless of the graph structure of the graphical model,
making it feasible to reason over complex user-specified
dependencies. This is possible because HL-MRFs operate
on continuous random variables and encode dependencies
using potential functions that are convex, so MAP inference
in these models is always a convex optimization problem.
Specifically, hinge-loss MRFs define probability densities

P(Y|X) x exp ( _ i A (X, Y))

¥;(X,Y) = [max{l;(X,Y),0}]", 2)
where the entries of Y and X are continuous random vari-
ables in the range [0, 1], and the 1); are hinge-loss poten-
tials, specified by a linear function lg-a) and an exponent
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9 ¢ {1, 2} which optionally squares the potential. HL-
MREFs can further optionally include linear equality and in-
equality constraints on the support of the distribution.

We obtain our customizable topic models, which we re-
fer to as latent topic networks (LTNs), by positing that the
topic model parameters, as well as optional sets of user-
specified observed “target” variables Y(*) and Y(?) and
hidden variables H) and H(®, are drawn via HL-MRFs,

P@Y® HOIXD) (3)
MM
o exp ( SRR S CRES H<1>))
j=1
P(©,Y? H?|X®) (4)
M®
o exp ( _ Z ,\§,2>¢.§2)(®, X® y@, H(2>)),
j=1

where 1/);“)
covariates that are conditioned on. Each topic ¢*) and
each distribution over topics #(?) is constrained to sum
to one, as in LDA. If there are any topics ¢*) or dis-
tributions over topics 6(9) for which we do not want to
specify prior structure, we give them Dirichlet priors as in
Equation 1. For consistency between structured and un-
structured variables, and for smoothing purposes, we also

-1
include “Dirichlet—like” unary potentials ], 9,(;1)@

IL, qb(k) for the variables covered by the HL-MRF pri-
ors. The log posterior of the variables of interest is then

are hinge-loss potentials and X (%) are observed

and

logPr(©,®, Y YO HO H®|w, 8,0, XD X® )

D Ng

—ZZlog(ZPr D20 = k), @)
d=11i=1
K W K
Za—l log(# (d) ZZ B —1)log( <I>(k))
d=1 k=1 =1 k=1
M
_ Z )\gl)w(l ( xX@ y(® H(l))
j=1
M@
-3 APpP e, X Y@ H®) + const.  (5)
j=1

3. Probabilistic Programming for Latent
Topic Networks

Another advantage of hinge-loss MRFs is that they can
be specified using a declarative probabilistic program-
ming language called probabilistic soft logic (PSL) (Bach
et al.,, 2015). A PSL program consists of a collection
of weighted first-order logical rules, analogous to Markov

logic (Richardson & Domingos, 2006) except that they op-
erate on real-valued predicates with values between zero
and one, such as the entries of ® and ®, and any other la-
tent and observed variables that are included in the model.
The rules consist of convex relaxations of Boolean logical
operators which are exact when applied to 0 and 1 values:

A& B =max(A+ B —1,0)
AV B =min(A + B,1)
—A=1-A.

Rules are created by applying these operators recursively.
Each grounding (instantiation) of a valid PSL rule corre-
sponds to a hinge-loss potential function in the resulting
conditional random field. Each hinge-loss potential reduces
the probability of states according to its rules’ distance
from satisfaction, defined to be the negation of the value
of the relaxed rule. For example, A = B = -AV B
has a distance to satisfaction which is a hinge function,
max(A — B,0). Thus, A = B penalizes the probabil-
ity of a state based on the extent to which A > B. This
class of feature functions can be derived from several mo-
tivating formulations, including linear programming relax-
ations of MAX SAT, local consistency relaxations for dis-
crete MRFs, and Lukasiewicz logic (Bach et al., 2015).
Following Beltagy et al. (2014), we extend PSL with the
averaging operator A, an alternative linear approximation
to logical conjunction which is useful when variables have
small values, such as the entries of ® and O:

Zz 1 A

N (6)
Both A & B and A A B treat A and B additively, but map
the result to [0, 1] differently, by translating by -1 or divid-
ing by 2, respectively. f A =1, A& B = B,andif A = 0,
A& B =0, so & is useful as a “selection” operator when
we want rules to only apply in certain cases, and when we
want to reduce the number of groundings to be considered.
On the other hand, A & B = 0if (A + B)/2 < 0.5, which
will be the case when A and B are entries of ® or ®, in
which case A conjunctions will be more useful. In the con-
text of topic modeling, some example rules include:

