
Strongly Adaptive Online Learning

Amit Daniely AMIT.DANIELY@MAIL.HUJI.AC.IL
Alon Gonen ALONGNN@CS.HUJI.AC.IL
Shai Shalev-Shwartz SHAIS@CS.HUJI.AC.IL

The Hebrew University

Abstract
Strongly adaptive algorithms are algorithms
whose performance on every time interval is
close to optimal. We present a reduction that
can transform standard low-regret algorithms to
strongly adaptive. As a consequence, we de-
rive simple, yet efficient, strongly adaptive algo-
rithms for a handful of problems.

1. Introduction
Coping with changing environments and rapidly adapting
to changes is a key component in many tasks. A broker is
highly rewarded from rapidly adjusting to new trends. A
reliable routing algorithm must respond quickly to conges-
tion. A web advertiser should adjust himself to new ads
and to changes in the taste of its users. A politician can
also benefit from quickly adjusting to changes in the public
opinion. And the list goes on.

Most current algorithms and theoretical analysis focus on
relatively stationary environments. In statistical learning,
an algorithm should perform well on the training distribu-
tion. Even in online learning, an algorithm should usually
compete with the best strategy (from a pool), that is fixed
and does not change over time.

Our main focus is to investigate to which extent such al-
gorithms can be modified to cope with changing environ-
ments.

We consider a general online learning framework that en-
compasses various online learning problems including pre-
diction with expert advice, online classification, online
convex optimization and more. In this framework, a learn-
ing scenario is defined by a decision set D, a context space
C and a set L of real-valued loss functions defined over D.
The learner sequentially observes a context ct ∈ C and

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

then picks a decision xt ∈ D. Next, a loss function `t ∈ L
is revealed and the learner suffers a loss `t(xt).

Often, algorithms in such scenarios are evaluated by com-
paring their performance to the performance of the best
strategy from a pool of strategies (usually, this pool is sim-
ply all strategies that play the same action all the time).
Concretely, the regret,RA(T), of an algorithmA is defined
as its cumulative loss minus the cumulative loss of the best
strategy in the pool. The rationale behind this evaluation
metric is that one of the strategies in the pool is reason-
ably good during the entire course of the game. However,
when the environment is changing, different strategies will
be good in different periods. As we do not want to make
any assumption on the duration of each of these periods, we
would like to guarantee that our algorithm performs well on
every interval I = [q, s] ⊂ [T]. Clearly, we cannot hope to
have a regret bound which is better than what we have for
algorithms that are tested only on I . If this barrier is met,
we say that the corresponding algorithm is strongly adap-
tive1.

Surprisingly maybe, our main result shows that for many
learning problems strongly adaptive algorithms exist. Con-
cretely, we show a simple “meta-algorithm” that can use
any online algorithm (that was possibly designed to have
just small standard regret) as a black box, and produces a
new algorithm that is designed to have a small regret on ev-
ery interval. We show that if the original algorithm have a
regret bound of R(T), then the produced algorithm has, on
every interval [q, s] of size τ := |I|, regret that is very close
to R(τ) (see a precise statement in Section 1.2). Moreover,
the running time of the new algorithm at round t is just
O (log(t)) times larger than that of the original algorithm.
As an immediate corollary we obtain strongly adaptive al-
gorithms for a handful of online problems including pre-
diction with expert advice, online convex optimization, and
more.

1See a precise definition in Section 1.1. Also, see Section 1.3
for a weaker notion of adaptive algorithms that was studied in
(Hazan & Seshadhri, 2007).

Strongly Adaptive Online Learning

Furthermore, we show that strong adaptivity is stronger
than previously suggested adaptivity properties including
the adaptivity notion of (Hazan & Seshadhri, 2007) and the
tracking notion of (Herbster & Warmuth, 1998). Namely,
strongly adaptive algorithms are also adaptive (in the sense
of (Hazan & Seshadhri, 2007)), and have a near opti-
mal tracking regret (in the sense of (Herbster & Warmuth,
1998)). We conclude our discussion by showing that strong
adaptivity can not be achieved with bandit feedback.

