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Abstract

We investigate a new Follow the Perturbed
Leader (FTPL) algorithm for online structured
prediction problems. We show a regret bound
which is comparable to the state of the art of
FTPL algorithms and is comparable with the best
possible regret in some cases. To better un-
derstand FTPL algorithms for online structured
learning, we present a lower bound on the re-
gret for a large and natural class of FTPL al-
gorithms that use logconcave perturbations. We
complete our investigation with an online short-
est path experiment and empirically show that
our algorithm is both statistically and computa-
tionally efficient.

1. Introduction
Learning from a constant flow of data is one of the central
challenges of machine learning. Online learning require
to sequentially decide on actions in ever-changing environ-
ments. Such environments include the stock market and
ranking newly published movies. In past years, a vari-
ety of online learning algorithms have been devised, each
such algorithm for a different setting. Among well-known
settings are prediction with expert advice (Littlestone &
Warmuth, 1994) and online convex optimization (Zinke-
vich, 2003). Despite their applicability, many sequential
decision-making problems still remain open — one such
problem is that of online structured learning.

Structured problems drive many of the recent applications
in machine learning, such as road navigation, network rout-
ing, adaptive resource allocation, personalized content rec-
ommendation, online ad display and many more. Unfortu-
nately, known algorithms for this setting are suboptimal in
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the following sense — they are either statistically efficient
or computationally efficient, but not both.

In our work we investigate Follow the Perturbed Leader
algorithms, whose advantage is their simplicity and com-
putational efficiency. We present a new FTPL algorithm
whose regret bound is comparable to the best known bound
of FTPL algorithms for structured problems. We further
show a lower bound that implies that most FTPL algo-
rithms found in the literature are, in fact, suboptimal in
terms of regret. Finally, we run an experiment evaluating
our algorithm against the state of the art. We empirically
show that our algorithm has similar regret and yet has a
much faster runtime.

1.1. Related work

The problem of online learning has been studied in the last
few decades across many different fields. Since the 1990s,
however, it has become a prominent field of research along-
side the Machine Learning community. This is attributed
to, for example, works of Cover (1991); Blum (1998); Fos-
ter & Vohra (1999).

Perhaps the most well known setting of online learning is
that of prediction with expert advice. Originally, this was
the problem of predicting a binary sequence, being given
the predictions of a number of experts at each round. This
problem has been studied extensively in, for example, Lit-
tlestone & Warmuth (1994); Cesa-Bianchi et al. (1997) that
have given an algorithm for the problem based on the mul-
tiplicative updates rule. This algorithm is known as Hedge,
Exponential Weights (EXP) or Randomized Weighted Ma-
jority.

Hannan (1957); Kalai and Vempala (2002; 2005) have in-
troduced another algorithmic scheme for online learning,
now known as Follow the Perturbed Leader (FTPL). Since
then, FTPL algorithms were the subject of many papers,
including Rakhlin et al. (2012); Neu & Bartók (2013); De-
vroye et al. (2013); Abernethy et al. (2014); Van Erven et al.
(2014). It is a known folklore result, that the Hedge al-
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gorithm is equivalent to FTPL with Gumbel perturbations
(Kuzmin & Warmuth, 2005).

In our paper, we consider an extension of the prediction
with expert advice setting, known as online structured
learning or online combinatorial optimization. In struc-
tured learning, the predictions of the learner are taken from
a discrete set X ⊆ {0, 1}d. We assume that X is en-
dowed with an offline optimization oracle, that given a vec-
tor z ∈ Rd, produces x ∈ arg minx′∈X 〈z, x′〉. We assume
that querying the oracle is done in a computationally effi-
cient manner. As is common, we denote k such that for all
x ∈ X we have

∑d
i=1 xi ≤ k.

Originally, Takimoto & Warmuth (2003) introduced a spe-
cial case of this setting — the online shortest path prob-
lem. Given some graph, this is the problem of sequen-
tially predicting a shortest path between two fixed vertices,
s and t. There, the authors have shown a reduction from
the problem of shortest path to prediction with expert ad-
vice. Namely, that each path is an expert, and that an ef-
ficient implementation of the Hedge algorithm exists un-
der this reduction. This algorithm has a regret bound of
O(
√
kT log |X |), and here X is the set of all s − t paths

in the graph including ones that contain cycles and k is the
maximum number of the edges in any such path.

Kalai and Vempala (2005) have shown an FTPL algorithm
for this setting. Cesa-Bianchi & Lugosi (2006) (cf. Ex
5.12) have improved the analysis of that algorithm and
have given a regret bound of O(

√
dkT log |X |)1. How-

ever, here X is the set of all s − t paths without cycles.
Recently, Neu & Bartók (2013) have further improved the
analysis of the algorithm and have shown a regret bound of
O(k3/2

√
T log(d)). The latter analysis is done for the gen-

eral structured setting and is applicable for any structured
problem.

