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Abstract

Mastering the game of Go has remained a long-
standing challenge to the field of Al. Modern
computer Go programs rely on processing mil-
lions of possible future positions to play well,
but intuitively a stronger and more ‘humanlike’
way to play the game would be to rely on pattern
recognition rather than brute force computation.
Following this sentiment, we train deep convo-
lutional neural networks to play Go by training
them to predict the moves made by expert Go
players. To solve this problem we introduce a
number of novel techniques, including a method
of tying weights in the network to ‘hard code’
symmetries that are expected to exist in the target
function, and demonstrate in an ablation study
they considerably improve performance. Our fi-
nal networks are able to achieve move prediction
accuracies of 41.1% and 44.4% on two different
Go datasets, surpassing previous state of the art
on this task by significant margins. Additionally,
while previous move prediction systems have not
yielded strong Go playing programs, we show
that the networks trained in this work acquired
high levels of skill. Our convolutional neural net-
works can consistently defeat the well known Go
program GNU Go and win some games against
state of the art Go playing program Fuego while
using a fraction of the play time.

1. Introduction

Go is an ancient, deeply strategic board game that is notable
for being one of the few board games where human experts
are still comfortably ahead of computer programs in terms
of skill. Predicting the moves made by expert players is
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an interesting and challenging machine learning task, and
has immediate applications to computer Go. In this section
we provide a brief overview of Go, previous work, and the
motivation for our deep learning based approach.

1.1. The Game of Go
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Figure 1. Capturing pieces in Go. Here white’s stones in the upper
left are connected to each other through adjacency so they form a
single group (left panel). When black places a stone on the indi-
cated grid point (middle panel) that group is surrounded, meaning
there are no longer any empty grid points adjacent to it, so the
entire group is removed from the board (right panel).
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Figure 2. Example of positions from a game of Go after 50 moves
have passed (left) and after 200 moves have passed (right). In the
right panel it can be seen that white is gaining control of territory
in the center and top of the board, while black is gaining influence
over the left and right edges.

We give a very brief introduction to the rules of Go. We de-
fer to (Bozulich, 1992) or (Miiller, 2002) for a more com-
prehensive account of the rules. Go has a number of differ-
ent rulesets that subtly differ as to when moves are illegal
and how the game is scored, here we focus on generalities
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that are common to all rulesets.

Go is a two-player game that is usually played on a 19x19
grid based board. The board typically starts empty. One
player plays as white and one as black. White starts by
placing a white stone on a grid point. Black then places
a black stone on an unoccupied grid point, and play con-
tinues in this manner. Players can opt to pass instead of
placing a stone, in which case their turn is skipped and
their opponent may make a second move. Stones cannot be
moved once they are placed, however a player can capture a
group of their opponent’s stones by surrounding that group
with their own stones. In this case the surrounded group
is removed from the board as shown in Figure 1. Broadly
speaking, the objective of Go is to capture as many of the
grid points on the board as possible by either occupying
them or surrounding them with stones. The game is played
until both players pass their turn, in which case the players
come to an agreement about which player has control over
which grid points and the game is scored.

Through the capturing mechanic it is possible to create in-
finite ‘loops’ in play as players repeatedly capture and re-
place the same pieces. Go rulesets include rules to prevent
this from occurring. The simplest version of this rule is
called the simple-ko rule, which states that players cannot
play moves that would recreate the position that existed on
their previous turn. Most Go rulesets contain stronger ver-
sions of this rule called super-ko rules, which prevent play-
ers from recreating any previously seen position. Figure 2
shows some example board positions from a game of Go.

State of the art computer Go programs such as Fuego (En-
zenberger et al., 2010), Pachi (Baudi§ & Gailly, 2012), or
CrazyStone !, can achieve the skill level of very strong am-
ateur players, but are still behind professional level play.
The difficulty computers have in this domain relative to
other board games, such as chess, is often attributed to two
things. First, in Go there are a very large number of possi-
ble moves. Players have 19 x 19 = 361 possible starting
moves. As the board fills up the number of possible moves
decreases, but can be expected to remain in the hundreds
until late in the game. This is in contrast to chess where
the number of possible moves might stay around fifty. Sec-
ond, good heuristics for assessing which player is winning
in Go have not been found. Counting the number of stones
each player has is a poor indicator of who is winning, and
it has proven to be difficult to build effective heuristics for
estimating which player has the stronger position.

