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1. Proof of Theorem 1

1.1. Proving Theorem 1 to Any Interval in 7

Proof (of Lemma 1) The proof is by induction on ¢. For
t = 1, we have

Wl = ’1171([1,1]) =1.

Next, we assume that the claim holds for any ¢ < ¢ and
prove it for ¢+ 1. Since |{[g, s] € Z : ¢ = t}| < |log(t)] +
1 forall ¢t > 1, we have

Z Wit1 (1)

I=[q,s]€T
(D + >

= 2
I=|[q,s]€Z:

I=[t+1,s]€T
q<t

Wipr =

W1 (1)

<lg(t+1)+1+ >

I=[q,s)€ZL:
q<t

W (1) .

Next, according to the induction hypothesis, we have

Z W1 (1) = Z Wi (I)(1+nr - I(t) - (1))

I=|[q,s]€T I=[q,s]€T:
q<t q<t
=W+ Y - I(t) - ri(I) - (1)
IeT
t(log(t) + 1) + Zwt
IeT
Hence,

W1 < t(log(t) + 1) +log(t + 1) + 1+ > _wy(I) - r4(I)

Iel

< (t+1)(og(t+1) + 1) + > wi(I) - re(1) .
IeT

We complete the proof by showing that 7, ; w(I) -
ri(I) = 0. Since z, = x;, with probability p,(I) for
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every I € Z, we obtain

Zwt(I =W Zpt

= ez
= Wil (zy) — ()

)(le(ze) — Le(z4(1)))

Combining the above inequalities, we conclude the lemma.

Proof (of Lemma 2) Fix some I = [g, s] € Z. We need to
show that

S

> (1) < 5log(s+ 1)\/]1] .

t=q

Since weights are non-negative, using Lemma 1, we obtain

Wsp1(I) < Weiq < (s+1)(log(s+1)+ 1),

Hence,
In(ws41(I)) <In(s+1) +In(log(s+1)+1). (1)

Next, we note that

S S

[IQ +nr-1@)-re(D) = [TQ +mr-ma(D)) -

t=q t=q

d)s+1 (I) =

Noting that n; € (0,1/2) and using the inequality In(1 +
x) > x — 2% which holds for every > —1/2, we obtain

Zln 1+T]] Tt ))
2 Zm -re(I) *2(771'7%(1))2

>nr(Y (D) = mal1) - )

t=q

1 ws+1

Combining Equation (2) and Equation (1) and dividing by
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71, We obtain
S

> ro(I) < eI+ np (In(s + 1) + In(log(s + 1) + 1))

t=q
< nrlI] + 0yt (log(s + 1) + log(s + 1))
< nrlI] + 207 Hlog(s +1)
where the second inequality follows from the inequality

x > In(1 4 z). Substituting n; := min {1/2, ﬁ}, we

conclude the lemma.

1.2. Extending The Theorem to Any Interval

In the next part we complete the proof of Theorem 1 by
extending Lemma 2 to every interval.

Before proceeding, we set up an additional notation and
also make some simple but useful observations regarding
the properties of the set Z (defined in Section 2).

For an interval J C N, we define the restriction of Z to J
by Z|;. Thatis, Z|; = {I € Z: I C J}. We next list some
useful properties of the set Z that follow immediately from
its definition (thus, we do not prove these claims).

Lemma 1.1

1. The size of every interval I € T is 27 for some j €
Nu{0}.

2. Forevery j € NU{0}, the left endpoint of the leftmost
interval I whose size is 27 is 27, Thus, the size of every

interval which is located to the left of I is smaller than
|I| = 27.

3. LetI =q,s| € T beanintervalandletI' = [¢',q—1]
be another interval of size 27|1| for some j < 0. Then,
I'e T

4. LetI = [q,s] € Tbeaninterval andlet I' = [s+1, s']
be a consecutive interval of size 27|1| for some j < 0.
Then, I' € T.

5. Let I = [q,s] € T be an interval of size 27 for some
j € NU{0}. Then, (exactly) one of the intervals
[q,q+27t —1], [s+1, 5+ 27T (whose size is 2771)
belongs to T.

The following lemma is a key tool for extending Lemma 2
to any interval.

Lemma 1.2 Let I = [q,s8] C N be an arbitrary inter-
val. Then, the interval I can be paritioned into two finite
sequences of disjoint and consecutive intervals, denoted
(I,k,7 ey Io) - I|] and (Il, Ih,..., Ip) C 1|y, such that

il /[ —i2| <1/2.

(Vi > 1)

(Vi>2) |L]|/|Lia] £1/2.

The lemma is illustrated in Figure 1.2. We next prove the
lemma. Whenever we mention Property 1, ..., 5, we refer
to Property 1,...,5 of Lemma 1.1.