AT NASN...NAN =

e Correlated topics: (correlated(k, k') & 9,(;1)) = (9,(;,[)

e Influence: (influences(d,d’) & 0,(:0) = 9,(;1,)

Covariates: covariate(c, d) = Qlid)

e Time series modeling:
. e(d,t) :>9](€d,t+1)’ GI(Cd,H—l) :>91(€d,t)
. (b(kt ¢gc,t+1), ¢g€,t+1):>¢£j)c,t)

Must-link relationships:

o (must-link(w, w') & %)) = %)
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4. Training via EM

We train the model by maximum a posteriori (MAP) esti-
mation, optimizing Equation 5 with respect to ©, ®, H(!)
and H(® ! This equation cannot be optimized directly due
to the sum inside the logarithm, which ironically arises
from the LDA portion of the model. Instead, we use an EM
algorithm to optimize Equation 5 by iteratively optimizing
a lower bound arising from Jensen’s inequality,

RO, 8 HY H®;00) o0 HIH HED) <
log P(©, @,Y(1)7y(2)’ H(1>,H(2)|w, B, a,X(l),X(2)7 A)
where R(©,® H H®,; 00 o) HILH HEY) =

ML

C YA @, X0, YW HO)
j=1
M@

_ Z A§2)w§2)(@’X(2)7Y(2)7H(2))

Jj=1
+) 0 Y Yian+B—1)logoly)

wk (d)

id:w;" =w
+3 0O Yian +a = 1)log 0,
ki
— > Fiar 10g iax, + const (7
idk

is the expected complete data log-likelihood with respect
to the distribution Pr(Z|©®,&®)) over latent topic as-
signments given the parameters at the previous iteration,
plus terms arising from the prior and entropy terms, and
where viqr 2 Pr(zl? = k©®,&® ) are E-step
“responsibilities,” which encode the distribution over the
latent variables based on the previous parameter values.
The algorithm consists of an E-step and an M-step, which
are iterated until convergence. Both the E and M-steps can
be parallelized without approximation.

4.1. E-step

To perform the E-step of the EM algorithm at iteration ¢, we
find R(©,®, H; 0", ® H®) by computing the E-step
responsibilities ;4% in Equation 7,

Yiar < P(w!? 2D = k, @0 0Pz = k| &®)

= oo ()

'Hidden variables such as H") and H® are often treated as
“nuisance” variables and marginalized out when performing EM.
In this case, we interpret them as parameters to maximize over, in
part for computational reasons, as we can straightforwardly max-
imize over them but cannot easily marginalize over them. Fur-
thermore, in many social science applications we would like to
report the values of the latent variables, and these point estimates
are easier to interpret than variational distributions.

4.2. M-step

The M-step update optimizes R(®, ®, H; 0*), (1) H®))
with respect to ®, ®, and H. The negative of this func-
tion is convex in these variables so it is frequently feasi-
ble to solve this exactly, although a generalized EM algo-
rithm that simply improves this function is sufficient for
convergence. We first perform the M-step for any ® and ®
parameters not involved in the hinge-loss MRF, for which
the update is identical to the M-step of the EM algorithm
for LDA. For these parameters, by adding Lagrange terms
— (T, 00 1) and =5, 59(E, 007 1) 1o
constrain the parameter vectors to sum to one, taking
derivatives and setting to zero, we obtain the updates

> iar+B-1

(

i

0 o Y Fiax +a—1. 9)

O o

id:w P =w

Fixing these updated non-hinge-loss parameters, we op-
timize Equation 7 jointly over the remaining parameters.
The problem decomposes over ® and ®, which may
be optimized separately. We minimize the negative of
each of these two subproblems —R(®, H1); ®®)) and
—R(®,H®;0®®) using a consensus-optimization algo-
rithm based on the alternating direction method of multi-
pliers (ADMM) (Boyd et al., 2011), building upon Bach
etal. (2013)’s ADMM algorithm for MAP inference in HL-
MRFs. For each potential function and constraint, Bach
et al. (2013)’s algorithm creates a local copy of its vari-
ables. With the constraint that the local copies are equal
to the original variables, this problem is equivalent to the
original one. The equality constraints are then relaxed us-
ing the method of Lagrange multipliers, splitting the prob-
lem into independent subproblems that may be solved in
parallel. The algorithm proceeds by repeatedly solving the
independent subproblems and updating original variables,
known as consensus variables, to be the average of the lo-
cal copies. It is guaranteed to find the global optimal of the
objective function. For more information on the algorithm
including pseudocode see Bach et al. (2013), and see Boyd
et al. (2011) for more information on ADMM.