Current state of the art Go playing programs use Monte
Carlo Tree Search (MCTS) algorithms. MCTS algorithms
evaluate positions in Go using simulated ‘playouts’ where
the game is played to completion from the current posi-
tion assuming both players move randomly or follow some
computationally cheap best move heuristic. Many playouts
are carried out and it is then assumed good positions are

"http://remi.coulom. free.fr/CrazyStone/

ones where the program was the winner in the majority
of them. See (Browne et al., 2012) for a recent survey of
MCTS algorithms and (Rimmel et al., 2010) for a survey
of some modern Go playing systems.

1.2. Move Prediction in Go

Human Go experts rely heavily on pattern recognition
when playing Go. Expert players can gain strong intuitions
about what parts of the board will fall under whose con-
trol and what are the best moves to consider at a glance,
and without needing to mentally simulate possible future
positions. This is in contrast to typical computer Go algo-
rithms, which simulate thousands of possible future posi-
tions and make minimal use of pattern recognition. This
gives us reason to think that developing pattern recognition
algorithms for Go might be the missing element needed to
close the performance gap between computers and humans.
In particular for Go, pattern recognition systems could pro-
vide ways to combat the high branching factor by making
it possible to prune out many of the possible moves in the
current position.

Outside of playing Go, move prediction is an interesting
machine learning task in its own right. We expect the target
function to be highly complex, since it is fair to assume hu-
man experts think in complex, non-linear ways when they
choose moves. We also expect the target function to be
non-smooth because a minor change to a position in Go
(such as adding or removing a single stone) could be ex-
pected to dramatically alter which moves are likely to be
played next. These properties make this learning task very
challenging, however it has been argued that acquiring an
ability to learn complex, non-smooth functions is of par-
ticular importance when it comes to solving Al (Bengio,
2009). These properties have also motivated us to attempt
a deep learning approach, as it has been argued that deep
learning is well suited to learning complex, non-smooth
functions (Bengio, 2009; Bengio & LeCun, 2007). Move
prediction for Go also provides an opportunity to test the
abilities of deep learning on a domain that has a close con-
nection to Al

1.3. Previous Work

Previous work in move prediction for Go typically made
use of feature construction or shallow neural networks. The
former approach involves characterizing each legal move
by a large number of features. These features include many
‘shape’ features, which take on a value of 1 if the stones
around the move in question exactly match a predefined
configuration of stones and 0 otherwise. Stone configura-
tions can be as small as the nearest two or three squares and
as large as the entire board. Very large numbers of stone
configurations can be harvested by finding commonly oc-
curring stone configurations in the training data. Shape fea-
tures can be augmented with hand crafted features, such as
distance of the move in question to the edge of the board,
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whether making the move will capture or lose stones, its
distance to previous moves, ect. Finally a model is trained
to rank the legal moves based on their features. Work fol-
lowing this approach includes (Stern et al., 2006; Araki
et al., 2007; Wistuba et al., 2012; Wistuba & Schmidt-
Thieme, 2013; Coulom, 2007). Depending on the complex-
ity of the model used, researchers have seen accuracies of
30 - 41% on move prediction for high-ranked amateur Go
players.

Several researchers have made use of neural networks for
move prediction. Werf et al. trained a neural network to
predict expert moves using hand constructed features, pre-
processing techniques to reduce the dimensionality of the
data, and a two layer neural network (Van Der Werf et al.,
2003). Our work builds upon work done by Sutskever et al.,
where two layer convolutional networks were trained for
move prediction (Sutskever & Nair, 2008). They achieved
an accuracy of 34% when predicting the moves made by
professional Go players using a network that took both the
current board position and the previous moves as input. An
ensemble of networks reached 37% accuracy.

Our work will differ in several important ways. We use
much deeper networks and propose several novel position
encoding schemes and network designs that improve per-
formance. We found that the most important one is a strat-
egy of tying weights within the network to ‘hard code’ par-
ticular symmetries that are expected to exist in good move
prediction functions. We also do not use the previously
made moves as input. There are two motivations for choos-
ing not to do so. First, classifiers trained using previous
moves as input might come to rely on heuristics like ‘move
near the area where previous moves were made’ instead of
learning to evaluate positions based on the current stone
configuration. While this might improve accuracy, our fun-
damental motivation is to see whether the classifier can
capture Go knowledge, and the ability to borrow knowl-
edge from experts by looking at their past moves cheapens
this objective. Secondly, it is likely to reduce performance
when it comes to playing as a stand-alone Go player. Dur-
ing play both an opponent and the network are liable to
make much worse moves then would be made by Go ex-
perts, therefore coming to rely on the assumption that the
previous moves were made by experts can be expected to
yield poor results. This potential problem was also noted
by (Araki et al., 2007). Our work is also the first to perform
an evaluation across two datasets, providing an opportunity
to compare how classifiers trained on these datasets differ
in terms of Go playing abilities and move prediction accu-
racy.

