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1 Proof of Theorem 1

Theorem 1. The expected number of data subsets matched by k-contexts of length £ is at most
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where 1y, = {ln (Z)/ln %] < [k(l + ml% )—‘ .

Proof. For each nonempty data subset S, let Xg be 1 if S is matched by at least one k-context of length
¢, and 0 otherwise. We show that the expectation E[}" ¢ Xs] has the claimed upper bound.

Using linearity of expectation and the assumption that the data are uniformly distributed, we write
E[} ¢ Xs] as i (7)pie, where p; ¢ is the probability that Xg = 1 given that |S| = .

We next give an upper bound for each p; . To this end, let x1,...,2; € ¥ be the (random) content
of a data subset S of size ¢ in a fixed position j. We say that (z1,...,2;) is covered by a node C; C X
if {z1,...,2;} C C; and |C}| < k. Let p; be the probability that (z1,...,x;) is covered by at least one
node C;. Note that the probability is clearly the same for all positions j, and that p;, = pt. By the
union bound we have that p; < (7)(k/o)". This bound is at most 1 for i > ri. For i < r;, we may use
the trivial bound p; < 1.
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The claimed bound now follows because n — r, < n.
Finally, the upper bound on r; follows from the well known bound (Z) < (%)k O

It remains to bound the latter term as follows:
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2 Complete running time results

Here, we display all running time results on random data, which are the basis for Section 4.1 of the
main manuscript. We study three different tree structures (original PCTs, and 2-GCTs, 27-GCTs),
and investigate for each of them four different algorithms (basic DP algorithm, enabled fast alphabet
partitioning, enabled memoization, and complete enhanced DP algorithm).

For given alphabet size o0 and depth d, we sample a sequence of N + d symbols from a uniform
distribution, use the N = 100 subsequences of length d + 1 as context sequences for learning the PCT
(or GCT), and measure the running time. We repeat this procedure 10? times and take the median of
the obtained running times, setting a total time limit of 24 hours. Exceeding it causes the procedure to
terminate, resulting in a median of all running times obtained so far.

We visualize the running times of a method using a combination of table and heat map, where the
rows of the table correspond to the alphabet size o, and the columns correspond to the depth d of the
PCT. We display the precise median running times in the corresponding cells in seconds, and color cells
with a running time of less than a second in yellow. For larger running times the cell color has an
increasing content of red according to equivalence classes of problems than run below 1 minute, 1 hour,
and 1 day, respectively.

The supplementary figures are related to the main manuscript as follows. Figure 1(a) and Figure 1(d)
in this supplement together convey exactly the same results as Figure 4 in the main manuscript. Fig-
ure 5(a) and Figure 5(b) in the manuscript display a subset of the results from Figure 2(d) and Figure 3(d)
in this supplement.



(a) Basic DP algorithm

(b) Fast alphabet partitioning

2 3 4

5 6

0.025 0.134 0.47
0.49

(¢) Memoization

(d) Enhanced DP algorithm

Figure 1: Running time tables for PCTs on random data.



(a) Basic DP algorithm

(b) Fast alphabet partitioning

4 5 6 7
0.026 0.077 0.212 0.534
0.17 0.84

(¢) Memoization

4 5 6 7
0.029 0.088 0.316 0.71
0.21 0.96

(d) Enhanced DP algorithm

Figure 2: Running time tables for 2-GCTs on random data.



2.3 2"-GCT

(a) Basic DP algorithm

(b) Fast alphabet partitioning

(¢) Memoization

(d) Enhanced DP algorithm

Figure 3: Running time tables for 27-GCTs on random data.



3 Complete memoization results on protein data

We study several well-known proteins of different size and functionality, and extract their sequence from
the protein sequence database UniProt [1]: human hormone insulin (Uniprot ID P01308, 110 amino acid
residues), plant photosynthesis key enzyme RuBisCO (003042, 479 residues), human oxygen-binding
proteins myoglobin (P02144, 154 residues) and hemoglobin subunit « (abbreviated HG «, P69905, 142
residues), human cytoskeleton protein actin (P68133, 377 residues), and the green fluorescent protein
(abbreviated GFP, P42212, 238 residues) from jellyfish. For the representation of these data sets, we
use a reduced amino acid alphabet according to the reduction method of Li et al. [2], which offers each
desired reduced alphabet size an optimal clustering of amino acids into groups.

We show the effect of memoization w.r.t. the number of visited nodes in the extended tree for
computing 2-GCTs, 27-GCTs, and original PCTs. In the following (Table 3, Table 5, and Table 1), we
show for each of the three structures the results for several non-trivial combinations of alphabet size o
and depth d. For each pair (o, d), we show the maximal number of nodes in the extended PCT/GCT that
have to be visited when memoization is disabled. We then display the fraction of that maximal number
that has to be visited when memoization is enabled for the six real world data sets under consideration
and random data.

In addition, we also show the raw running times of all combinations of model and data set (Table 4,
Table 6, and Table 2) However, since it is here often impossible to solve the problem without memoization
at all, the comparison is limited to the running time result on random data from Section 2.