In Helmbold and Warmuth (2007), another special case of
structured learning was studied — the problem of predict-
ing permutations. The authors considered applying mirror
descent with entropy regularization over the convex hull of
the set of all permutation matrices. As a site note, other al-
gorithms besides mirror descent and FTPL exist for the spe-
cial case of permutations. See, for example, Ailon (2014).

Koolen et al. (2010) have extended the algorithm of
Helmbold and Warmuth (2007) to the general problem
of structured learning and have given a regret bound
of O(k

√
T log(d/k)). They have further shown that

this bound is minimax optimal. In contrast, note
that the regret of our algorithm is upper bounded by
O(k3/2

√
T log(d/k)).

The downside of Helmbold & Warmuth and Koolen et al.’s
1Here d denotes the number of edges in the graph.

algorithm is its computational complexity. At each round,
the algorithm performs a projection onto the convex hull
of X , which is expensive for certain sets. Furthermore, in
order to return an element from X rather than one from
the convex hull, the algorithm has to call the offline opti-
mization oracle d times. Thus, it can represent the current
iterate as a convex combination of d + 1 points from X
(Carathéodory’s theorem). Thinking of this convex com-
bination as a distribution over X , the algorithm proceeds
to sample an element from X accordingly. In contrast, at
each iteration our algorithm does not involve a projection
step and only requires one call to the offline optimization
oracle.

Digressing slightly, one may ask how the Hedge algorithm
fares in this setting. That is when the problem is reduced
to prediction with expert advice such that each x ∈ X is an
expert. Audibert et al. (2013) have shown that the Hedge
algorithm is suboptimal by showing a setting in which its
regret is Ω(d3/2

√
T ) (for k = Θ(d)).

Bubeck (2011) has conjectured that a similar lower bound
is attainable for FTPL algorithms. We partially prove this
conjecture by showing that a lower bound of Ω(d5/4

√
T )

is attained for a large class of distributions, thus showing
that FTPL is provably suboptimal. This class of distribu-
tions includes the Laplace and negative exponential distri-
butions, the uniform distribution over the cube (Kalai &
Vempala, 2005) and the Gaussian distribution (Abernethy
et al., 2014).

1.2. Contributions

Our contributions are as following:

• We extend the proof technique of Abernethy et al.
(2014) to the structured setting. We show an FTPL
algorithm with a regret bound of O(k

√
T log |X |),

which is comparable to the regret bound of Neu &
Bartók (2013). We further show that for certain
sets, our algorithm has minimax optimal regret of
O(
√
kT log |X |).

• We demonstrate a lower bound Ω(d5/4
√
T ) for a large

and natural class of FTPL algorithms for structured
learning. This lower bound is based on a lower bound
for EXP2 found in Audibert et al. (2013).

2. Preliminaries
2.1. Online learning

Online learning, or sequential prediction, is a game played
between a learner and an omniscient adversary, also
known as nature. The game is played for T rounds. In
each round t the learner predicts an element xt from a pre-
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determined compact set X . Simultaneously, nature decides
on a loss θt which the learner is to suffer.

In our case, we assume the loss is linear. That is X ⊆
Rd and θt ∈ Rd for all t ∈ [T ]. At each round t, the
learner suffers a loss of 〈xt, θt〉. The goal of the learner is
to minimize the regret, defined as the difference between
the cumulative loss of the learner over all T rounds and
the cumulative loss of the best x ∈ X in hindsight. More
concretely,

Regret :=

T∑
t=1

〈xt, θt〉 −min
x∈X

T∑
t=1

〈x, θt〉

We say that a learning algorithm is Hannan-consistent if it
achieves sublinear regret, namely Regret ≤ o(T ).

A first attempt at a learning scheme would be the Follow
the Leader algorithm. Denote the cumulative loss at time t
by Θt =

∑t−1
τ=1 θτ . Then Follow the Leader involves pick-

ing xt to be a minimizer of the cumulative loss at time t, i.e.
xt ∈ arg minx∈X 〈x,Θt〉. It is easy to see that any deter-
ministic learning algorithm, and in particular the Follow the
Leader scheme, is not Hannan-consistent (Cesa-Bianchi &
Lugosi, 2006).

In view of the last paragraph, to achieve consistency we
shall allow the learner to randomize. Namely, from now
on xt is a random variable supported on X . In this case
the learner would like to minimize the expected regret, and
accordingly, we say that a strategy is Hannan-consistent if
its expected regret is sublinear.