Several of the works mentioned above analyze or comment
on the strength of their move prediction program as a stand-
alone Go player. In (Van Der Werf et al., 2003) researchers
found that their neural network was consistently defeated
by GNU Go and conclude their °...belief was confirmed that
the local move predictor in itself is not sufficient to play a

strong game.” Work by (Araki et al., 2007) also reports
that their move predictor was beaten by GNU Go. Stern et
al. report that other Go players estimated their move pre-
dictor as having a ranking of 10-15 kyu, but do not report
its win rates against another computer Go opponent (Stern
et al., 2006) . Both (Coulom, 2007; Wistuba & Schmidt-
Thieme, 2013) do not give formal results, but suggest that
their systems did not make strong stand-alone Go playing
programs. In general past approaches to move prediction
have not resulted in Go programs with much skill.

Subsequent to the public release of this work, Maddison
et al. also released independent work exploring DCNNs
for move prediction (Maddison et al., 2014). In that work
they explore larger networks and different board represen-
tations. However they also use previous moves as input to
their classifier, which we avoid. They show initial explo-
rations of using convolutional networks as part of Monte-
Carlo Tree Search.

The work presented here is based on the work done
in (Clark, 2014).

2. Approach
2.1. Data Representation

As done by (Sutskever & Nair, 2008), the networks trained
here take as input a representation of the current position
and output a probability distribution over all grid points of
the Go board, which are interpreted as a probability distri-
bution over the possible places an expert player could place
a stone. During testing probability given to grid points that
would be an illegal move, either due to being occupied by
a stone or due to the simple-ko rule, are set to zero and the
remaining outputs renormalized. We follow (Sutskever &
Nair, 2008) by encoding the current position in two 19x19
binary matrices. The first matrix has ones indicating the
location of the stones of the player who is about to play,
the second 19x19 matrix has ones marking where the op-
ponent’s stones are. We depart from (Sutskever & Nair,
2008) by additionally encoding the presence of a ‘simple-
ko constraint’ if one is present in a third 19x19 matrix.
Here simple-ko constraints refers to grid points that the
current player is not allowed to place a stone on due to
the simple-ko rule. In our dataset of professional games
only 2.4% of moves were made with a simple-ko constraint
present. However simple-ko constraints are often featured
in Go tactics so we hypothesize they are still important to
include as input. We elect not to encode move constraints
beyond the ones created by the simple-ko rule, meaning
constraints stemming from super-ko rules, because they are
rare, harder to detected, ruleset-dependent, and less promi-
nent in Go tactics. Thus the input has three channels and
a height and width of 19. Again following (Sutskever &
Nair, 2008), as well as other work that has found this to
be a useful feature such as (Wistuba & Schmidt-Thieme,
2013), we tried encoding the board into 7 channels where
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stones are encoded based on the number of ‘liberties’ they
have, meaning the number of empty grid points that the op-
posing player would need to occupy to capture that stone.
In this case channels 1-3 encode the current player’s pieces
that have 1, 2, or 3 or more liberties, channels 4-6 do the
same for the opponent’s pieces, and the 7th channel marks
simple-ko constraints as before.

The classifier is not trained to predict when players choose
to pass their move. Passing is extremely rare throughout
most of the game because it is practically never beneficial
to pass a move in Go. Thus passing is mainly used at the
end of the game to signal willingness to end the game. This
means players usually pass, not because there are no bene-
ficial moves left to be played, but due to being in a situation
where both players can agree the game is over. Modeling
when this situation occurs is beyond the scope of this work.

2.2. Basic Architecture

Our most effective networks were composed of many con-
volutional layers. Since the input only has a height and
width of 19 we found it important to zero pad the input
to each convolutional layer to stop the size of the out-
puts of the higher layers becoming exceedingly small. We
briefly experimented with some variations, but found that
zero-padding each layer to ensure each layer’s output has
a 19x19 shape was a reasonable choice. In general using a
fully connected top layer was more effective than a convo-
lutional top layer as was used by (Sutskever & Nair, 2008).
However, the performance gap between networks using a
convolutional and fully connected top layer diminished as
the networks increased in size. As the networks increased
in size using more than one fully connected layer at the top
of the network became unhelpful. Thus our DCNNs use
many convolutional layers followed by a single fully con-
nected top layer. We found the rectifier activation function
to be slightly more effective than the tanh activation func-
tion, which is used in all DCNNSs in this work.

