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Imposing Known Structure on the Tasks
CODING AND EMBEDDING

A common approach to encode knowledge of the tasks re-
lations consists in mapping the output space YT in a new
eY ✓ R` and then solve ` independent standard learn-
ing problems (e.g. RLS, SVM, Boosting, etc. (Fergus
et al., 2010)) or a single one with a joint loss (e.g. Rank-
ing (Joachims et al., 2009)) using the mapped outputs as
training observation. The goal is to implicitly exploit the
structure of the new space to enforce known (or desired)
relations among tasks.

The most popular setting for these embedding (or coding)
methods is multi-class classification since in several real-
istic learning problems, classes can be organized in infor-
mative structures such as hierarchies or trees. Interestingly,
due to the symbolic nature of the classes representation as
canonical basis of RT , nonlinear embeddings are not par-
ticularly meaningful in classification contexts. Indeed the
literature on coding methods for multi-task learning has
been mainly concerned with the design of linear operators
L : YT ! eY (Fergus et al., 2010). In the following we
show that a tight connection exists between coding meth-
ods and our multi-task learning setting.

For a fixed linear operator L 2 R`⇥T , we can solve the
“coded” problem using the notation of (P) and a kernel of
the form � = kI` with I` the ` ⇥ ` identity matrix (“inde-
pendent tasks” kernel)

minimize
eC2Rn⇥`

V (eY ,K eC) + � tr( eC>K eC) (6)

From the Representer theorem we know that the solution
of (6) will have the form f(x) =

Pn
i=1 k(x, xi)c̃i =

Pn
i=1 k(x, xi)Lci, for some ci 2 RT and c̃i = Lci 2

L(RT ). Therefore, we can constrain (6) on matrices eC =
CL with C 2 Rn⇥T , implying that the best solution for (6)
belongs to the set of functions f = L � g 2 HkI

`

with
g 2 HkI

T

.

For those loss functions L that depend only on the inner
product between the vectors of prediction and the ground
truth (e.g. logistic or hinge (Joachims et al., 2009; We-
ston et al., 2011), see below), the “coded” Problem (6) on
eY with kernel kI` is equivalent to (P) on Y with kernel
kL>L. More precisely, if the multi-output loss can be writ-
ten so that L(ỹ, f(x)) = L(hỹ, f(x)i eY) for all ỹ 2 eY and
x 2 X , we have

hỹ, f(x)i eY = hLy,Lg(x)i eY = hy, L>Lg(x)iY (7)

where y 2 Y is such that Ly = ỹ and L> denotes the
adjoint operator of L (in this case just the transpose matrix

since L is a linear operator between vector spaces over the
real field). Therefore, the two terms in the functional of (6)
become

V (eY ,K eC) = V (Y L>,KCL>) = V (Y,KCL>L)

where the last equality makes use of the property in eq. (7),
and

tr( eC>K eC) = tr(LC>KCL>) = tr(L>LC>KC)

proving the aforementioned equivalence between Prob-
lems (6) and (P) by choosing A = L>L.

Semantic Label Sharing In (Fergus et al., 2010) the au-
thors proposed a strategy to solve a large multi-class vi-
sual learning problem that exploited the semantic informa-
tion provided by the WordNet (Fellbaum, 1998) to enforce
specific relations among tasks. In particular, by designing
a “semantic” distance between classes using the WordNet
graph, the authors were able to generate a similarity ma-
trix L 2 ST

+ encoding the most relevant class relations.
They used this matrix to map the original outputs (i.e. the
canonical basis of RT ) into a new basis where euclidean
distances between output codes would reflect the semantic
ones induced by the WordNet priming. Then they applied
a semi-supervised One-Vs-All approach on the new output
space.

OUTPUT METRIC

In multi-output settings, another approach to implicitly
model the tasks relations consists in changing the metric
on the output space RT . In particular, we can define a ma-
trix ⇥ 2 ST

+ and denote the induced inner product on RT

as hy, y0i⇥ = hy,⇥y0iRT for all y, y0 2 RT . For loss func-
tions L such as those mentioned in Sec. 7 (e.g. hinge, lo-
gistic, etc.) that depend only on the inner product between
observations and predictions, we have that for a fixed ⇥ the
new loss is defined as L⇥(y, f(x)) = L(hy, f(x)i⇥) =
L(hy,⇥f(x)iRT ) and induces a learning problem of the
form

minimize
C2Rn⇥T

V (eY ,KC⇥) + � tr(⇥C>KC) (8)

which is clearly equivalent to solving (P) choosing the
kernel k⇥. Notice that the second term in eq. (8) de-
rives from the observation that with the new metric, the
norm in the RKHSvv becomes kfk2kI