One algorithm for achieving Hannan-consistency in the
Regularized Follow the Leader (RFTL) algorithm (Shalev-
Shwartz, 2011; Hazan, 2012). Here, we assume that
conv(X ) is endowed with a convex regularizer R :
conv(X )→ R. Let η > 0. At every round t, we choose

yt = arg min
x∈conv(X )

〈Θt, x〉+ ηR(x)

Then, in order to choose xt ∈ X the algorithms creates
a distribution over X whose mean is yt. The algorithm
proceeds by sampling xt from this distribution.

Following Hannan (1957) and Kalai and Vempala (2005),
Follow the Perturbed Leader (abbreviated FTPL) is another
algorithm for achieving sublinear regret. Let γ be some
d-dimensional random variable. FTPL is the algorithmic
scheme of choosing an x ∈ X that minimizes the perturbed
cumulative loss:

xt ∈ arg min
x∈X

〈x,Θt + ηγ〉 (1)

Intuitively, for both algorithms, if η is small then we expect
xt to be ”close” to a minimizer of the (non-perturbed) cu-
mulative loss. If η is large then we expect the distribution

over X to be ”close” to the uniform distribution. Namely, η
controls how similar the algorithm is to Follow the Leader.

Lastly, throughout our work we assume that the adver-
sary is oblivious. This means that the adversary chooses
θ1, ..., θT in advance. In contrast, at each round t a non-
oblivious adversary can choose θt based on the random
choices of the learner up to that round (non-inclusive). An
extension of our algorithm to non-oblivious adversaries fol-
lows immediately from Cesa-Bianchi and Lugosi (2006,
Lemma 4.1).

2.2. Online structured learning

In online structured learning the set X is a subset of the
hypercube, X ⊆ {0, 1}d, and we tend to think of the di-
mension d as being very large. As such, we would like
to avoid polynomial dependence on d in our regret bound.
This is done in two manners. The first is by dependence
on the size of X , which means that we expect low regret
for small sets. The second is by assuming that there is a
k ∈ [d] such that for all x ∈ X ,

∑d
i=1 xi ≤ k. We think

of k as being much smaller than d, which means we expect
low regret for sparse sets.

We now give a few examples of possible applications, also
found in Koolen et al. (2010).

2.2.1. EXAMPLES

k-sets In this problem, at each round the learner is to pre-
dict a set of exactly k coordinates out of d, so that
|X | =

(
d
k

)
. Note that for k = 1 this is the problem of

prediction with expert advice.

Applications include online ad display and personal-
ized news recommendation. In personalized news rec-
ommendation, for example, a website can display k
news topics out of d for every user. These topics can
include current events, economy, foreign affairs and
so on. The user can report which news items are for
her liking and the website needs to adjust the topics
accordingly.

k-truncated permutations This is an extension of the k-
sets problem which requires the learner to choose k el-
ements out of n in an ordered manner. In other words,
this is a matching between k elements and n elements.

As an application, consider the problem of handling a
search query in a database of size n. For each query,
we would like to present only k results ordered de-
creasingly by relevance.

Here each coordinate is 1 iff a specific element is put
in a specific position within the ordering, so that d =
k · n and |X | = n!/(n− k)!.

Shortest paths Consider a graph G = (V,E) with two
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Algorithm 1 Follow the perturbed leader
Input: η > 0, set X ⊆ {0, 1}d
Set Θ1 ← 0
for t = 1 to T do

Sample γt ∼ N (0, I)
Predict xt ∈ arg minx∈X 〈x,Θt + ηγt〉
Suffer loss 〈xt, θt〉 and accumulate Θt+1 ← Θt + θt

end for

vertices s, t ∈ V , respectively referred to as the source
and sink. The learner is to predict a shortest path be-
tween s and t. Among applications of this problem are
network routing in asymmetric communication and
road navigation.

The set X represents the set of all such possible paths.
With d = |E|, each element x ∈ X is a vector rep-
resenting a path, with xi = 1 iff the path crosses the
i’th edge. Here k represent the maximum number of
edges in any path.

Spanning trees In this problem, we are once again fixing
a graph G = (V,E). At every round the learner has to
predict a spanning tree of G.

Spanning trees are often used in network-level com-
munication protocols. Probably their most famous use
is for Ethernet bridges to distributively decide on a
cycle-free topology of the network.

Here, d = |E| and k = |V |−1. Every element x ∈ X
represents a spanning tree ofGwith xi = 1 iff the i’th
edge participates in the spanning tree.

3. Our algorithm
In the following we bound the regret of our FTPL algorithm
in the structured learning setting. The proof is an extension
of the proof technique of Abernethy et al. (2014).