We were limited primarily by running time, in almost all
cases increasing the depth and number of filters of the net-
work increased accuracy. This implies we have not hit the
limit of what can be achieved by scaling up the network.
We found that using many, smaller convolutional filters and
deep networks was more efficient in terms of trading off
runtime and accuracy than using fewer, larger filters.

2.3. Additional Design Features

Along with the network architecture described above we
introduce a number of additional techniques that we found
to be effective for this task.

2.3.1. EDGE ENCODING

In the neural networks described so far the first convolu-
tional layer will zero pad its input. In the current board rep-
resentation zeros represent empty grid points, so this results

in the board ‘appearing’ to be surrounded by empty grid
points. In other words, the first layer cannot capture dif-
ferences between stones being next to an edge or an empty
grid point. A solution is to reserve an additional channel
to encode the out of bounds grid points. In this scheme an
empty channel is added to the input. Then, instead of zero
padding the input, the input is padded with ones around
the new channel and padded with zeros around the other
channels. We experimented with padding the first layer
with ones in the channel used for the opponent’s stones,
but found this to be less effective.

2.3.2. MASKED TRAINING

In Go, some grid points of the board are not legal moves,
either because they are already occupied by a stone or due
to ko rules. Therefore these points can be eliminated as
possible places an expert will move a priori. During test-
ing we account for this, but this knowledge is not present
in the network during training. Informal experiments show
that the classifier is able to learn to avoid predicting ille-
gal moves with very close to 100% accuracy, but we still
speculate that accounting for this knowledge during train-
ing might be beneficial. To accomplish this we ’mask’,
or zero out, the outputs from the top layer that are ille-
gal, and then apply the softmax operator, make predictions,
and backprop the gradient across only these outputs during
learning.

2.3.3. REFLECTION PRESERVATION

Figure 3. Visualization of the weights of randomly selected chan-
nels from randomly selected convolution filters of a five layer con-
volutional neural network trained on the GoGoD dataset. The
network was trained once without (top) and once with (bottom)
reflection preservation. It can be seen that even without weight
tying some filters, such as row 1 column 6, have learned to ac-
quire a symmetric property. This effect is even stronger in the
weight visualization of (Sutskever & Nair, 2008).
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Figure 4. Applying the same convolutional filter to the upper left
patch of an input (left) and to the upper right patch of the same
input reflected across its y-axis (right). To enforce horizontal re-
flection preservation we will need to ensure ogg = 001, for any x.
This means we must have woo = wp1 and wip = wii.

In Go, if the board is reflected across either the x, y, or
diagonal axis the game in some sense has not changed.
The transformed position could be played out in an iden-
tical manner as the original position (relative to the trans-
formation), and would result in the same scores for each
player. Therefore we would expect that, if the Go board
was reflected, the classifier’s output should be reflected in
the same manner. One way of exploiting this insight would
be to train on various combinations of reflections of our
training data, increasing the number of samples we could
train on by eight folds. This tactic comes at a serious cost;
our final network took four days to train for ten epochs.
Increasing our data by eight folds means it would require
almost a month to train for the same number of epochs.

A better route is to ‘hard wire’ this reflectional preserv-
ing property into the network. One way this can be done
is by carefully tying the weights so that this property ex-
ists for each layer. For convolutional layers, this means
tying the weights in each convolutional filter so that they
are invariant to reflections. In other words enforcing that
the weights are symmetrical around the horizontal, ver-
tical, and diagonal dividing lines. An illustration of the
kinds of weights this produces can be found in Figure 3.
To see why this has the desired effect consider the appli-
cation of a convolutional filter to an input with one chan-
nel. Let w;; be the weights of the convolutional filter and
x;; be any square patch from the input of the same size
where 0 <= 47 < nand 0 <= j < m and ¢ and j
index into the row and column of the input/weight in a
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Figure 5. The computation for a single output unit, ogo with
weights a;;, for an input (left) and the computation for the out-
put unit on the opposite side of the vertical axis, 01 with weights
b;; when the input is reflected across the y-axis (right). To enforce
horizontal reflection preservation we need to ensure ogg = 001 for
any x. Itis easy to see by examining the equations shown that this
means we require ago = bo2, ao1 = bo1, ao2 = boo, ect.

