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Proofs
We shall need the following inequality.

Lemma 1. Function f : Rn → R defined in (3) satisfies
the following inequality:

f(α+ h) ≤ f(α) + 〈∇f(α), h〉+
1

2λn2
h>A>Ah, (1)

holds for ∀α, h ∈ Rn.

Proof. Since g is 1-strongly convex, g∗ is 1-smooth. Pick
α, h ∈ Rn. Since, f(α) = λg∗( 1

λnAα), we have

f(α+ h) = λg∗(
1

λn
Aα+

1

λn
Ah)

≤ λ
(
g∗(

1

λn
Aα) + 〈∇g∗( 1

λn
Aα),

1

λn
Ah〉+

1

2
‖ 1

λn
Ah‖2

)
= f(α) + 〈∇f(α), h〉+

1

2λn2
h>A>Ah.

Proof of Lemma 3. It can be easily checked that the follow-
ing relations hold

∇if(αt) =
1

n
A>i w

t, ∀t ≥ 0, i ∈ [n], (2)

g(wt) + g∗(ᾱt) = 〈wt, ᾱt〉, ∀t ≥ 0, (3)

where {wt, αt, ᾱt}t≥0 is the output sequence of Algo-
rithm 1. Let t ≥ 0 and θ ∈ [0,mini p

t
i]. For each i ∈ [n],

since φi is 1/γ-smooth, φ∗i is γ-strongly convex and thus
for arbitrary si ∈ [0, 1],

φ∗i (−αti + siκ
t
i)

= φ∗i
(
(1− si)(−αti) + si∇φi(A>i wt)

)
≤ (1− si)φ∗i (−αti) + siφ

∗
i (∇φi(A>i wt))

− γsi(1− si)|κti|2

2
. (4)

We have:

f(αt+1)− f(αt)

(1)
≤ 〈∇f(αt), αt+1 − αt〉

+
1

2λn2
〈αt+1 − αt, A>A(αt+1 − αt)〉

= ∇if(αt)∆αtit +
vi

2λn2
|∆αtit |

2

(2)
=

1

n
A>itw

t∆αtit +
vi

2λn2
|∆αtit |

2 (5)

Thus,

D(αt+1)−D(αt)

(5)
≥ − 1

n
A>itw

t∆αtit −
vit

2λn2
|∆αtit |

2 +
1

n

n∑
i=1

φ∗i (−αti)

− 1

n

n∑
i=1

φ∗i (−αt+1
i )

= − 1

n
A>itw

t∆αtit −
vit

2λn2
|∆αtit |

2 +
1

n
φ∗it(−α

t
it)

− 1

n
φ∗it(−

(
αtit + ∆αtit

)
)

= max
∆∈R
− 1

n
A>itw

t∆− vit
2λn2

|∆|2 +
1

n
φ∗it(−α

t
it)

− 1

n
φ∗it(−

(
αtit + ∆

)
),

where the last equality follows from the definition of ∆αtit
in Algorithm 1. Then by letting ∆ = −siκtit for some
arbitrary si ∈ [0, 1] we get:

D(αt+1)−D(αt)

≥
siA
>
it
wtκtit
n

−
s2
i vit |κtit |

2

2λn2
+

1

n
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t
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− 1

n
φ∗it(−α

t
it + siκ

t
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(4)
≥ si
n

(
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t
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∗
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>
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)
−
s2
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+
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2
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.
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By taking expectation with respect to it we get:

Et
[
D(αt+1)−D(αt)

]
≥

n∑
i=1

ptisi
n

[
φ∗i (−αti)− φ∗i (∇φi(A>i wt)) +A>i w

tκti
]

−
n∑
i=1

ptis
2
i |κti|2(vi + λγn)

2λn2
+

n∑
i=1

ptiγsi|κti|2

2n
. (6)

Set

si =

{
0, i /∈ It
θ/pti, i ∈ It

(7)

Then si ∈ [0, 1] for each i ∈ [n] and by plugging it into (6)
we get:

Et
[
D(αt+1)−D(αt)

]
≥ θ

n

∑
i∈It

[
φ∗i (−αti)− φ∗i (∇φi(A>i wt)) +A>i w

tκti
]

− θ

2λn2

∑
i∈It

(
θ(vi + nλγ)

pti
− nλγ

)
|κti|2

Finally note that:

P (wt)−D(αt)

=
1

n

n∑
i=1

[
φi(A

>
i w

t) + φ∗i (−αti)
]

+ λ
(
g(wt) + g∗(ᾱt)

)
(3)
=

1

n

n∑
i=1

[
φ∗i (−αti) + φi(A

>
i w

t)
]

+
1

n
〈wt, Aαt〉

=
1

n

n∑
i=1

[
φ∗i (−αti) +A>i w

t∇φi(A>i wt)