Theorem 1. Consider algorithm 1. Suppose that for all
x ∈ X ,

∑d
i=1 xi ≤ k for some k ∈ [d]. Further suppose

the adversary is oblivious and its losses are bounded as
θt ∈ [0, 1]d. Then the expected regret satisfies

Eγ1,...,γT [Regret] ≤
√

2k log |X |
(
kT

η
+ η

)
Additionally, by setting η =

√
kT the expected regret is

bounded by 2k
√

2T log |X |.

For each round t, consider the function minx∈X 〈x,Θt +
ηγt〉. It is differentiable almost everywhere (w.r.t Θt) and
we can write its gradient as

∑
x∈X 1[xt=x]·x. The probabil-

ity of selecting a certain x ∈ X is the expected value of the

indicator function 1[x=xt]. With these in mind and follow-
ing Abernethy et al. (2014), we define a potential function

Φ(θ) = Eγ∼N (0,I)

[
min
x∈X
〈x, θ + ηγ〉

]
and we get that its gradient at Θt is Eγt [xt]. Namely,
∇Φ(Θt) =

∑
x∈X Prγ [xt = x] · x = Eγt [xt]. Note that as

a consequence, 〈∇Φ(Θt), θt〉 = E[〈xt, θt〉].

In the following, we will bound the regret of the algorithm
in terms of Φ. We have that Φ is twice continuously differ-
entiable everywhere (Abernethy et al., 2014, Lemma 7). A
Taylor’s expansion of Φ with a second order remainder, is

Φ(Θt+1) = Φ(Θt) + 〈∇Φ(Θt), θt〉+
1

2
〈θt,∇2Φ(θ̃t)θt〉

for some θ̃t on the line segment connecting Θt and Θt+1 =
Θt + θt. Thus,

E[〈xt, θt〉] = Φ(Θt+1)−Φ(Θt)−
1

2
〈θt,∇2Φ(θ̃t)θt〉 (2)

Note that Φ is concave since the minimum of linear func-
tions is a concave function, and thus its Hessian is negative
semidefinite.

Since the right hand side of equation 2 consists of a tele-
scopic term, summing it over all t ∈ [T ] results in

E

[
T∑
t=1

〈xt, θt〉

]
= Φ(ΘT+1)−Φ(Θ1)−1

2

T∑
t=1

〈θt,∇2Φ(θ̃t)θt〉

By Jensen’s inequality, Φ(ΘT+1) ≤
minx∈X Eγ [〈x,ΘT+1 + ηγ〉]. Then the bound
Φ(ΘT+1) ≤ minx∈X 〈x,ΘT+1〉 is obtained since
E[γ] = 0. Recall that minx∈X 〈x,ΘT+1〉 is the loss of the
best decision in hindsight, then by rearranging we have the
following bound on the expected regret.

E [Regret] ≤ −Φη(Θ1)− 1

2

T∑
t=1

〈θt,∇2Φ(θ̃t)θt〉 (3)

We now prove theorem 1 by bounding the terms on the right
hand side of inequality 3.

Proof of theorem 1. For the moment, assume that
−〈θt,∇2Φ(θ̃t)θt〉 ≤ (2k/η)

√
2k log |X | holds. We

will prove the correctness of this statement in lemma 2.

Thus, to complete the regret bound we consider−Φ(Θ1) =
−ηE[minx∈X 〈x, γ〉], which equals ηE [maxx∈X 〈x, γ〉]
since normal random variables are symmetric. Bounds on
the expected maxima of normal random variables imply
that E [maxx∈X 〈x, γ〉] ≤

√
2k log |X |, which we derive

in lemma 9 in the appendix.



Following the Perturbed Leader for Online Structured Learning

Putting the bounds into inequality 3, we have that

E[Regret] ≤ η
√

2k log |X |+ kT

η

√
2k log |X |

which concludes the proof of the theorem.

We finish this section with the proof of the following
lemma.

Lemma 2. Suppose the conditions of theorem 1 hold. We
have,

−〈θt,∇2Φ(θ̃t)θt〉 ≤
2k

η

√
2k log |X |

Proof. By our assumption ‖θt‖∞ ≤ 1. Thus,
−〈θt,∇2Φ(θ̃t)θt〉 ≤

∑
i,j |Hi,j |, where we denoted H =

∇2Φ(θ̃t).

By Abernethy et al. (2014, Lemma 7), we have that

Hi,j =
1

η
E
[
x̂(θ̃t + ηγ)iγj

]
(4)

with x̂(z) ∈ arg minx∈X 〈x, z〉. Note that the right hand
side is well defined since minx∈X 〈x, θ + ηγ〉 is differ-
entiable almost everywhere (w.r.t θ) and its gradient is
x̂(θ + ηγ).