Proof Let by = max{|l’| : I’ € Z|;} be the maximal size
of any interval I’ € 7 that is contained in I. Among all of
these intervals, let I be the leftmost interval, i.e., we define

qo := argmin{q’ : [¢',¢ + by — 1] € Z|;}
So=¢qo+by—1
Io = [quSO] .

Starting from gyp — 1, we define a sequence of disjoint
and consecutive intervals (in a reversed order), denoted
(I-1,...,1_), as follows:

[g—1,8-1] =11

= argmax |I']
I/z[q/vsl]ezllq,qo*l]:
s/=q0—1
[q—i, s3] =1,
= arg max |I']
I/:[q/,SI]EII[q’qi’H»l_1]2
s'=q_i11—1

Clearly, this sequence is finite and the left endpoint of the
leftmost interval, I_g, is q. Denote the size of I_; by b_;.
We next prove that for every ¢ > 1, b_;/b_; 11 = 27 for
some 7 < —1. We note that according to Property 1, it
suffices to show that b_; < b_;y1 for every i« > 1. We
use induction. The base case follows from the minimal-
ity of Iy. We next assume that the claim holds for every
i € {1,...,k — 1} and prove for k. Assume by contra-
diction that b_; > b_j41. Consider the interval f_k+1
which is obtained by concatenating a copy of I_j; to its
left!. It follows that f_;H_l is an interval of size 2b_j41
which is contained in [g,¢_r4+2 — 1] and its right end-
point is ¢_;42 — 1. According to the induction hypothesis,
I _jg1] = 2b_jy1 = 27 - b_py for some j < 0. It fol-
lows from Property 3 that I_ k+1 € Z|;, contradicting the
maximality of /_j;.

Similarly, starting from sy + 1, we define a sequence of

lFormally, f7k+1 = [q7k+1 — b,k+1, q—k+1 — 1] U Ifk+1.
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disjoint and consecutive intervals, denoted (I, ..., I,):
lq1,51) == 11
= arg max |I']
I/:[q/75/]ezl[so+l,s]:
q'=so+1
[Ch'7 Sz] =1
= arg max ||
I'=[q",s"1€Z|(s; _, 41,5}
q'=si_1+1

Clearly, this sequence is finite and the right endpoint of the
rightmost interval, I,, is s. Denote the size of I; by b;. We
next prove that for every i > 2, b; /b;_1 = 27 for some 1<
—1. According to Property 1, it suffices to prove that b; <
b;_1 for every ¢ > 2. For this purpose, we first note that
b1 < byg; this follows immediately from the definition of
bo. Hence, we may assume that b; /b;_1 € {27 : j < 0} for
every i € {1,...,p—1} and prove that b, < b,_1. Assume
by contradiction that b, > b,_;. Consider the interval I p—1
which is obtained by concatenating a copy of I,,_; to its
right. It follows that I p—1 1s an interval of size 2b,_; which
is contained in [s,_2+1, s] and its left endpoint is s,,_o+1.
According to the induction hypothesis, |fp_1| =2b,_1 =
27-b,,_o for some j < 1. We need to consider the following
two cases:

e Assume first that j < 0 (thus, bp_1/b,—2 < 1/2).
Then, it follows from Property 4 that fp_l € I|r, con-
tradicting the maximality of I,,_;.

o Assume that j = 1 (i.e., b,_1 = b,_2). Then, using
Property 5, we obtain a contradiction to the maximal-
ity of I, _o.

We are now ready to complete the proof of Theorem 1.

Proof (of Theorem 1) Consider an arbitrary interval I =
lg,s] C [T], and let I = (J?__, I, be the partition de-
scribed in Lemma 1.2. Then,

Rspors (1) < Z RsaoLs (1:)
i<0

+ Z Rspors (1) - 3)

i>1

We next bound the first term in the the right-hand side of

[(H3At—FHt————F e ——3+t3]
12 4 78 16 24 28 30

Figure 1. Geometric Covering of Interval: The interval I =
[1,30] is partitioned into the sequences (I = [1],1_2
[2,3},171 = [4,7],[0 = [8,15]) and (Il = [16,23],]2 =
[24,27], Is = [28,29], I4 = [30])

Equation (3). According to Lemma 2, we obtain that

S Ropous (1) < €S|

i<0 i<0

+5) log(s; + 1) 1|/
<0

SCZ|I,»|Q

i<0

+5log(s+1) > [L]V?.
i<0

According to Lemma 1.2,

ST <> e
i<0 i=0
2¢ o
= o U
2 1
2
200 — 1

IA

1.
Similarly, we have

S < Y2 < apt
i<0 B

Combining the three last inequalities, we obtain that

2 1
— lC|I|O‘ +20log(s+1)|1]2 .

Z RgpoLs (1i) <

i<0

20(

The second term of the right-hand side of Equation (3) is
bounded identically. Hence,

4
Rspors (1) < C|I|™ + 40log(s + 1)|I]? .

201