−φ∗i (∇φi(A>i wt)) +A>i w
tαti
]

=
1

n

n∑
i=1

[
φ∗i (−αti)− φ∗i (∇φi(A>i wt)) +A>i w

tκti
]

=
1

n

∑
i∈It

[
φ∗i (−αti)− φ∗i (∇φi(A>i wt)) +A>i w

tκti
]

Proof of Lemma 4. Note that (13) is a standard constrained
maximization problem, where everything independent of p
can be treated as a constant. We define the Lagrangian

L(p, η) = θ(κ, p)− η(

n∑
i=1

pi − 1)

and get the following optimality conditions:

|κti|2(vi + nλγ)

p2
i

=
|κtj |2(vj + nλγ)

p2
j

, ∀i, j ∈ [n]

n∑
i=1

pi = 1

pi ≥ 0, ∀i ∈ [n],

the solution of which is (14).

Proof of Lemma 5. Note that in the proof of Lemma 3, the
condition θ ∈ [0,mini∈It p

t
i] is only needed to ensure that

si defined by (7) is in [0, 1] so that (4) holds. If φi is
quadratic function, then (4) holds for arbitrary si ∈ R.
Therefore in this case we only need θ to be positive and
the same reasoning holds.
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Additional Numerical Experiments
We now provide more numerical experiments.

Figure 10. dorothea dataset d = 100000, n = 800, Quadratic loss
with L2 regularizer, comparing number of iterations with known
algorithms

Figure 11. mushrooms dataset d = 112, n = 8124, Quadratic loss
with L2 regularizer, comparing number of iterations with known
algorithms

Figure 12. ijcnn1 dataset d = 22, n = 49990, Quadratic loss with
L2 regularizer, comparing number of iterations with known algo-
rithms

Figure 13. w8a dataset d = 300, n = 49749, Quadratic loss with
L2 regularizer, comparing real time with known algorithms

Figure 14. mushrooms dataset d = 112, n = 8124, Quadratic loss
with L2 regularizer, comparing real time with known algorithms

Figure 15. cov1 dataset d = 54, n = 581012, Quadratic loss with
L2 regularizer, comparing real time with known algorithms
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Figure 16. w8a dataset d = 300, n = 49749, Smooth Hinge loss
with L2 regularizer, comparing real time with known algorithms

Figure 17. dorothea dataset d = 100000, n = 800, Smooth Hinge
loss with L2 regularizer, comparing real time with known algo-
rithms

Figure 18. dorothea dataset d = 100000, n = 800, Smooth Hinge
loss with L2 regularizer, comparing number of iterations with
known algorithms

Figure 19. mushrooms dataset d = 112, n = 8124, Smooth Hinge
loss with L2 regularizer, comparing number of iterations with
known algorithms

Figure 20. cov1 dataset d = 54, n = 581012, Smooth Hinge loss
with L2 regularizer, comparing number of iterations with known
algorithms

Figure 21. ijcnn1 dataset d = 22, n = 49990, Smooth Hinge loss
with L2 regularizer, comparing number of iterations with known
algorithms
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Figure 22. w8a dataset d = 300, n = 49749, Quadratic loss with
L2 regularizer, comparison of different choices of the constant m

Figure 23. dorothea dataset d = 100000, n = 800, Quadratic loss
with L2 regularizer, comparison of different choices of the con-
stant m

Figure 24. mushrooms dataset d = 112, n = 8124, Quadratic loss
with L2 regularizer, comparison of different choices of the con-
stant m

Figure 25. ijcnn1 dataset d = 22, n = 49990, Smooth Hinge loss
with L2 regularizer, comparing real time with known algorithms

Figure 26. w8a dataset d = 300, n = 49749, Quadratic loss with
L2 regularizer, comparing number of iterations with known algo-
rithms

Figure 27. dorothea dataset d = 100000, n = 800, Quadratic loss
with L2 regularizer, comparing number of iterations with known
algorithms
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Figure 28. mushrooms dataset d = 112, n = 8124, Quadratic loss
with L2 regularizer, comparing number of iterations with known
algorithms

Figure 29. cov1 dataset d = 54, n = 581012, Quadratic loss with
L2 regularizer, comparing number of iterations with known algo-
rithms

Figure 30. ijcnn1 dataset d = 22, n = 49990, Quadratic loss with
L2 regularizer, comparison of different choices of the constant m

Figure 31. w8a dataset d = 300, n = 49749, Smooth Hinge loss
with L2 regularizer, comparison of different choices of the con-
stant m

Figure 32. dorothea dataset d = 100000, n = 800, Smooth Hinge
loss with L2 regularizer, comparison of different choices of the
constant m

Figure 33. ijcnn1 dataset d = 22, n = 49990, Smooth Hinge loss
with L2 regularizer, comparison of different choices of the con-
stant m