Let us abbreviate x̂(θ̃ + ηγ) as x̂. Fix some j, then∑d
i=1 |Hi,j | ≤ (k/η)

∑
x∈X |E[γj1[x̂=x]]|. This result is

derived in the appendix by separating the positive and neg-
ative entries of the Hessian.

Next, we have two observations. The first is that∑
x∈X E[γj1[x̂=x]] = E[γj ] = 0. The second is about the

sign of E[γj1[x̂=x]]. We claim that it is negative if xj = 1
and positive otherwise. To see that, notice that γj is a sym-
metric random variable, so that for each α > 0 the density
of γj at α and at−α is the same. If xj = 1, the event x̂ = x
is more probable if γj = −α than when γj = α. If xj = 0
then the opposite is true.

Following these two observations, |E[γj1[x̂=x]]| equals
to E[γj1[x̂=x]] whenever xj = 0, and equals
to −E[γj1[x̂=x]] whenever xj = 1. Since the
sum of these two expectations is 0, it follows that∑
x∈X |E[γj1[x̂=x]]| = −2

∑
x∈X E[γj1[x̂=x∧xj=1]].

Thus,
∑
x∈X |E[γj1[x̂=x]]| = −2E[γj x̂j ] = −2ηHj,j .

Putting it all together, we get that
∑
i,j |Hi,j | ≤

−2kTr(H). Equation 4 implies that −Tr(H) equals to
− 1
η

∑d
j=1 E[x̂(θ̃ + ηγ)jγj ]. Since a Gaussian is sym-

metric this also equals to 1
η

∑d
j=1 E[x̂(θ̃ − ηγ)jγj ] and

it is upper bounded by 1
ηE [maxx∈X 〈x, γ〉]. As shown

in lemma 9 (in the appendix), this expected maxima
of normal random variables is bounded from above by
(1/η)

√
2k log |X |.

3.1. A better bound for the k-sets problem

For the k-sets problem, we can show an upper bound of

2
√

2Tk log
(
d
k

)
on the regret of our algorithm. The proof

of the bound follows along the lines of theorem 1. The
only difference is that lemma 2 is replaced by the following
lemma.
Lemma 3. Let k ∈ [d]. Let X = {x ∈ {0, 1}d :∑d
i=1 xi = k}. We have,

−〈θt,∇2Φ(θ̃t)θt〉 ≤
2

η

√
2k log |X |

The difference between this lemma and lemma 2 is that
this lemma lacks a factor of k. Similarly, the regret bound
attained for this problem is better than that of theorem 1 by
a factor of

√
k. Note that this upper bound is comparable to

the one achieved by the algorithm of Koolen et al. (2010).

What makes this improvement possible is the fact that for
the k-sets problem, for any i 6= j, the perturbation of the
i’th coordinate and the event that the learner would pick
the j’th coordinate are positively correlated. Namely, we
have E[x̂(θt + ηγ)jγi] ≥ 0. This property does not hold
for general structured problems, and we will use this fact in
the lower bound of the next section.

4. Lower bound
In this section we will present our lower bound for FTPL in
structured learning. We will focus on sets X such that for
all x ∈ X ,

∑d
i=1 xi = k and k = Θ(d). The lower bound

is an adaption of Audibert et al. (2013, Theroem 1).
Theorem 4. Consider an FTPL algorithm whose pertur-
bations satisfy the following: γ1, ..., γd are IID, logcon-
cave and have variance 1. Furthermore, there is a constant
L > 0 such that for all µP , µQ ∈ Rd, the joint distributions
P,Q of γ + µP , γ + µQ respectively, satisfy the total vari-
ation distance2 constraint of TV(P,Q) ≤ L‖µP − µQ‖1.
Let T ≥

√
d/L. There is a set X ⊆ {0, 1}d and a constant

c > 0 for which the regret of any such FTPL algorithm
satisfies

sup
adversary

E[Regret] ≥ c · d5/4
√
T/L

We defer the proof of theorem 4 to section 4.3 and present
its main ideas in the following simpler theorem for Gaus-
sian perturbations.
Theorem 5. Consider an FTPL algorithm with γ ∼
N (0, I). Let T ≥ 10

√
d. There is a set X ⊆ {0, 1}d and a

constant c > 0 for which this FTPL algorithm satisfies

sup
adversary

E[Regret] ≥ c · d5/4
√
T

2TV(P,Q) := supE |PrP [E]− PrQ[E]|.
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Proof. In the sequel we will describe a set X and two
adversaries. The first adversary satisfies E[Regret1] ≥
min

{
Td/16, dη

√
2/32

}
and the second adversary satis-

fies E[Regret2] = (Td/16) · erf(
√
d/4η). Therefore, the

expected regret of the algorithm satisfies

sup
adversary

E[Regret] ≥ max{E[Regret1],E[Regret2]}

≥ min
{

0.02Td, 0.05d5/4
√
T
}

where the last inequality is technical, and is provided as
lemma 11 in the appendix. Applying the assumption that
T ≥ 10

√
d completes the proof.