We follow the ADMM algorithm of Bach et al. (2013), but
extend it to include the objective function terms in Equa-
tion 7 of the form n; log ¥;, where n; is a sum of ~y vari-
ables and prior terms, and ¥, is an entry of either ® or ©.
Note that the entropy terms and normalization constant of
Equation 7 are not relevant to the M-step optimization over
©, ®, and H. Our consensus ADMM algorithm creates
local copies z; of each parameter W;, and adds Lagrange
terms 7); corresponding to the relaxed constraint that these
copies are equal to the consensus variables. In each itera-
tion of the resulting ADMM algorithm, in addition to the
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steps of Bach et al. the z; and 7; are updated. The con-
sensus ADMM update (Boyd et al., 2011) sets each z; to

arg min (fn,; 1ogx;+ni(x§fﬁli)+g(:ﬂ;7%)2) , (10)

i

where p is an ADMM step-size parameter. To minimize
Equation 10, we take the derivative and set it to zero,

0— dLocal Eqn
N dx!

3

= px? +xi(n; — p¥y) —mni . (11)
Equation 11 is a quadratic which can be solved in closed
form using the quadratic formula. It has two solutions,
however one of them will be negative and can be discarded.
We update z; to the positive solution. Finally, the Lagrange
parameters 7); are updated using the consensus ADMM up-
date for dual parameters (Boyd et al., 2011),
In our experiments, we found that it is highly beneficial to
warm-start the ADMM variables at their values from the
previous EM iteration, which results in decreasing time to
convergence per M-step as the EM algorithm proceeds.

4.3. Weight Learning

In some cases we may be able to select the first-order rule
weights A\ based on domain knowledge, as in Andrzejewski
etal. (2011). If this information is not available the weights
must be learned from data. Weight learning in Markov ran-
dom fields is in general a challenging problem, as even a
gradient ascent update for the log-likelihood requires the
computation of an intractable expectation, arising from the
normalization constant that was dropped in Equation 7. For
weight learning, we therefore extend the EM algorithm to
update A by optimizing a pseudo-likelihood approximation
to the posterior in the M-step. The relevant portion of
the posterior for © is P(@,Y? H®|X?) «), as given
in Equation 4 but with the “Dirichlet-like” potentials in-
cluded, which result in terms >, (o — 1) log(é’,(cd)) being
added inside the exp. We can define the pseudo-likelihood,

P*(©,YH H?IX? a)= II P(V|B(V))
Ve{®,Y® H®)}

where B(V) is the Markov blanket of V. We perform gra-

dient descent on the pseudo log-likelihood, via

d
——log P*(©,Y® H?|X®? q)
dA(2)

q

- ¥

Ve{®,Y® H®}

13)

(Braipay 2 ()] - () -

We group the variables in each 8(?) together as a single
variable V' in the pseudo-likelihood, due to the simplex
constraint. The expectations in Equation 13 are estimated
via importance sampling, with a uniform proposal for the
Y and H variables, and a Dirichlet proposal for the 8(®)’s,
using the Dirichlet with concentration parameter o implied
by the Dirichlet-like potentials. An analogous procedure is
applied to learn the weights A(") of the MRF for ®.

5. Experiments

We explore the generality and effectiveness of the latent
topic network framework by employing it for two applica-
tions: influence modeling in citation networks of scientific
articles, and time-series modeling of United States Pres-
idential State of the Union addresses.> These applications
were chosen to illustrate the potential benefits of the frame-
work for modeling in the social sciences.

5.1. Exploring Scientific Influence in Citation Networks

In our careers as scientists we often will be introduced to
fields of study that we are not yet familiar with, and it
would be beneficial to have automatic tools that can help
us to quickly orient ourselves in the literature. For exam-
ple, we may wish to find the articles that were influential
on the work that followed them. Inspired by the topical in-
fluence regression (TIR) model of Foulds & Smyth (2013),
we construct a latent topic network encoding the hypothesis
that influential articles “coerce” the articles that cite them
into having similar distributions over topics. This appli-
cation demonstrates the ability of latent topic networks to
encode networks of dependencies between documents, and
to reason over latent variables jointly with the topic model.