top-to-bottom and left-to-right manner. The pre-activation
output of this filter when applied to this patch of input is
s = ;L:_Ol ?:_leij w;j. Should the input be reflected
horizontally, the patch of inputs z;; will now be reflected
and located on the opposite side of the vertical axis. As-
suming the convolutional filter is applied in a dense man-
ner (a stride of size 1), the same convolutional filter will
be applied to the reflected patch. It is necessary and suffi-
cient that the application of the convolutional filter to this
reflected patch has a pre-activation value of s, the same
as before, to meet our goal of having this layer preserve
horizontal reflections applied to the input. Thus we want

o 2T wiwi; = Y150 X5y ign—jywi; for any
x;j. Thus we require w;; = wj(,—j), in short that the con-
volutional filter is symmetric around the vertical axis. This
is illustrated in Figure 4. A similar proof can be built for
vertical or diagonal reflections.

For fully connected layers this property can also be en-
coded using weight tying in a similar manner. Assume the
output and input of the fully connected layer have a square
shape. Then enforcing horizontal invariance is a matter of
requiring that, for any output unit, a, and the output unit on
the opposite side of the vertical axis, b, that

a;j = bj(n—j) for any 1, j.
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Where a;;, b; ; refers to weight from input 4, j to output
units a and b respectively and n is the width of the in-
put. This is shown in Figure 5. This reasoning can also
be applied to vertical and diagonal reflections, the biases
of each layer, and cases where there are multiple channels
in the input and output. Encoding each reflection invari-
ance ties each weight to another weight, so when account-
ing for all three possible reflections each each weight is
tied to 2 x 2 x 2 = 8 other weights. Likewise, the weight
tying in the convolutional filters reduces the number of pa-
rameters in each filter by approximately an eighth. Thus
we have reduced the number of parameters in the network
by about eight folds. Tying weights requires a bit of extra
computation, but it is a minor cost relative to forward and
backward propagating batches of training data.

An alternative method of enforcing horizontal reflection
preservation would be to apply the filters to half the input,
reflect those filters and apply them to the other half of the
input, and then concatenate the results. This would allow
meeting the requirement that w;; = w;(,—;) reducing the
number of parameters, but we have not experimented with
this approach.

While designed for Go, techniques in this vein have a ready
application in image processing where we often expect the
target function to be invariant to horizontal reflections. A
minor adjustment of this technique could make a layer that
is invariant to reflections rather than reflection preserving,
meaning if its input is reflected its output will not change.
Referring to Figure 5, this is just a matter of ensuring
bog = boo, b10 = b12, and b20 = b22. Then one could build
a network where all the lower layers preserve horizontal re-
flections and the final layer is invariant to horizontal reflec-
tions. The resulting network will be invariant to horizontal
reflections, and have half the number of parameters of an
untied network. This provides a way to account for the
expected reflectional invariance property without having to
double the amount of training data.

3. Training
3.1. Datasets

We use two datasets to evaluate our approach. The first is
the Games of Go on Disk? (GoGoD) dataset consisting of
81,000 professional Go games. Games are played under
a variety of rulesets (but usually Chinese rules) and have
long time controls. The second dataset consists of 86,000
Go games played by high ranked players on the KGS Go
server 3%, These games are all played under Japanese
rules, have slightly lower player rankings, and generally
use much faster time controls. We use two datasets be-
cause previous work in this field has typically used either

*http://gogodonline.co.uk/
3https://www.gokgs.com/
*http://u-go.net/gamerecords/

one or the other. We use all available data from the GoGoD
dataset and select 86,000 games form the KGS dataset
(where games are on average slightly shorter) so that the
number of position-moves pairs in each dataset that can be
trained on is roughly equal. This yields about 16.5 million
move-positions pairs for each dataset.

3.2. Methodology

Both datasets were partitioned into test, train, and valida-
tion sets each containing position-move pairs that are from
disjoint games of Go. We use 8% (1.3 million) for test-
ing, 4% (620 thousand) for validation, and the rest (14.7
million) for training. The validation set was used to mon-
itor learning and to experiment with hyperparameters. We
use vanilla gradient descent for training, although we found
that it was important to anneal the learning rate towards the
end of learning. Both convolutional and fully connected
layers had their biases initialized to zero and weights drawn
from a normal distribution with mean 0 and standard devi-
ation 0.01.