Intuitively, X consists of two separate problems. The first
is the problem of selecting any d/4 coordinates out of the
first d/2 coordinates. The second is, out of the remaining
d/2 coordinates, to select either the first d/4 coordinates or
the last d/4 coordinates.

Let us define the set concretely. We will split the d
coordinates into three intervals. I1 includes coordinates
1, ..., d/2, I2 includes coordinates d/2 + 1, ..., 3d/4 and
I3 includes coordinates 3d/4 + 1, ..., d. Then the set X is
defined as,

X ={x ∈ {0, 1}d :
∑
i∈I1

xi =
d

4
and

((xi = 1, ∀i ∈ I2) or (xi = 1, ∀i ∈ I3))}

Notice that k = d/2 and |X | = 2
(
d/2
d/4

)
= O(2d/2), so

that for this specific set X , the regret of algorithm 1 is
O(d3/2

√
T ) while the regret of Koolen et al.’s algorithm is

O(d
√
T ). Theorem 5 shows a lower bound of Ω(d5/4

√
T )

on the regret of algorithm 1.

In the following we will define two adversaries, each caus-
ing the learner to suffer loss on a disjoint half of the coor-
dinates. The first adversary assigns positive loss only to the
first d/2 coordinates. For it, the learner will want η to be
as small as possible. The second adversary assigns positive
loss only for coordinates d/2 + 1, ..., d. For it, the learner
would like η to be as large as possible, as its regret depends
on 1/η.

4.1. The first adversary

In every round the adversary assigns a loss of 1− ε to coor-
dinates {1, ..., d/4} for ε ∈ (0, 1), a loss of 1 to coordinates
{d/4 + 1, ..., d/2} and 0 for the rest of the coordinates.
Lemma 6. Under the conditions of theoren 5 the expected
regret satisfies

E[Regret1] ≥ min

{
Td

16
,
dη
√

2

32

}

Proof. Denote by pt,i the probability that at time t the
learner would predict an x such that xi = 1. Recall that
at each round, our algorithm chooses xt ∈ X as in equa-
tion 1. We note the following:

• Since the learner has to pick exactly d/4 coordinates
at every round, this implies that

∑d/2
i=1 pt,i = d/4.

• The coordinates 1, ..., d/4 suffer the same loss, and
the coordinates d/4 + 1, ..., d/2 suffer the same loss.
We assume that the perturbations γ are IID. Hence it
must be that by symmetry, pt,1 = ... = pt,d/4 and that
pt,d/4+1 = ... = pt,d/2.

• From the last two bullets we conclude that for every t,
for every i ∈ {1, ..., d/4} and for every j ∈ {d/4 +
1, ..., d/2} we have that pt,i + pt,j = 1.

• At every round, the difference in the cumulative loss
between a coordinate in {d/4+1, ..., d/2} and any co-
ordinate in {1, ..., d/4} is strictly increasing. Hence,
as the rounds progress, the learner is less likely to pick
a coordinate from {d/4 + 1, ..., d/2}. Concretely, for
every coordinate i ∈ {d/4 + 1, ..., d/2}, pt,i is nonin-
creasing in t.

Against this adversary, the best choice in hindsight would
be to predict coordinates 1, ..., d/4. The cumulative loss for
this choice is Td(1 − ε)/4. Then, the regret of the learner
is

T∑
t=1

(
d(1− ε)

4
pt,1 +

d

4
pt,d/2

)
− Td(1− ε)

4

=

T∑
t=1

dε

4
pt,d/2 ≥

Tdε

4
pT,d/2

We will later prove in lemma 7 that pT,1 − pT,d/2 ≤
(εT )/(η

√
2). Since pT,1 + pT,d/2 = 1, it holds that

pT,d/2 ≥ 1/2 − εT/(2
√

2η). Finally, setting ε =

min{η/(T
√

2), 1} gives pT,d/2 ≥ 1/4. Thus, the lower
bound on the regret follows.

To complete the lower bound of the first adversary, we state
the following lemma:

Lemma 7. We have that pT,1 − pT,d/2 ≤ (εT )/(η
√

2).

Proof. After T rounds, the difference in the cumulative
loss between a coordinate in {d/4 + 1, ..., d/2} and any
coordinate in {1, ..., d/4} is exactly εT . Let P be the dis-
tribution ofN (µP , I), where µP is−εT/η for the first d/4
coordinates and 0 for the rest. Note that for the learner to
pick the d/4 coordinates with the least perturbed loss is the
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same as sampling from P and picking the smallest d/4 co-
ordinates (out of the first d/2).