The PSL program in Table 2 defines an LTN that infers
latent real-valued node-wise and edge-wise citation influ-
ence variables influential(A) and influences(A, B) in ad-
dition to the topic model parameters ® and ®, given an
observed binary predicate cites(A, B) which encodes the
citation graph. The model posits that influential articles
are more likely to influence the articles that cite them, and
vice-versa. Articles are encouraged to have similar topics
to the articles that influence them, depending on the degree
of influence exerted. Finally, articles whose topics over-
lap heavily with the topics of the articles that cite them are
more likely to have influenced those articles to a greater de-
gree. In the PSL rules, conjunctions with the cites predicate
restrict all influence relationships to the citation graph. We
conditioned on the citation network (the cites predicate),
and performed inference jointly over ®, ®, and the influ-
ences and influential predicates.

2Our code will be available as part of the PSL software at
http://psl.cs.umd.edu/.
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Table 2. PSL rules for a latent topic network designed to model citation influence.

Document-level and edge-level influence
cites(A, B) & influential(B) = influences(B, A)
cites(A, B) & influences(B, A) = influential(B)
—influential (A)

Influence relationships on citation edges
cites(A, B) & (influences(B, A) A7) = oM
cites(A, B) & (OI(CA) A 9;3)) = influences(B, A)

0.045 —_ e R
|
|
|
0.041 !
0.035 1

1

0.025

Influence Scores per Citation Edge

0.05r %

0.045

0.04r

0.035 B

Influence Scores per Citation Edge

0.025r

Non-Self Citations Self Citations

Figure 1. Evaluating the citation influence LTN model on the
NIPS corpus. Top: Inferred influence scores per edge versus
number of times cited by the citing article. Bottom: Inferred
influence scores for self and non-self citation edges.

We trained a latent topic network with 50 topics on a corpus
of 1740 articles from the NIPS conference.> EM was run
for 250 iterations, with weight learning performed every 20
iterations starting from iteration 50. Training took roughly
five hours on a quad-core 2.4Ghz laptop, using 8 threads
via hyper-threading, with the majority of the time spent in
weight learning. Ground truth citation influence informa-
tion was not available, so we instead validated the model
using metadata as a proxy for ground truth, following the
experimental setup of Foulds & Smyth (2013). The meta-

3The corpus is due to Gregor Heinrich. It is available at
http://www.arbylon.net/resources.html.

data validation results are overall similar to those reported
by Foulds and Smyth for their purpose-built TIRE model,
which was designed specifically to model influence in cita-
tion graphs. However, our model was constructed with just
5 lines of PSL code in our general-purpose framework.

Figure 1 (top) shows boxplots of inferred citation influence
scores categorized by the number of times that the cited
article is mentioned in the text of the citing article, using
the pairs of in-text citation counts from 106 NIPS articles
that were extracted by Foulds and Smyth. Our results fol-
low the trend of the special-purpose TIRE model, with the
influence scores increasing on average with the number of
repeated in-text citations. For each pair of references per
document, the most influential references according to the
model were cited 168 times in the text overall, while the
least influential references were cited 131 times. This is
comparable to the purpose-built TIRE model, for which
the most influential references were cited 171 times overall,
and the least influential were cited 128 times. There were
45 articles for which the citation counts were not tied. Of
these articles, the most influential references had the higher
citation count 31 times, comparable to 33 times for TIRE.
A sign test with o = 0.05 rejects the null hypothesis that
the median difference in citation counts between the most
and least-influential is zero, with p-value = 0.016.

Self-citations are also likely to be informative for cita-
tion influence, as we would expect same-author citations
to have higher influence on the citing article on average.
Figure 1 (bottom) compares the inferred influence scores
of the LTN model for citations with an author in common
between the citing and cited articles, and those with no au-
thors in common. A two-sample t-test with o = 0.05 re-
jects the null hypothesis that the means of self-citation and
non-self citation edges’ influence scores are equal.

5.2. Modeling State of the Union Addresses

The Presidents of the United States of America have pre-
sented a State of the Union message to Congress annually,
with a few exceptions, since 1790. We constructed an LTN
to explore the extent to which these addresses depict the
true underlying state of the Union, or are biased by political
ideology. The model posits time-evolving latent variables
for the “state” of the Union and the bias of each political
party. This application explores the ability of our frame-
work to perform dynamic time-series modeling, and to rea-
son over distributional latent variables.


http://www.arbylon.net/resources.html

Latent Topic Networks

Table 3. PSL rules for the State of the Union time series model. The SOTU and party bias variables are constrained to sum to one.