1.1. Problem setting

A FRAMEWORK FOR ONLINE LEARNING

Many learning problems can be described as a repeated
game between the learner and the environment, which we
describe below.

A learning scenario is determined by a triplet (D,C,L),
where D is a decision space, C is a set of contexts, and L
is a set of loss functions from D to [0, 1]. Extending the
results to general bounded losses is straightforward. The
number of rounds, denoted T , is unknown to the learner.
At each time t ∈ [T], the learner sees a context ct ∈ C, and
then chooses an action xt ∈ D. Simultaneously, the envi-
ronment chooses a loss function `t ∈ L. Then, the action
xt is revealed to the environment, and the loss function `t
is revealed to the learner which suffers the loss `t(xt). We
list below some examples of families of learning scenarios.

• Learning with expert advice (Cesa-Bianchi et al.,
1997). Here, there is no context (formally, C consists
of a single element), D is a finite set of size N (each
element in this set corresponds to an expert), and L
consists of all functions from D to [0, 1].

• Online convex optimization (Zinkevich, 2003).
Here, there is no context as well, D is a convex set,
and L is a collection of convex functions from D to
[0, 1].

• Classification. Here, C is some set, D is a finite set,
and L consists of all functions from D to {0, 1} that
are indicators of a single element.

• Regression. Here, C is a subset of a Euclidean space,
D = [0, 1], and L consists of all functions of the form
`(ŷ) = (y − ŷ)2 for y ∈ [0, 1].

A learning problem is a quadruple P = (D,C,L,W),
whereW is a benchmark of strategies that is used to eval-
uate the performance of algorithms. Here, each strategy
w ∈ W makes a prediction xt(w) ∈ D based on some
rule. We assume that the prediction xt(w) of each strat-
egy is fully determined by the game’s history at the time of
the prediction. I.e., by (c1, `1), . . . , (ct−1, `t−1), ct. Usu-
ally,W consists of very simple strategies. For example, in

context-less scenarios (like learning with expert advice and
online convex optimization),W is often identified with D,
and the strategy corresponding to x ∈ D simply predicts
x at each step. In contextual problems (such as classifica-
tion and regression), W is often a collection of functions
from C to D (a hypothesis class), and the prediction of the
strategy corresponding to h : C → D at time t is simply
h(ct).

The cumulative loss of w ∈ W at time T is Lw(T) =∑T
t=1 `t(xt(w)) and the cumulative loss of an algorithmA

is LA(T) =
∑T
t=1 `t(xt). The cumulative regret of A is

RA(T) = LA(T)− infw∈W Lw(T). We define the regret,
RP(T), of the learning problem P as the minimax regret
bound. Namely, RP(T) is the minimal number for which
there exists an algorithm A such that for every environ-
ment RA(T) ≤ RP(T). We say that an algorithm A has
low regret if RA(T) = O (poly (log T)RP(T)) for every
environment.

We note that both the learner and the environment can make
random decisions. In that case, the quantities defined above
refer to the expected value of the corresponding terms.

STRONGLY ADAPTIVE REGRET

Let I = [q, s] := {q, q + 1, . . . , s} ⊆ [T]. The loss of
w ∈ W during the interval I is Lw(I) =

∑s
t=q `t(xt(w))

and the loss of an algorithm A during the interval I is
LA(I) =

∑s
t=q `t(xt). The regret of A during the inter-

val I is RA(I) = LA(I) − infw∈W Lw(I). The strongly
adaptive regret of A at time T is the function

SA-RegretTA(τ) = max
I=[q,q+τ−1]⊂[T]

RA(I)

We say thatA is strongly adaptive if for every environment,
SA-RegretTA(τ) = O (poly (log T) ·RP(τ)).

1.2. Our Results

A STRONGLY ADAPTIVE META-ALGORITHM

Achieving strongly adaptive regret seems more challenging
than ensuring low regret. Nevertheless, we show that often,
low-regret algorithms can be transformed into a strongly
adaptive algorithms with a little extra computational cost.

