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1. Proof of Theorem 1
1.1. Proving Theorem 1 to Any Interval in I

Proof (of Lemma 1) The proof is by induction on t. For
t = 1, we have

W̃1 = w̃1([1, 1]) = 1 .

Next, we assume that the claim holds for any t′ ≤ t and
prove it for t+1. Since |{[q, s] ∈ I : q = t}| ≤ blog(t)c+
1 for all t ≥ 1, we have

W̃t+1 =
∑

I=[q,s]∈I

w̃t+1(I)

=
∑

I=[t+1,s]∈I

w̃t+1(I) +
∑

I=[q,s]∈I:
q≤t

w̃t+1(I)

≤ log(t+ 1) + 1 +
∑

I=[q,s]∈I:
q≤t

w̃t+1(I) .

Next, according to the induction hypothesis, we have∑
I=[q,s]∈I:

q≤t

w̃t+1(I) =
∑

I=[q,s]∈I:
q≤t

w̃t(I)(1 + ηI · I(t) · rt(I))

= W̃t +
∑
I∈I

ηI · I(t) · rt(I) · w̃t(I)

≤ t(log(t) + 1) +
∑
I∈I

wt(I) · rt(I) .

Hence,

W̃t+1 ≤ t(log(t) + 1) + log(t+ 1) + 1 +
∑
I∈I

wt(I) · rt(I)

≤ (t+ 1)(log(t+ 1) + 1) +
∑
I∈I

wt(I) · rt(I) .

We complete the proof by showing that
∑
I∈I wt(I) ·

rt(I) = 0. Since xt = xI,t with probability pt(I) for

every I ∈ I, we obtain∑
I∈I

wt(I) · rI(t) =Wt

∑
I∈I

pt(I)(`t(xt)− `t(xt(I)))

=Wt(`t(xt)− `t(xt))
= 0 .

Combining the above inequalities, we conclude the lemma.

Proof (of Lemma 2) Fix some I = [q, s] ∈ I. We need to
show that

s∑
t=q

rt(I) ≤ 5 log(s+ 1)
√
|I| .

Since weights are non-negative, using Lemma 1, we obtain

w̃s+1(I) ≤ W̃s+1 ≤ (s+ 1)(log(s+ 1) + 1) ,

Hence,

ln(w̃s+1(I)) ≤ ln(s+ 1) + ln(log(s+ 1) + 1) . (1)

Next, we note that

w̃s+1(I) =

s∏
t=q

(1 + ηI · I(t) · rt(I)) =
s∏
t=q

(1 + ηI · rt(I)) .

Noting that ηI ∈ (0, 1/2) and using the inequality ln(1 +
x) ≥ x− x2 which holds for every x ≥ −1/2, we obtain

ln(w̃s+1(I)) =

s∑
t=q

ln(1 + ηI · rt(I))

≥
s∑
t=q

ηI · rt(I)−
s∑
t=q

(ηI · rt(I))2

≥ ηI(
s∑
t=q

rt(I)− ηI |I|) . (2)

Combining Equation (2) and Equation (1) and dividing by
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ηI , we obtain
s∑
t=q

rt(I) ≤ ηI |I|+ η−1I (ln(s+ 1) + ln(log(s+ 1) + 1))

≤ ηI |I|+ η−1I (log(s+ 1) + log(s+ 1))

≤ ηI |I|+ 2η−1I log(s+ 1) ,

where the second inequality follows from the inequality

x ≥ ln(1 + x). Substituting ηI := min

{
1/2, 1√

|I|

}
, we

conclude the lemma.

1.2. Extending The Theorem to Any Interval

In the next part we complete the proof of Theorem 1 by
extending Lemma 2 to every interval.

Before proceeding, we set up an additional notation and
also make some simple but useful observations regarding
the properties of the set I (defined in Section 2).

For an interval J ⊆ N, we define the restriction of I to J
by I|J . That is, I|J = {I ∈ I : I ⊆ J}. We next list some
useful properties of the set I that follow immediately from
its definition (thus, we do not prove these claims).

Lemma 1.1

1. The size of every interval I ∈ I is 2j for some j ∈
N ∪ {0}.

2. For every j ∈ N∪{0}, the left endpoint of the leftmost
interval I whose size is 2j is 2j . Thus, the size of every
interval which is located to the left of I is smaller than
|I| = 2j .

3. Let I = [q, s] ∈ I be an interval and let I ′ = [q′, q−1]
be another interval of size 2j |I| for some j ≤ 0. Then,
I ′ ∈ I.

4. Let I = [q, s] ∈ I be an interval and let I ′ = [s+1, s′]
be a consecutive interval of size 2j |I| for some j ≤ 0.
Then, I ′ ∈ I.

5. Let I = [q, s] ∈ I be an interval of size 2j for some
j ∈ N ∪ {0}. Then, (exactly) one of the intervals
[q, q+2j+1−1], [s+1, s+2j+1] (whose size is 2j+1)
belongs to I.

The following lemma is a key tool for extending Lemma 2
to any interval.

Lemma 1.2 Let I = [q, s] ⊆ N be an arbitrary inter-
val. Then, the interval I can be paritioned into two finite
sequences of disjoint and consecutive intervals, denoted
(I−k, . . . , I0) ⊆ I|I and (I1, I2, . . . , Ip) ⊆ I|I , such that

(∀i ≥ 1) |I−i|/|I−i+1| ≤ 1/2 .

(∀i ≥ 2) |Ii|/|Ii−1| ≤ 1/2 .

The lemma is illustrated in Figure 1.2. We next prove the
lemma. Whenever we mention Property 1, . . . , 5, we refer
to Property 1, . . . , 5 of Lemma 1.1.