Let Q be the distribution of N (µQ, I), where µQ is the
same as µP except that the first coordinate is interchanged
with the d/2’th coordinate. In other words µQ is 0 on the
first coordinate and −εT/η on the d/2’th coordinate.

Consider the same sampling process as described before,
except over Q rather than P . Denote by qi the proba-
bility of selecting the i’th coordinate out of the smallest
d/4 coordinates. Therefore, pT,1 = qd/2. In particu-
lar, pT,1 − pT,d/2 = qd/2 − pT,d/2 ≤ TV(Q,P ) and
by Pinsker’s inequality, TV(Q,P ) ≤

√
(1/2)KL(P ||Q).

Note that P and Q are both multivariate normal distribu-
tions and hence the KL divergence between them equals
(1/2)‖µP − µQ‖2 = (εT/η)2.

4.2. The second adversary

On even rounds the adversary assigns a loss of 1 for each
coordinate in {3d/4 + 1, ..., d} and 0 for the rest. On odd
rounds it assigns a loss of 1 for every coordinate in {d/2 +
1, ..., 3d/4} and 0 for the rest.

Lemma 8. Under the conditions of theorem 5, for the sec-
ond adversary we have

E[Regret2] =
Td

16
erf

(√
d

4η

)

Proof. At the beginning of odd rounds, the cumulative loss
of coordinates in {d/2+1, ..., d} is identical. By symmetry,
our algorithm would pick an x ∈ X uniformly at random.
Therefore the expected loss of the learner in any odd round
is d/8 and Td/16 in total.

On even rounds the distribution over the choices of the
learner is the same between such rounds. Recall that the
cumulative loss of coordinates in {d/2 + 1, ..., 3d/4} is
larger by 1 than coordinates in {3d/4 + 1, ..., d}. Then
the probability of suffering a loss on an even round is:

Pr

η d∑
i=3d/4+1

γi <

3d/4∑
i=d/2+1

(ηγi + 1)


Let Z =

√
2/d

∑3d/4
i=d/2+1(γi+d/4 − γi), then the above

probability is Pr[Z ≤
√

2d/4η] and the expected loss of
the learner in even rounds is (Td/8) Pr[Z ≤

√
2d/4η].

After T iterations, the loss of any coordinate in {d/2 +
1, ..., d} is T/2, so that the loss of any x ∈ X is Td/8.
To conclude we note that Pr[Z ≤

√
2d/4η] = (1 +

erf(
√
d/4η))/2.

4.3. The logconcave case

To prove our regret lower bound for any logconcave distri-
bution, two adjustments to the proof for the Gaussian case
are required. The first of which, is in the proof of lemma 7.
There, instead of bounding the total variation distance be-
tween P and Q using Pinsker’s inequality, we use our as-
sumption that TV(P,Q) ≤ L‖µP − µQ‖1 ≤ 2LεT/η.
The second difference between the proofs is in the proof
of lemma 8, estimating the tail of the random variable
Z :=

√
2/d

∑3d/4
i=d/2+1(γi+d/4 − γi). Originally, we have

used the fact that the normalized sum of normal random
variables is a standard normal random variable. Analo-
gously, sums and differences of logconcave random vari-
ables are also logconcave (Prékopa, 1973). Then, from its
definition, Z is a symmetric logconcave random variable
that is isotropic, namely it has mean 0 and variance 1. Let
f denote the PDF of Z, and F its CDF. We have the fol-
lowing properties of Z:

• For any isotropic logconcave density f(0) ≥ 1/8
(Lovász & Vempala, 2007, Lemma 5.5).

• By symmetry F (0) = 1/2 and for any s ∈ R, F (s) =
1− F (s).

From the first bullet and by logconcavity, for any s < 0,
logF (s) ≤ logF (0) + (logF )′

∣∣
t=0
· s. We note that

(logF )′
∣∣
t=0

= f(0)/F (0) ≥ 1/4, which means that
F (s) ≤ (1/2) exp(s/4). Then for any s > 0, F (s) =
1− F (−s) ≥ 1− 1

2 exp(−s/4).

Then the regret of the second adversary satisfies

E[Regret2] ≥ Td

8

(
1− 1

2
exp

(
−
√

2d

16η

))
− Td

16

=
Td

16

(
1− exp

(
−
√

2d

16η

))

which we can apply with the rest of the proof, including the
technical lemma, since 1− exp(−x) is nondecreasing and
concave (see supplementary material for more detail).