Concretely, fix a learning scenario (D,C,L). We derive
a strongly adaptive meta-algorithm, that can use any algo-
rithm B (that presumably have low regret w.r.t. some learn-
ing problem) as a black-box. We call our meta-algorithm
Strongly Adaptive Online Learner (SAOL). The specific in-
stantiation of SAOL that uses B as the black box is denoted
SAOLB.

Fix a setW of strategies and an algorithm B whose regret

Strongly Adaptive Online Learning

w.r.t. W satisfies

RB(T) ≤ C · Tα, (1)

where α ∈ (0, 1), andC > 0 is some scalar. The properties
of SAOLB are summarized in the theorem below. The de-
scription of the algorithm and the proof of Theorem 1 are
given in Section 2.

Theorem 1

1. For every interval I = [q, s] ⊆ N,

RSAOLB(I) ≤ 4

2α − 1
C|I|α + 40 log(s+ 1)|I| 12 .

2. In particular, if α ≥ 1
2 and B has low regret, then

SAOLB is strongly adaptive.

3. The runtime of SAOL at time t is at most log(t + 1)
times the runtime per-iteration of B.

From part 2, we can derive strongly adaptive algorithms for
many online problems. Two examples are outlined below.

• Prediction with N experts advice. The Mul-
tiplicative Weights (MW) algorithm has regret ≤
2
√

ln(N)T . Hence, for every I = [q, s] ⊆ [T],

RSAOLMW(I) = O
((√

log(N) + log(s+ 1)
)√
|I|
)
.

• Online convex optimization with G-Lipschitz loss
functions over a convex set D ⊆ Rd of diame-
ter B. Online Gradient Descent (OGD) has regret
≤ 3BG

√
T . Hence, for every I = [q, s] ⊆ [T],

RSAOLOGD(I) = O
(

(BG+ log(s+ 1))
√
|I|
)
.

COMPARISON TO (WEAK) ADAPTIVITY AND TRACKING

Several alternative measures for coping with changing en-
vironment were proposed in the literature. The two that are
most related to our work are tracking regret (Herbster &
Warmuth, 1998) and adaptive regret (Hazan & Seshadhri,
2007) (other notions are briefly discussed in Section 1.3).

Adaptivity, as defined in (Hazan & Seshadhri, 2007), is
a weaker requirement than strong adaptivity. The adap-
tive regret of a learner A at time T is maxI⊆[T]RA(I).
An algorithm is called adaptive if its adaptive regret is
O (poly (log T)RP(T)). For online convex optimiza-
tion problems for which there exists an algorithm with
regret bound R(T), (Hazan & Seshadhri, 2007) derived
an efficient algorithm whose adaptive regret is at most

R(T) log(T) +O

(√
T log3(T)

)
, thus establishing adap-

tive algorithms for many online convex optimization prob-
lems. For the case where the loss functions are α-exp
concave, they showed an algorithm with adaptive regret
O(1

α log2(T)) (we note that according to our definition
this algorithm is in fact strongly adaptive). A main dif-
ference between adaptivity and strong adaptivity, is that in
many problems, adaptive algorithms are not guaranteed to
perform well on small intervals. For example, for many
problems including online convex optimization and learn-
ing with expert advice, the best possible adaptive regret is
Ω(
√
T). Such a bound is meaningless for intervals of size

O(
√
T). We note that in many scenarios (e.g. routing, pag-

ing, news headlines promotion) it is highly desired to per-
form well even on very small intervals.

The problem of “tracking the best expert” was studied in
(Herbster & Warmuth, 1998) (see also, (Bousquet & War-
muth, 2003)). In that problem, originally formulated for the
learning with expert advice problem, learning algorithms
are compared to all strategies that shift from one expert to
another a bounded number of times. They derived an ef-
ficient algorithm, named Fixed-Share, which attains near-
optimal regret bound of

√
Tm(log(T) + log(N)) versus

the best strategy that shifts between≤ m experts. (Interest-
ingly, a recent work (Cesa-Bianchi et al., 2012) showed that
the Fixed-Share algorithm is in fact (weakly) adaptive). As
we show in Section 3, strongly adaptive algorithms enjoy
near-optimal tracking regret in the experts problem, and in
fact, in many other problems (e.g., online convex optimiza-
tion). We note that as with (weakly) adaptive algorithms,
algorithms with optimal tracking regret are not guaranteed
to perform well on small intervals.