The latent state of the Union (SOTU) distribution varies smoothly per year and influences ©.

SOTU(Y 1, k) & precedes(Y1,Y2) =  SOTU(Y2, k)
SOTU(Y 2, k) & precedes(Y'1,Y2) =  SOTU(Y1,k)
SOTU(Y, k) = 0

RepublicanTheta( D EC, k) & inDecade(Y, DEC') & RepublicanPresident(Y) =

The latent party bias distributions vary smoothly per decade and influence © when the party has a President.
RepublicanTheta(D EC'1, k) & precedesDecade(DEC1, DEC2) =  RepublicanTheta(DEC2, k)
RepublicanTheta(D EC2, k) & precedesDecade(DEC1, DEC2) = RepublicanTheta(DEC1, k)

0 (Y)

k

(Similar rules for the other parties. . .)

work jobs people make Americans American care
| | | | |

0.6+ Theta -
0 5| =Q=Democrats L
=¥ Republicans D
0.4 Democratic-Republicans |
0.3 | == whigs -
024 Federalists + WWashington L
— State of the Union
0.1 =
1800 1850 1900 1950 2000
Itonlght WorldI people natlop budget freeldom chlldrenI
0.5 -
Theta
0.4 -O-Demoorats -
== Republicans
034 Cemocratic-Republicans =
=="whigs
0.24 Federalists + WWashington B
— State of the Union
014 )

T
1900

1
1800

1850 1950 2000

Figure 2. Modeling the latent state of the Union from Presidential
State of the Union addresses. The plots show topic proportions
and latent variable proportions for topics that have become asso-
ciated with the two major U.S. political parties.

Our LTN model in Table 3 represents the state of the
Union at year Y by a latent distribution over the topics
SOTU(Y,:), where SOTU(Y, k) is the proportion that topic
k is relevant to Congress in year Y. Each SOTU distribu-
tion is encouraged to be similar to its adjacent distributions,
representing the assumption that the true state of the Union
changes slowly over time. The distribution over topics ¥
for the address at year Y is modeled as a noisy estimate of
the true underlying state of the Union, and so the PSL rules
encourage it to be similar to SOTU(Y]:). It is also encour-
aged to be similar to a latent bias vector for the party of the
President, representing the ideological bias of that party.
These bias vectors are given similar time-series dynamics
to SOTU, however they may only change once per decade.

We trained the model with 20 topics on the 225 addresses
from 1790 to 2015, performing 500 EM iterations with
weight learning every 20 iterations. Figure 2 shows a time-
series plot of the topic proportions and latent variable pro-
portions of two topics that have increasingly dominated re-

cent addresses. The model infers that since around 1960,
the two major United States political parties have become
more associated with a different one of these two topics.
According to the model, the Democrats are increasingly
associated with a “welfare-state” topic focused on words
such as “jobs” and “’[health] care,” while the Republicans
have become increasingly associated with a “conservative”
topic including words such as “budget” and “freedom.” An-
other two interesting topics are plotted Figure 3. A “war”
topic identifies the two World Wars and the Vietnam War,
finding that Democrats focused on this topic more than Re-
publicans before World War II. The reverse was true in the
period beginning roughly after the Vietnam War. In each
of these plots, the SOTU distribution varies more smoothly
over time than the document-topic distribution ©. Time-
series plots of all topics are in the supplementary material.

We also evaluated the model’s predictive performance at
document completion and fully held-out document predic-
tion tasks. Each document was shuffled and split into train-
ing and testing portions, with 50% of the words assigned to
each portion. For the document completion task, the topic
parameters ® and ® recovered on the training set were
used to predict the test portions of the documents. This
prediction task takes into account the time-series modeling
performed by the LTN model on ®. For the fully held-
out prediction task, we treated the test portions of the ad-
dresses as completely unseen documents, and estimated the
likelihood of each test document d marginalizing over 6(%)
using (Wallach et al., 2009)’s annealed importance sam-
pling method with 2000 temperatures. The LTN outper-
formed LDA, trained via collapsed Gibbs sampling with
similar settings, in terms of perplexity for both prediction
tasks (Table 4). We also compared to another time-series
model, the dynamic topic model (DTM) of Blei & Lafferty
(2006), trained via variational inference. This model allows
the topics to change over time, instead of the thetas. We al-
lowed the topics to vary once per decade. To make a fair
comparison, we interpret the variational posterior mean as
a point estimate and evaluate it using the same procedure
as for the LDA-based models. We found that the DTM ex-
hibits poor performance on this data set, with likelihoods
that were in one case worse than LDA. We hypothesize that
the DTM is over-parameterized for this setting, and would
perform better when given more documents.
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Figure 3. Topic proportions for the war and nationalism topics
versus time.