5. Experiments
We evaluated our algorithm, Neu & Bartók’s algorithm
and Koolen et al.’s algorithm on the shortest path problem.
We constructed a directed graph with 53 vertices and 201
edges. The graph has a grid-like structure; where an undi-
rected edge appears there is an edge in the opposite direc-
tion. Additionally, we have added a source vertex s and
a destination vertex t. Both s and t are connected to the
rest of the graph only through outgoing or incoming edges
respectively. The graph is shown in figure 1.
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Figure 1. Graph for experiments. A directed edge indicates that
an edge exists in the direction it is drawn. An undirected edge
indicates there are two directed edges in its place, one for every
direction. The two best paths are shown colored and dashed.

The three algorithms we compare require to tune a param-
eter η. The minimax optimal choice of η depends on k,
which in this case is the length of the longest s − t path
— which is NP-hard and even NP-hard to approximate
(Björklund et al., 2004). Therefore, we resort to choos-
ing η based on the empirical performance of each of the
algorithms against our adversary.

We have built the adversary so that the choices the algo-
rithms make are neither completely arbitrary (the loss of all
edges are random and independent) nor fixed on all rounds
(there is a path with least cumulative loss at all rounds).
The loss on each edge is picked uniformly at random in
{0, 1}. However, we override this random loss in the fol-
lowing manner. We have picked two s− t paths in advance
(colored and dashed in figure 1). In every round, we choose
one of these paths in an alternating fashion. We set of a loss
of 0.75 to each of its edges and 0 to the edges of the other
path. We do that so that these two paths are always optimal
on average compared and yet switching often between the
two would result in high regret.

We choose a nominal η by evaluating each algorithm on
our problem with T = 100 on values of η ranging from en

where n an integer is between 0 and 10 (we choose η from
e−n for Koolen et al.’s algorithm). We run our experiments
with horizons T between 1 and 100. We choose the nomi-
nal η and multiply it by

√
T/100 (divide by

√
T/100 for

Koolen et al.’s algorithm). In figure 2, we plot the average
runtime of each algorithm as well as the average regret of
each algorithm, as a function of T .

As one can see from the plots, both FTPL algorithms have
approximately the same runtime and the same regret and
are much faster than the RFTL algorithm. As expected,
both FTPL algorithms perform slightly worse than the
RFTL algorithm in terms of regret.
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Figure 2. On the left, average runtime in seconds as a function of
T (in log scale). On the right, average regret as a function of T . In
dot-dashed blue is our algorithm, in dashed green Neu & Bartók’s
and in solid red is Koolen et al.’s algorithm.

6. Discussion and future work
Many real-life problems are, in fact, both online and com-
binatorial in nature. In this paper we consider algorithms
for this setting. From a statistical perspective, this problem
has been solved in Koolen et al. (2010), that have given a
regret bound of O(k

√
T log(d/k)) and a matching lower

bound.

In our work we argue that this problem is far from being
solved from a computational perspective. As can be seen in
our experiments, FTPL algorithms are computationally ef-
ficient. We have shown a new FTPL algorithm with state of
the art regret bound. Furthermore, we have shown a lower
bound for most FTPL algorithms found in the literature.

It is easy to see that our lower bound doesn’t hold for
non-IID perturbations. Focusing on the construction of the
lower bound, if the perturbations of the last d/2 coordinates
are dependent (i.e. the first d/4 are all equal and the sec-
ond d/4 are all equal) then the probability of switching be-
tween the sets of d/4 coordinates on odd rounds (lemma 8)
becomes independent of d (instead of proportional to

√
d

in the IID case). We conjecture that FTPL with non-IID
perturbations can achieve optimal regret.

We conjecture that O(d5/4
√
T ) is the correct rate. Intu-

itively, when the additional dependence on k (or d1/4 as
in the lower bound) appears in the regret bound, the set X
cannot be too large. This is in contrast to the k-sets prob-
lem, for which X is the largest set for a given k and for
which our algorithm has optimal regret. We conjecture that
our upper bound fails to capture the interplay between the
size of X and the appearance of the additional d1/4 factor.

We ask whether the logconcavity assumption is necessary.
We can still prove that this lower bound holds asymptoti-
cally if T is fixed and d goes to infinity (using the Central
Limit Theorem). However, we argue that the regime when
T � d is much more interesting.



Following the Perturbed Leader for Online Structured Learning

References
Abernethy, Jacob, Lee, Chansoo, Sinha, Abhinav, and

Tewari, Ambuj. Online linear optimization via smooth-
ing. The Journal of Machine Learning Research, 35:
807–823, 2014.

Ailon, Nir. Improved bounds for online learning over the
permutahedron and other ranking polytopes. In Proceed-
ings of the Seventeenth International Conference on Ar-
tificial Intelligence and Statistics, pp. 29–37, 2014.

Audibert, Jean-Yves, Bubeck, Sébastien, and Lugosi,
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