STRONG ADAPTIVITY WITH BANDIT FEEDBACK

In the so-called bandit setting, the loss functions `t is not
exposed to the learner. Rather, the learner just gets to see
the loss, `t(xt), that he has suffered. In Section 4 we prove
that there are no strongly adaptive algorithms that can cope
with bandit feedback. Even in the simple experts problem
we show that for every ε > 0, there is no algorithm whose
strongly adaptive regret isO

(
|I|1−ε · poly (log T)

)
. Inves-

tigating possible alternative notions and/or weaker guaran-
tees in the bandit setting is mostly left for future work.

1.3. Related Work

Maybe the most relevant previous work, from which we
borrow many of our techniques is (Blum & Mansour,
2007). They focused on the expert setting and proposed
a strengthened notion of regret using time selection
functions, which are functions from the time interval
[T] to [0, 1]. The regret of a learner A with respect

Strongly Adaptive Online Learning

to a time selection function I is defined by RIA(T) =

maxi∈[N]

(∑T
t=1 I(t)`t(xt)−

∑T
t=1 I(t)`t(i)

)
, where

`t(i) is the loss of expert i at time t. This setting can be
viewed as a generalization of the sleeping expert setting
(Freund et al., 1997). For a fixed set I consisting of M
time selection functions, they proved a regret bound of
O(
√
Lmin,I log(NM)) + log(NM)) with2 respect to

each time selection function I ∈ I. We observe that if we
let I be the set of all indicator functions of intervals (note
that |I| =

(
T
2

)
= Θ(T 2)), we obtain a strongly adaptive

algorithm for learning with expert advice. However, the
(multiplicative) computational overhead of our algorithm
(w.r.t. the standard MW algorithm) at time t is Θ(log(t)),
whereas the computational overhead of their algorithm is
Θ(T 2). Furthermore, our setting is much more general
than the expert setting.

Another related, but somewhat orthogonal line of work
(Zinkevich, 2003; Hall & Willett, 2013; Rakhlin & Srid-
haran, 2013; Jadbabaie et al., 2015) studies drifting envi-
ronments. The focus of those papers is on scenarios where
the environment is changing slowly over time.

2. Reducing Adaptive Regret to Standard
Regret

In this section we present our strongly adaptive meta-
algorithm, named Strongly Adaptive Online Learner
(SAOL). For the rest of this section we fix a learning sce-
nario (D,C,L) and an algorithm B that operates in this
scenario (think of B as a low regret algorithm).

We first give a high level description of SAOL. The basic
idea is to run an instance ofB on each interval I from an ap-
propriately chosen set of intervals, denoted I. The instance
corresponding to I is denoted BI , and can be thought as an
expert that gives his advice for the best action at each time
slot in I . The algorithm weights the various BI ’s according
to their performance in the past, in a way that instances with
better performance get more weight. The exact weighting
is a variant of the multiplicative weights rule. At each step,
SAOL picks at random one of the BI ’s and follows his ad-
vice. The probability of choosing each BI is proportional
to its weight. Next, we give more details.

The choice of I. As in the MW algorithm, the weighting
procedure is used to ensure that SAOL performs optimally
for every I ∈ I. Therefore, the choice of I exhibits the fol-
lowing tradeoff. On one hand, I should be large, since we
want that optimal performance on intervals in I will result
in an optimal performance on every interval. On the other
hand, we would like to keep I small, since running many
instances of B in parallel will result with a large computa-

2where Lmin,I = mini

∑T
t=1 I(t)`t(i)

tional cost. To balance these desires, we let

I =
⋃

k∈N∪{0}

Ik ,

where for all k ∈ N ∪ {0},

Ik = {[i · 2k, (i+ 1) · 2k − 1] : i ∈ N}.