Proof Let b0 = max{|I ′| : I ′ ∈ I|I} be the maximal size
of any interval I ′ ∈ I that is contained in I . Among all of
these intervals, let I0 be the leftmost interval, i.e., we define

q0 := argmin{q′ : [q′, q′ + b0 − 1] ∈ I|I}
s0 = q0 + b0 − 1

Io = [q0, s0] .

Starting from q0 − 1, we define a sequence of disjoint
and consecutive intervals (in a reversed order), denoted
(I−1, . . . , I−k), as follows:

[q−1, s−1] := I−1

:= argmax
I′=[q′,s′]∈I|[q,q0−1]:

s′=q0−1

|I ′|

...
[q−i, s−i] := I−i

:= argmax
I′=[q′,s′]∈I|[q,q−i+1−1]:

s′=q−i+1−1

|I ′|

...

Clearly, this sequence is finite and the left endpoint of the
leftmost interval, I−k, is q. Denote the size of I−i by b−i.
We next prove that for every i ≥ 1, b−i/b−i+1 = 2j for
some j ≤ −1. We note that according to Property 1, it
suffices to show that b−i < b−i+1 for every i ≥ 1. We
use induction. The base case follows from the minimal-
ity of I0. We next assume that the claim holds for every
i ∈ {1, . . . , k − 1} and prove for k. Assume by contra-
diction that b−k ≥ b−k+1. Consider the interval Î−k+1

which is obtained by concatenating a copy of I−k+1 to its
left1. It follows that Î−k+1 is an interval of size 2b−k+1

which is contained in [q, q−k+2 − 1] and its right end-
point is q−k+2 − 1. According to the induction hypothesis,
|Î−k+1| = 2b−k+1 = 2j · b−k+2 for some j ≤ 0. It fol-
lows from Property 3 that Î−k+1 ∈ I|I , contradicting the
maximality of I−k+1.

Similarly, starting from s0 + 1, we define a sequence of

1Formally, Î−k+1 := [q−k+1 − b−k+1, q−k+1 − 1] ∪ I−k+1.
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disjoint and consecutive intervals, denoted (I1, . . . , Ip):

[q1, s1] := I1

:= argmax
I′=[q′,s′]∈I|[s0+1,s]:

q′=s0+1

|I ′|

...
[qi, si] := Ii

:= argmax
I′=[q′,s′]∈I|[si−1+1,s]:

q′=si−1+1

|I ′|

...

Clearly, this sequence is finite and the right endpoint of the
rightmost interval, Ip, is s. Denote the size of Ii by bi. We
next prove that for every i ≥ 2, bi/bi−1 = 2j for some j ≤
−1. According to Property 1, it suffices to prove that bi <
bi−1 for every i ≥ 2. For this purpose, we first note that
b1 ≤ b0; this follows immediately from the definition of
b0. Hence, we may assume that bi/bi−1 ∈ {2j : j ≤ 0} for
every i ∈ {1, . . . , p−1} and prove that bp < bp−1. Assume
by contradiction that bp ≥ bp−1. Consider the interval Îp−1
which is obtained by concatenating a copy of Ip−1 to its
right. It follows that Îp−1 is an interval of size 2bp−1 which
is contained in [sp−2+1, s] and its left endpoint is sp−2+1.
According to the induction hypothesis, |Îp−1| = 2bp−1 =
2j ·bp−2 for some j ≤ 1. We need to consider the following
two cases:

• Assume first that j ≤ 0 (thus, bp−1/bp−2 ≤ 1/2).
Then, it follows from Property 4 that Îp−1 ∈ I|I , con-
tradicting the maximality of Ip−1.

• Assume that j = 1 (i.e., bp−1 = bp−2). Then, using
Property 5, we obtain a contradiction to the maximal-
ity of Ik−2.

We are now ready to complete the proof of Theorem 1.

Proof (of Theorem 1) Consider an arbitrary interval I =
[q, s] ⊆ [T ], and let I =

⋃
· pi=−k Ii be the partition de-

scribed in Lemma 1.2. Then,

RSAOLB(I) ≤
∑
i≤0

RSAOLB(Ii)

+
∑
i≥1

RSAOLB(Ii) . (3)

We next bound the first term in the the right-hand side of
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Figure 1. Geometric Covering of Interval: The interval I =
[1, 30] is partitioned into the sequences (I−1 = [1], I−2 =
[2, 3], I−1 = [4, 7], I0 = [8, 15]) and (I1 = [16, 23], I2 =
[24, 27], I3 = [28, 29], I4 = [30])

Equation (3). According to Lemma 2, we obtain that∑
i≤0

RSAOLB(Ii) ≤ C
∑
i≤0

|Ii|α

+ 5
∑
i≤0

log(si + 1)|Ii|1/2

≤ C
∑
i≤0

|Ii|α

+ 5 log(s+ 1)
∑
i≤0

|Ii|1/2 .

According to Lemma 1.2,

∑
i≤0

|Ii|α ≤
∞∑
i=0

(2−i|I|)α

=
2α

2α − 1
|I|α

≤ 2

2α − 1
|I|α .

Similarly, we have

∑
i≤0

|Ii|1/2 ≤
√
2√

2− 1
|I|1/2 ≤ 4|I| 12 .

Combining the three last inequalities, we obtain that∑
i≤0

RSAOLB(Ii) ≤
2

2α − 1
C|I|α + 20 log(s+ 1)|I| 12 .

The second term of the right-hand side of Equation (3) is
bounded identically. Hence,

RSAOLB(I) ≤
4

2α − 1
C|I|α + 40 log(s+ 1)|I| 12 .