4. Results
4.1. Ablation Study
Excluding Accuracy | Rank | Probability

None 36.77% | 7.50 0.0866
Ko Constraints 36.55% 7.59 0.0853
Edge Encoding 36.81% | 7.64 0.0850
Masked Training 36.31% | 7.66 0.0843
Liberties Encoding 35.65% | 7.89 0.0811
Reflection Preserving | 34.95% 8.32 0.0760
All but Liberties 3448% | 8.36 0.0755
All 3345% | 8.76 0.0707

Table 1. Ablation study. A medium scale network with four con-
volutional layers and one fully connected layer was trained on
the GoGoD dataset while excluding different features. We report
accuracy, average probability assigned to the correct move, and
average rank given to the correct move relative to the other pos-
sible moves on the test set. The liberty encoding and reflection
preserving techniques are the most useful, but all the suggested
techniques improve average rank and average probability.

To evaluate some of the design choices made here an ab-
lation study was performed. The study was done on a
‘medium scale’ network to allow multiple experiments to
be conducted quickly. The network had one convolutional
layer with 48 7x7 filters, three convolutional layers with 32
5x5 filters, and one fully connected layer. Networks were
trained with mini-batch gradient descent with a batch size
of 128, using a learning rate of 0.05 for 7 epochs, and 0.01
for 2 epochs, which took about a day on a Nvidia GTX 780
GPU. The results are in Table 1. The reflection preserving
technique was extremely effective, leaving it out dropped
accuracy by almost 2%. The liberty encoding scheme im-
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proved performance but was not as essential, leaving it
out dropped performance by 1%. The remaining optimiza-
tions had a less dramatic impact but still contributed non-
trivially. Together these additions increased the overall ac-
curacy by over 3% and increased accuracy relative to just
using liberties encoding by over 2%.

4.2. Full Scale Network Evaluation

NLL

Figure 6. Negative log likelihood on the validation set while train-
ing the 8 layer DCNN trained on the GoGoD dataset. Vertical
lines indicate when the learning rate was annealed. Improvement
on the validation set has more or less slowed to a halt after 10
epochs of training.

Accuracy | Rank | Probability
Test Data | 41.06% | 5.91 0.1117
Train Data | 41.86% | 5.78 0.1158

Table 2. Results for the 8 layer DCNN on the train and test set of
the GoGoD dataset. Rank refers to the average rank the expert’s
move was given, Probability refers to the average probability as-
signed to the expert’s move.

Accuracy | Rank | Probability
Test Data | 44.37% | 5.21 0.1312
Train Data | 45.24% | 5.07 0.1367

Table 3. Results for the 8 layer DCNN on the train and test set
of the KGS dataset. Rank refers to the average rank the expert’s
move was given, Probability refers to the average probability as-
signed to the expert’s move

The best network had one convolutional layer with 64 7x7
filters, two convolutional layers with 64 5xS5 filters, two lay-
ers with 48 5x5 filters, two layers with 32 5x5 filters, and
one fully connected layer. The network used all the opti-
mizations enumerated in the previous section. The network
was trained for seven epochs at a learning rate of 0.05, two
epochs at 0.01, and one epoch at 0.005 with a batch size
of 128 which took roughly four days on a single Nvidia
GTX 780 GPU. Figure 6 shows the learning speed as mea-
sured on the validation set. The network was trained and
evaluated on the GoGoD and KGS dataset, as shown in
Table 2 and Table 3 respectively. To our knowledge the
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Figure 7. Accuracy when a fixed number of moves have passed on
the GoGoD test set. The network is more accurate during the be-
ginning and end game and less accurate during the middle game.
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Figure 8. Accuracy when allowed a fixed number of guesses on
the GoGoD test set. If the neural network’s best guess is wrong,
the right answer is often among its next few guesses. However
there are occasions when the right move is ranked as the 30-50th
best move by the network.

best reported result on the GoGoD dataset is 36.9% using
an ensemble of shallow networks (Sutskever & Nair, 2008)
and the best on the KGS dataset is 40.9% using feature en-
gineering and latent factor ranking (Wistuba & Schmidt-
Thieme, 2013). Our work was completed on more recent
versions of these datasets, but in so much as they can be
compared our work has surpassed these previous results
by margins of 4.16% and 3.47% respectively. Addition-
ally, this was done without using the previous moves as
input. (Wistuba & Schmidt-Thieme, 2013) did not analyze
the impact using this feature had, but (Sutskever & Nair,
2008) report the accuracy of one of their networks dropped
from 34.6% to 21.8% when this feature was removed, im-
plying their networks heavily relied on this feature.