That is, each Ik is a partition of N \ {1, . . . , 2k} to consec-
utive intervals of length 2k. We denote by

ACTIVE(t) := {I ∈ I : t ∈ I} ,

the set of active intervals at time t. By the definition of Ik,
for every t ≤ 2k we have that no interval in Ik contains t,
while for every t > 2k we have that a single interval in Ik
contains t. Therefore,

|ACTIVE(t)| = blog(t)c+ 1 .

It follows that the running time of SAOL at time t is at most
(log(t)+1) times larger than the running time of B. On the
other hand, as we show in the proof, we can cover every
interval by intervals from I, in a way that will guarantee
small regret on the covered interval, provided that we have
small regret on the covering intervals.

The weighting method. Let xt = xt(I) be the action
taken by BI at time t. The instantaneous regret of SAOL
w.r.t. BI at time t is rt(I) = `t(xt) − `t(xt(I)). As ex-
plained above, SAOL maintains weights over the BI ’s. For
I = [q, s], the weight of BI at time t is denoted wt(I). For
t < q, BI is not active yet, so we let wt(I) = 0. At the
“entry” time, t = q, we set wt(I) = ηI where

ηI := min
{

1/2, 1/
√
|I|
}
.

The weight at time t ∈ (q, s] is the previous weight times
(1 + ηI · rt−1(I)). Overall, we have

wt(I) =


0 t /∈ I
ηI t = q

wt−1(I)(1 + ηI · rt−1(I)) t ∈ (q, s]

(2)

Note that the regret is always between [−1, 1], and ηI ∈
(0, 1), therefore weights are always positive during the life-
time of the corresponding expert. Also, the weight of BI
decreases (increases) if its loss is higher (lower) than the
predicted loss.

The overall weight at time t is defined by

Wt :=
∑
I∈I

wt(I) =
∑

I∈ACTIVE(t)

wt(I).

Finally, a probability distribution over the experts at time t
is defined by

pt(I) =
wt(I)

Wt
.

Strongly Adaptive Online Learning

Note that the probability mass assigned to any inactive in-
stance is zero. The probability distribution pt determines
the action of SAOL at time t. Namely, we have xt = xt(I)
with probability pt(I). A pseudo-code of SAOL is detailed
in Algorithm 1.

Algorithm 1 Strongly Adaptive Online Learner (with
blackbox algorithm B)

Initialize: w1(I) =

{
1/2 I = [1, 1]

0 o.w.
for t = 1 to T do

Let Wt =
∑
I∈ACTIVE(t) wt(I)

Choose I ∈ ACTIVE(t) w.p. pt(I) = wt(I)
Wt

Predict xt(I)
Update weights according to Equation (2)

end for

2.1. Proof Sketch of Theorem 1

In this section we sketch the proof of Theorem 1. A full
proof is detailed in Appendix 1. The analysis of SAOL
is divided into two parts. The first challenge is to prove
the theorem for the intervals in I (see Lemma 2). Then,
the theorem should be extended to any interval (end of Ap-
pendix 1).

Let us start with the first task. Our first observation is that
for every interval I , the regret of SAOL during the interval
I is equal to

(SAOL’s regret relatively to BI + the regret of BI) (3)

(during the interval I). Since the regret of BI during the
interval I is already guaranteed to be small (Equation (1)),
the problem of ensuring low regret during each of the inter-
vals in I is reduced to the problem of ensuring low regret
with respect to each of the BI ’s.

We next prove that the regret of SAOL with respect to the
BI ’s is small. Our analysis is similar to the proof of (Blum
& Mansour, 2007)[Theorem 16]. Both of these proofs are
similar to the analysis of the Multiplicative Weights Update
(MW) method. The main idea is to define a potential func-
tion and relate it both to the loss of the learner and the loss
of the best expert.