3.1 PCT

Table 1: Number of visited nodes with memoization on original PCTs on protein data.

o d | Memoization disabled Random RuBisCO Insulin  Myoglobin GFP Actin HG «
7 | 3| 2.06 x 10° 93.25% 100.00%  92.97% 87.06%  94.70%  100.00%  89.14%
8 | 3| 1.66 x 107 90.74% 100.00%  93.75% 84.09%  93.39% 99.22%  89.54%
9 | 3| 1.34x 108 82.82% 100.00%  92.60% 87.90%  94.71% 99.61%  88.87%
5 | 4 | 9.54 x 10° 74.42% 96.67%  65.78% 77.95%  81.57% 89.55%  65.15%
6 | 4 | 1.60 x 107 62.70% 92.73%  50.41% 49.68%  65.62% 82.18%  55.49%
7| 4] 2.62x108 52.36% 92.15%  43.86% 51.80%  68.02% 85.15%  48.28%
5 | 5 | 2.96 x 107 34.45% 80.17%  28.41% 40.69%  53.46% 64.36%  29.90%

Table 2: Running times with memoization on original PCTs on protein data.

o d Random RuBisCO Insulin Myoglobin GFP Actin HG «
7 3 70 75 48 47 56 67 47
8 3 718 1086 794 764 927 1021 822
9 3 12055 9398 7504 7445 8260 9518 7935
5 4 14 26 12 14 18 22 13
6 4 279 492 206 218 317 424 242
7] 4 5183 7902 3265 3943 5335 7051 3641
5 5 199 541 157 220 332 420 172




3.2 2-GCT

Table 3: Number of visited nodes with memoization on 2-GCT's on protein data.

o d | Memoization disabled Random RuBisCO Insulin  Myoglobin GFP Actin HG «
11 | 5 [ 1.27 x 10° 0.567% 35.020%  2.053% 4.247%  9.520%  22.125%  3.539%
10 | 6 | 2.82x 10%° 0.056% 1.226%  0.067% 0.131%  0.301% 0.765%  0.111%
7 | 7| 1.40 x 10*° 0.018% 0.432%  0.022% 0.044%  0.105% 0.273%  0.036%
5 | 8 | 2.75 x 10° 0.028% 0.816%  0.035% 0.078%  0.181% 0.487%  0.062%
6 | 8 | 3.97x 10 0.004% 0.109%  0.005% 0.010%  0.025% 0.067%  0.009%
5 | 9 | 412x10'° 0.002% 0.076%  0.003% 0.006%  0.016% 0.046%  0.005%
Table 4: Running times in seconds with memoization on 2-GCTs on protein data.

o d Random RuBisCO Insulin Myoglobin GFP Actin  HG «

1 [ 5 5425 56057 3578 7425 15767 35823 6208

10 | 6 2351 32800 1865 3609 8500 20503 2975

7|7 112 2456 85 190 464 1495 159

5 | 8 14 594 21 55 120 325 38

6 | 8 43 1484 56 117 286 858 102

5 |9 16 957 31 66 148 485 55

3.3 27-GCT
Table 5: Number of visited nodes with memoization on 2*-GCTs on protein data.

o d Memoization disabled Random RuBisCO Insulin Myoglobin GFP Actin HG «
12 | 3 | 4.26 x 107 63.10% 93.48%  59.76% 66.94% 77.73% 86.59%  63.41%
7 | 4 | 4.04 x10° 33.55% 76.60%  31.04% 38.10% 51.59%  66.08%  34.43%
8 4 | 1.78 x 107 26.12% 70.85%  26.48% 31.43% 41.51%  60.45%  31.49%
10 | 4 | 2.99 x 10° 18.94% 62.86%  18.29% 28.91%  37.74%  53.58%  27.74%
6 | 5 | 2.00x 108 12.79% 43.25%  10.91% 13.11%  22.00%  31.91%  14.00%
8 5 | 7.51 x 10° 4.21% 27.87% 4.88% 7.21% 11.66%  21.61% 6.83%
6 | 6 | 4.74 x 10° 2.68% 15.53% 2.35% 3.18% 6.39%  10.83% 3.18%
5 | 7| 7.57 x 10° 1.40% 12.74% 1.39% 2.56% 4.89% 8.25% 1.82%
4 | 8 | 3.97 x 10° 1.54% 13.80% 1.73% 2.59% 5.77%  10.38% 2.29%

Table 6: Running times with memoization on 2*-GCTs on protein data.

o d | Random | RuBisCO Insulin = Mpyoglobin GFP Actin  HG «
12 | 3 10537 10523 6920 7475 8902 9771 7292
7 4 63 114 41 50 74 102 46
8 4 325 652 227 270 359 577 259
10 | 4 9396 17481 5711 8755 11081 15017 8418
6 5 67 231 58 68 116 173 70
8 5 25145 9635 1702 2556 4054 7747 2465
6 6 454 1771 244 327 681 1235 322
5 7 209 1744 164 298 616 1164 227
4 8 113 934 85 138 310 669 114




4 Complete prediction results

For the comparison of different types of context trees w.r.t. their predictive performance, we use inhomo-
geneous PMMs and adopt a hyperparameter-free learning scheme [3], that is, BIC [4] as structure score
and fsSNML [5] as parameter estimation method. As data sets, we use the CEBP data set of a previously
publication [6], for which PCTs have been demonstrated to predict better than CTs, and four additional
data sets from the JASPAR database [7], namely DAF-12 from C. elegans, BZR1 and PIL5 from A.
thaliana, and human NR2C2. For all data sets, all structural variants, and different maximal depths
d=1,...,7 we compare the prediction performance using leave-one-out cross validation, and we also
include the simple independence model in the comparison. We plot the mean log predictive probability
in Figure 4. Error bars indicate double standard error.
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Figure 4: Complete prediction results for five data sets, five different types of context trees (with 2-G,
3-G, and 2+G being abbreviations for 2-GCTs, 3-GCTs, and 27-GCTs), and seven different maximal
tree depths, supplemented by the result of the plain independence model (IM).
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