We also examine the GoGoD test set accuracy of the net-
work as a function of the number of moves made in the
game, see Figure 7. Accuracy increases during the more
predictable opening moves, decreases during the complex
middle game, and increases again as the board fills up
and the number of possible moves decreases towards the
end game. Finally, we examine how accurate the network
is when allowing the network to make multiple guesses,
see Figure 8. It is encouraging to note that, if the net-
work’s highest-ranking move is incorrect, its second or
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Opponent | KGS | GoGoD | GoGoD Small
GnuGo (C) | 0.86 0.87 0.71
GnuGo (J) | 0.85 0.91 0.67
Fuego (C) | 0.12 0.14 0.00

Table 4. Win rates of three DCNNs against GNU Go level 10 us-
ing Chinese (C) and Japanese (J) rules and again Fuego 1.1. For
each matchup 200 games were played. GoGoD and KGS refer
to the full scale network trained on the named dataset, GoGoD
Small refers to the exclude none network from Section 4.1. Even
the smaller DCNN is able to consistently defeat GNU Go and the
larger ones are able to win some games against Fuego.

third highest-ranked move is often correct. However there
are times when the expert move was not among the top 40
ranked moves from the network. While it is not clear ex-
actly how well a human expert would perform on this task,
it seems likely that a human expert would practically al-
ways be able to guess where another expert would move
given 40 guesses. Thus we do not think our DCNN has
reached a human level of performance on this task.

4.3. Playing Go

The networks trained here were successful move predic-
tors, but that does not necessary mean they will be strong
Go players. There are two potential problems. First, dur-
ing a game an opponent, or the classifier itself, are liable
to make moves that create positions that are uncommon
for games between experts. Since the networks have not
been tested or trained on these kinds of positions there is
no guarantee they will continue to perform well when this
occurs. Second, even if the classifier is able to predict an
expert player level move 90% of the time, if its other moves
are extremely poor it could still be a terrible Go player. To
test the strength of the networks as Go players they were
played against two other computer Go programs, GNU Go
3.8° and Feugo 1.1 (Enzenberger et al., 2010). We test the
final network trained on the KGS data, the GoGoD data,
and the smaller ‘exclude none’ network from Section 4.1.
The results can be found in Table 4. There is one complica-
tion; the DCNN5s do not have the capability to pass during
their turn. Therefore, should a game go on indefinitely, the
networks will eventually run out of good moves to play and
start making suicidal moves. To work around this issue we
allow both Fuego and GNU Go to resign,. We addition-
ally have the DCNN pass its turn whenever its opponent
does thus ending the game. Games were scored using the
opposing Go engine’s scoring function.

Our results are very promising. Even though the networks
are playing using a ‘zero step look ahead’ policy, and us-
ing a fraction of the computation time as their opponents,
they are still able to consistently defeat GNU Go and take
some games away from Fuego. Under the settings used

Shttps://www.gnu.org/software/gnugo/

here GNU Go might play at around a 6-8 kyu ranking and
Fuego at 2-3 kyu, which implies the networks are achiev-
ing a ranking of approximately 4-5 kyu. For a human
player reaching this ranking would normally require years
of study. This indicates that sophisticated knowledge of
the game was acquired. The smaller network we trained
consistently defeated GNU Go despite being less accurate
than some previous work at move prediction. Thus it seems
likely that our choice not to use the previous move as input
has helped our move predictors to generalize well from pre-
dicting expert Go player’s moves to playing Go as stand-
alone players. This might also be attributed to our deep
learning based approach. Deep learning algorithms have
been shown in particular to benefit from out of sample dis-
tributions (Bengio et al., 2011), which relates to our situa-
tion since our networks can be viewed as learning to play
Go from a biased sample of positions. The network trained
on the GoGoD dataset performed slightly better than the
one trained on the KGS dataset. This is what we might ex-
pect since the KGS dataset contains many games of speed
Go that are liable to be of lower quality.

5. Conclusion and Future Work

In this work we have introduced the application of deep
learning to the problem of predicting the moves made by
expert Go players. Our contributions also include a number
of techniques that were helpful for this task, including a
powerful weight tying technique to take advantage of the
symmetries we expect to exist in the target function. Our
networks are state of the art at move prediction, despite not
using the previous moves as input, and can play with an
impressive amount skill even though future positions are
not explicitly examined.