To this end, we start by defining pseudo-weights over the
experts (the BI ’s). With a slight abuse of notation, we de-
fine I(t) = 1[t∈I]. For any I = [q, s] ∈ I, the pseudo-
weight of BI is defined by:

w̃t(I) =


0 t < q

1 t = q

w̃t−1(I) · (1 + ηI · rt−1(I)) q < t ≤ s+ 1

w̃s(I) t > s+ 1

Note that
wt(I) = ηI · I(t) · w̃t(I) .

The potential function we consider is the overall pseudo-
weight at time t, W̃t =

∑
I∈I w̃t(I). The following

lemma, whose proof is given in the appendix, is a useful
consequence of our definitions.

Lemma 1 For every t ≥ 1,

W̃t ≤ t(log(t) + 1) .

Through straightforward calculations, we conclude the
proof of Theorem 1 for any interval in I.

Lemma 2 For every I = [q, s] ∈ I,

s∑
t=q

rt(I) ≤ 5 log(s+ 1)
√
|I| .

Hence, according to Equation (3),

RSAOLB(I) ≤ C · |I|α + 5 log(s+ 1)
√
|I|

The proof is given in the appendix.

The extension of the theorem to any interval relies on some
useful properties of the set I (see Lemma 1.1 in the ap-
pendix). Roughly speaking, any interval I ⊆ [T] can be
partitioned into two sequences of intervals from I, such
that the lengths of the intervals in each sequence decay at
an exponential rate (Lemma 1.2 in the appendix). The theo-
rem now follows by bounding the regret during the interval
I by the sum of the regrets during the intervals in the above
two sequences, and by using the fact that the lengths decay
exponentially.

3. Strongly Adaptive Regret Is Stronger Than
Tracking Regret

In this section we relate the notion of strong adaptivity to
that of tracking regret, and show that algorithms with small
strongly adaptive regret also have small tracking regret. Let
us briefly review the problem of tracking. For simplicity,
we focus on context-less learning problems, and on the case
where the set of strategies coincides with the decision space
(though the result can be straightforwardly generalized).
Fix a decision space D and a family L of loss functions. A
compound action is a sequence σ = (σ1, . . . , σT) ∈ DT .
Since there is no hope in competing w.r.t. all sequences3,
a typical restriction of the problem is to bound the num-
ber of switches in each sequence. For a positive integer m,

3It is easy to prove a lower bound of order T for this problem

Strongly Adaptive Online Learning

the class of compound actions with at most m switches is
defined by

Bm =

{
σ ∈ DT : s(σ) :=

T−1∑
t=1

1[σt+1 6=σt] ≤ m

}
. (4)

The notions of loss and regret naturally extend to this set-
ting. For example, the cumulative loss of a compound ac-
tion σ ∈ Bm is defined by Lσ(T) =

∑T
t=1 `t(σt). The

tracking regret of an algorithm A w.r.t. the class Bm is
defined by

Tracking-RegretmA (T) = LA(T)− inf
σ∈Bm

Lσ(T) .

The following theorem bounds the tracking regret of al-
gorithms with bounds on the strongly adaptive regret. In
particular, of SAOL.

Theorem 2 Let A be a learning algorithm with
SA-RegretA(τ) ≤ Cτα. Then,

Tracking-RegretmA (T) ≤ CTαm1−α

Proof Let σ ∈ Bm. Let I1, . . . , Im be the intervals that
correspond to σ. Clearly, the tracking regret w.r.t. σ is
bounded by the sum of the regrets of during the intervals
I1, . . . , Im. Hence, and using Hölder’s inequality, we have

LA(T)− Lσ(T) ≤
m∑
i=1

RA(Ii)

≤ C
m∑
i=1

|Ii|α

≤ C

(
m∑
i=1

1
1

1−α

)1−α(m∑
i=1

|Ii|

)α
≤ Cm1−αTα

Recall that for the problem of prediction with ex-
pert advice, the strongly adaptive regret of SAOL
(with, say, Multiplicative Weights as a black box) is
O
(

(
√

ln(N) + log(T))
√
τ
)

. Hence, we obtain a track-

ing bound of O
(

(
√

ln(N) + log(T))
√
mT

)
. Up to a√

log(T) factor, this bound is asymptotically equivalent
to the bound of the Fixed-Share Algorithm of (Herbster &
Warmuth, 1998)4. Also, up to log(T) factor, the bound is
optimal. One advantage of SAOL over Fixed-Share is that
SAOL is parameter-free. In particular, SAOL does not need
to know5 m.