Table 4. Predictive performance on the State of the Union data.

Document Completion Perplexity | Fully Held-Out Perplexity
LTN 2.33 x 10° 2.43 x 10°
LDA 2.36 x 10° 2.59 x 10°
DTM 2.43 x 10® 2.55 x 10°
6. Related Work

A number of topic modeling frameworks have been devel-
oped which can encode domain knowledge. Topic models
have been developed to make use of observed covariates
(Mimno & McCallum, 2008) and relational information
(Wahabzada et al., 2010), or to otherwise incorporate back-
ground knowledge (Andrzejewski et al., 2009) or seeding
information (Jagarlamudi et al., 2012), though they do not
facilitate the development of more sophisticated latent vari-
able models (Table 1, top). Perhaps the most general of
this class of models is the structural topic model (STM)
of Roberts et al. (2013; 2014), which combines the ideas
of DMR (Mimno & McCallum, 2008), the correlated topic
model (Blei & Lafferty, 2007) and SAGE (Eisenstein et al.,
2011).

More general probabilistic programming and graphical
modeling systems for topic models have been proposed,
but these approaches are limited in scalability when used
in a general-purpose setting (Table 1, bottom). Conditional
topic random fields (Zhu & Xing, 2010) connect topic mod-
els with CRF models. These models are scalable when the
CREF is restricted to be a chain, but not in the general case.
Logic-LDA (Mei et al., 2014) allows a modeler to spec-
ify constraints on the posterior distribution using logical
rules, and does not facilitate the modeling of extra latent

variables. Fully general languages such as Infer.net (Minka
et al., 2014), Church (Goodman et al., 2008) and Stan (Stan
Development Team, 2014) can potentially be applied to
topic modeling, though methods that leverage the unique
structure of topic models are likely to be more efficient.

Fold.all (Andrzejewski et al., 2011) is an important pre-
cursor to this work which uses Markov logic networks
(Richardson & Domingos, 2006) to introduce domain
knowledge and dependencies between the topic assign-
ments 2 for each word. The size of these models is O(NY),
where N is the number of words in the corpus and U is
the largest number of universally quantified variables in a
rule. Instead of modeling structure in the z’s, LTNs shift
the dependencies up a level in the hierarchy, using PSL to
encode dependencies between document parameters 6, be-
tween topic parameters ¢, and other latent variables. This
results in many fewer groundings, which can be further re-
stricted to a network of interest such as a citation graph.
While MAP inference for an MLN is NP-hard, HL-MRF
inference for the inner loop of LTN training is a convex op-
timization problem which can be solved efficiently using
ADMM. The document-level modeling of LTNs may also
often be more applicable than the word-level modeling of
Fold.all, as we are more likely to have metadata for docu-
ments than for particular word indices in the corpus.

7. Conclusions

We have introduced latent topic networks (LTNs), a flexible
topic modeling framework designed specifically to enable
applied social science research. The framework allows the
development of custom latent variable topic models using a
probabilistic programming language with an intuitive log-
ical syntax. We demonstrated the usefulness of the frame-
work for several application domains. In our ongoing re-
search, we plan to use latent topic networks to answer sub-
stantive questions in social science, the humanities, and
cognitive science. One use-case of particular interest is
the incorporation of ontological information and semantic
graphs to improve the interpretability of the topics.

There are many possible extensions that we plan to explore.
To simultaneously model word, document, and topic de-
pendencies, it is likely possible to combine Fold.all and
LTNs. Topic models differ from typical PSL models in that
the key variables are constrained to the simplex, which mo-
tivates the development of new language primitives. Fol-
lowing Schiegg et al. (2012), another direction is to extend
LTNs to specify domain knowledge and structure for non-
parametric Bayesian models. We also anticipate that many
algorithmic developments for LDA can be adapted to la-
tent topic networks, including variational Bayesian meth-
ods, stochastic algorithms, and sampling techniques.
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