There is a great deal that could be done to extend this work.
We limited the size of our networks to keep training time
manageable, but using more data or larger networks will
likely increase accuracy. We have only completed a pre-
liminary exploration of the hyperparameter space and think
better network architectures could be found. Curriculum
learning (Bengio et al., 2009) and integration with rein-
forcement learning techniques might provide avenues for
improvement. The excellent skill achieved with minimal
computation could allow this approach to be used for a
strong but fast Go playing mobile application. Finally, a
trained DCNN could be integrated with a full-fledged Go
playing system. For example, a DCNN could be run on a
GPU in parallel with a MCTS Go program and be used to
provide high quality priors for what the strongest moves to
consider are. Such a combined system would be the first to
bring sophisticated pattern recognitions abilities to playing
Go, and we believe it would have a strong potential ability
to surpass current computer Go programs.



Training Deep Convolutional Neural Networks to Play Go

Acknowledgments

We thank the anonymous reviewers for their helpful com-
ments.

References

Araki, Nobuo, Yoshida, Kazuhiro, Tsuruoka, Yoshimasa,
and Tsujii, Jun’ichi. Move Prediction in Go with the
Maximum Entropy Method. In Computational Intelli-
gence and Games, 2007.

Baudis, Petr and Gailly, Jean-loup. Pachi: State of the Art

Open Source Go Program. In Advances in Computer
Games. 2012.

Bengio, Yoshua. Learning Deep Architectures for Al
Foundations and trends®) in Machine Learning, 20009.

Bengio, Yoshua and LeCun, Yann. Scaling Learning Algo-
rithms Towards Al. Large-scale Kernel Machines, 2007.

Bengio, Yoshua, Louradour, Jérome, Collobert, Ronan, and
Weston, Jason. Curriculum Learning. In ICML, 2009.

Bengio, Yoshua, Bastien, Frédéric, Bergeron, Arnaud,
Boulanger-Lewandowski, Nicolas, Breuel, Thomas M,
Chherawala, Youssouf, Cisse, Moustapha, Co6té, Myr-
iam, Erhan, Dumitru, Eustache, Jeremy, et al. Deep
Learners Benefit More from Out-of-Distribution Exam-
ples. In AISTATS, 2011.

Bozulich, Richard. The Go Player’s Almanac. Ishi Press,
1992.

Browne, Cameron B, Powley, Edward, Whitehouse,
Daniel, Lucas, Simon M, Cowling, Peter I, Rohlfshagen,
Philipp, Tavener, Stephen, Perez, Diego, Samothrakis,
Spyridon, and Colton, Simon. A Survey of Monte Carlo
Tree Search Methods. Computational Intelligence and
Al in Games, 2012.

Clark, Christopher. Deep Go. Master’s thesis, University
of Edinburgh, 2014.

Coulom, Rémi. Computing Elo Ratings of Move Patterns
in the Game of Go. In Computer games workshop, 2007.

Enzenberger, Markus, Muller, Martin, Arneson, Broderick,
and Segal, Richard. Fuego: An Open-source Frame-
work for Board Games and Go Engine Based on Monte
Carlo Tree Search. Computational Intelligence and Al
in Games, 2010.

Maddison, Chris J., Huang, Aja, Sutskever, Ilya, and Sil-
ver, David. Move Evaluation in Go Using Deep Convo-
lutional Neural Networks. CoRR, abs/1412.6564, 2014.
URL http://arxiv.org/abs/1412.6564.

Miiller, Martin. Computer Go. Artificial Intelligence, 2002.

Rimmel, Arpad, Teytaud, F, Lee, Chang-Shing, Yen, Shi-
Jim, Wang, Mei-Hui, and Tsai, Shang-Rong. Current
Frontiers in Computer Go. Computational Intelligence
and Al in Games, 2010.

Stern, David, Herbrich, Ralf, and Graepel, Thore. Bayesian
Pattern Ranking for Move Prediction in the Game of Go.
In ICML, 2006.

Sutskever, Ilya and Nair, Vinod. Mimicking Go Experts
with Convolutional Neural Networks. In Artificial Neu-
ral Networks-ICANN. 2008.

Van Der Werf, Erik, Uiterwijk, Jos WHM, Postma, Eric,
and Van Den Herik, Jaap. Local Move Prediction in Go.
In Computers and Games. 2003.

Wistuba, Martin and Schmidt-Thieme, Lars. Move Predic-
tion in Go—Modelling Feature Interactions Using Latent
Factors. In KI 2013: Advances in Artificial Intelligence.
2013.

Wistuba, Martin, Schaefers, Lars, and Platzner, Marco.
Comparison of Bayesian Move Prediction Systems for
Computer Go. In Computational Intelligence and Games
(CIG), 2012.


http://arxiv.org/abs/1412.6564