4For the comparison, we rely on a simplified form of the
bound of the Fixed-Share algorithm. This simplified form can
be found, for example, in http://web.eecs.umich.
edu/˜jabernet/eecs598course/web/notes/lec5_
091813.pdf

5The parameters of Fixed-Share do depend on m

4. Strongly Adaptive Regret in The Bandit
Setting

In this section we consider the challenge of achieving adap-
tivity in the bandit setting. Following our notation, in
the bandit setting, only the loss incured by the learner,
`t(xt), is revealed at the end of each round (rather than the
loss function, `t). For many online learning problems for
which there exists an efficient low-regret algorithm in the
full information model, a simple reduction from the ban-
dit setting to the full information setting (for example, see
(Shalev-Shwartz, 2011)[Theorem 4.1]) yields an efficient
low-regret bandit algorithm. Furthermore, it is often the
case that the dependence of the regret on T is not affected
by the lack of information. For example, for the Multi-
armed bandit (MAB) problem (Auer et al., 2002) (which is
the bandit version of the the problem of prediction with ex-
pert advice), the above reduction yields an algorithm with
near optimal regret bound of 2

√
TN logN .

A natural question is whether adaptivity can be achieved
with bandit feedback. Few positive results are
known. For example, applying the aforementioned
reduction to the Fixed-Share algorithm results with
an efficient bandit learner whose tracking regret is
O
(√

Tm(ln(N) + ln(T))N
)

.

The next theorem shows that with bandit feedback there
are no algorithms with non-trivial bounds on the strongly
adaptive regret. We focus on the MAB problem with two
arms (experts) but it is easy to generalize the result to any
nondegenerate online problem. Recall that for this problem
we do not have a context, W = D = {e1, e2} and L =
[0, 1]D.

Theorem 3 For all ε > 0, there is no algorithm for MAB
with strongly adaptive regret of O

(
τ1−εpoly (log T)

)
.

The idea of the proof is simple. Suppose toward a contra-
diction that A is an algorithm with strongly adaptive regret
of O

(
τ1−εpoly (log T)

)
. This means that the regret of A

on every interval I of length T
ε
2 is non trivial (i.e. o(|I|)).

Intuitively, this means that both arms must be inspected at
least once during I . Suppose now that one of the arms
is always superior to the second (say, has loss zero while
the other has loss one). By the above argument, the algo-
rithm will still inspect the bad arm at least once in every
T
ε
2 time slots. Those inspections will result in a regret of
T

T
ε
2

= T 1− ε2 . This, however, is a contradiction, since the
strongly adaptive regret bound implies that the standard re-
gret of A is o

(
T 1− ε2

)
.

This idea is formalized in the following lemma. It im-
plies Theorem 3 as for A with strongly adaptive regret of
O
(
τ1−εpoly (log T)

)
we can take k = O

(
T 1− ε2

)
and

reach a contradiction as the lemma implies that on some

http://web.eecs.umich.edu/~jabernet/eecs598course/web/notes/lec5_091813.pdf
http://web.eecs.umich.edu/~jabernet/eecs598course/web/notes/lec5_091813.pdf
http://web.eecs.umich.edu/~jabernet/eecs598course/web/notes/lec5_091813.pdf

Strongly Adaptive Online Learning

segment I of size T
k = Ω

(
T
ε
2

)
, the regret of A is Ω

(
T
ε
2

)
which grows faster than |I|1−εpoly(log T)

Lemma 3 Let A be an algorithm with regret bounded

RA(T) ≤ k = k(T) ,

Then, there exists an interval I ⊆ [T] of size Ω(T/k) with

RA(I) = Ω(|I|) .

Proof Assume for simplicity that 4k divides T . Consider
the environment E0 , in which ∀t, `t(e1) = 0.5, `t(e2) =
1. Let U ⊂ [T] be the (possibly random) set of time slots
in which the algorithm chooses e2 when the environment
is E0. Since the regret is at most k, we have E[|U |] ≤ 2k.
It follows that for some segment I ⊂ [T] of size ≥ T

4k we
have E[|U ∩ I|] ≤ 1

2 . Indeed, otherwise, if [T] = I1 ∪·
. . . ∪· I4k is the partition of the interval [T] into 4k disjoint
and consecutive intervals of size T

4k we will have E[|U |] =∑4k
j=1 E[|U ∩ Ij |] > 2k.

Now, since |U ∩ I| is a non-negative integer, w.p. ≥ 1
2 we

have |U ∩ I| = 0. Namely, w.p. ≥ 1
2 A does not inspect

e2 during the interval I when it runs against E0. Consider
now the environment E that is identical to E0, besides that
∀t ∈ I, lt(e2) = 0. By the argument above, w.p. ≥ 1

2 , the
operation of A on E is identical to its operation on E0. In
particular, the regret on I when A plays against E is, w.p.
≥ 1

2 , |I|2 , and in total, ≥ 1
2 ·

1
2 · |I|.

Acknowledgments
We thank Yishay Mansour and Sergiu Hart for helpful dis-
cussions. This work is supported by the Intel Collaborative
Research Institute for Computational Intelligence (ICRI-
CI). A. Daniely is supported by the Google Europe Fel-
lowship in Learning Theory.

References
Auer, Peter, Cesa-Bianchi, Nicolo, Freund, Yoav, and

Schapire, Robert E. The nonstochastic multiarmed ban-
dit problem. SIAM Journal on Computing, 32(1):48–77,
2002.

Blum, Avrim and Mansour, Yishay. From external to inter-
nal regret. Journal of Machine Learning, 2007.

Bousquet, Olivier and Warmuth, Manfred K. Tracking a
small set of experts by mixing past posteriors. The Jour-
nal of Machine Learning Research, 3:363–396, 2003.

Cesa-Bianchi, Nicolo, Freund, Yoav, Haussler, David,
Helmbold, David P, Schapire, Robert E, and Warmuth,
Manfred K. How to use expert advice. Journal of the
ACM (JACM), 44(3):427–485, 1997.

Cesa-Bianchi, Nicolo, Gaillard, Pierre, Lugosi, Gábor, and
Stoltz, Gilles. A new look at shifting regret. CoRR,
abs/1202.3323, 2012.

Freund, Yoav, Schapire, Robert E, Singer, Yoram, and War-
muth, Manfred K. Using and combining predictors that
specialize. In Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing, pp. 334–343.
ACM, 1997.

Hall, Eric C and Willett, Rebecca M. Online opti-
mization in dynamic environments. arXiv preprint
arXiv:1307.5944, 2013.

Hazan, Elad and Seshadhri, C. Adaptive algorithms for
online decision problems. In Electronic Colloquium on
Computational Complexity (ECCC), volume 14, 2007.

Herbster, Mark and Warmuth, Manfred K. Tracking the
best expert. Machine Learning, 32(2):151–178, 1998.

Jadbabaie, Ali, Rakhlin, Alexander, Shahrampour, Shahin,
and Sridharan, Karthik. Online optimization: Com-
peting with dynamic comparators. arXiv preprint
arXiv:1501.06225, 2015.

Rakhlin, Sasha and Sridharan, Karthik. Optimization,
learning, and games with predictable sequences. In Ad-
vances in Neural Information Processing Systems, pp.
3066–3074, 2013.

Shalev-Shwartz, Shai. Online learning and online con-
vex optimization. Foundations and Trends in Machine
Learning, 4(2):107–194, 2011.

Zinkevich, Martin. Online convex programming and gen-
eralized infinitesimal gradient ascent. 2003.