T

= hf, fikI
T

=
Pn

i,j

PT
t,s k(xi, xj)hct, csi⇥ = tr(⇥C>KC) as required.

metric learning In (Lozano & Sindhwani, 2011) the au-
thors proposed a metric learning framework in which both
the new metric A (or ⇥) and the task predictors were es-
timated simultaneously. Adopting almost the same nota-
tion of Problem (Q), they used the least squares loss and
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imposed a penalty F (A) = �log(det(A)) on the met-
ric/structure matrix. A further penalty was also imposed on
A, in order to enforce specific sparsity patterns. The only
difference with our framework is that in (Lozano & Sind-
hwani, 2011) the authors do not impose the regularization
term tr(AC>KC). Notice however that such term allows
us to apply Theorem 3.1 and thus obtain the equivalence
between (Q) and (R). This is extremely useful from the
optimization perspective since, for instance, for the least
squares loss and log-determinant penalty mentioned above,
Problem (R) is actually convex jointly, which is not the
case for the framework in (Lozano & Sindhwani, 2011).

Learning the tasks and their structure
Equivalence with the convex problem

We will make use of the following observation
Lemma 7.1. Consider K 2 ST

+ and C 2 Rn⇥T . Then
Ran(C>KC) = Ran(C>pK) = Ran(C>K).

Proof. The second equivalence follows directly from the
observation that C>K = (C>pK)

p
K and C>pK =

C>K(
p
K)†. Regarding the first equivalence, recall that

for any M 2 RT⇥n, RT = Ran(M) � Ker(M), with
Ker(M) denoting the null space of M . Therefore we
can alternatively prove that Ker(C>KC) = Ker(C>pK).
Notice that clearly Ker(C>pK) ✓ Ker(C>KC). Now,
let x 2 Ker(C>KC) so that 0 = x>C>KCx =
x>(

p
KC)>(

p
KC)x. This implies that x is a singular

vector of (
p
KC) with singular value equal to zero and

therefore x 2 Ker(C>pK).

Proof. (Theorem 3.1)

We need to prove that C is a convex set and that
tr(A†C>KC) is jointly convex on C. Regarding the first
part, notice that for A 2 ST

+ and C 2 Rn⇥T the constraint
Ran(C>KC) ✓ Ran(A) can be equivalently rewritten as
Ker(C>KC) ◆ Ker(A). Therefore, using Lemma 7.1, we
can check convexity of C by showing that for any arbitrary
couple (A1, C1), (A2, C2) 2 C and any ✓ 2 [0, 1] we have
Ker(✓A1+(1�✓)A2) ✓ Ker(✓C>

1 K+(1�✓)C>
2 K). Let

us consider an arbitrary x 2 Ker(✓A1 + (1 � ✓)A2). We
have

0 = x>(✓A1 +(1� ✓)A2)x = ✓x>A1x+(1� ✓)x>A2x.

Since both A1 and A2 are PSD, the terms x>Aix are nec-
essarily non-negative for both i = 1, 2. Hence, from the
equation above we have x>Aix = 0, which is equivalent
to x 2 Ker(A1) \ Ker(A2) ✓ Ker(C>

1 K) \ Ker(C>
2 K).

This means that x is in the nullspace of both C>
1 K and

C>
2 K and therefore also in the nullspace of any linear com-

bination of the two. In particular x 2 Ker(✓C>
1 K + (1 �

✓)C>
2 K).

The proof for the convexity of tr(A†C>KC) has been al-
ready pointed out elsewhere (see for instance (Argyriou
et al., 2008c)). For completeness, we provide an sim-
pler derivation of this result which makes use of a Schur’s
complement argument and simple algebraic properties in
line with (Dinuzzo et al., 2011) to show that the epi-
graph of the function is convex. Consider A 2 ST

+ and
C 2 Rn⇥T . From simple properties of the trace we
have the equivalence tr(A†C>KC) = vec(

p
KC)>(A†⌦

IT )vec(
p
KC), where ⌦ identifies the Kronecker prod-

uct and by vec(·) we denote the vectorization operator
mapping a matrix M 2 Rn⇥m to the concatenation of
all its columns vec(M) 2 Rnm. Since Ran(A) ◆
Ran(C>KC) = Ran(C

p
K) we can apply the generalized

Schur’s complement to write the epigraph of f(A,C) =
tr(A†C>KC) as

epi f =
�

(t, A,C)
�

� t � tr(A†C>KC) =

vec(C
p
K)>(A† ⌦ IT )vec(C

p
K), (A,C) 2 C

o

=

=

⇢

(t, A,C)

�

�

�

�

✓

A⌦ IT vec(C
p
K)

vec(C
p
K)> t

◆

⌫ 0,

(A,C) 2 C}

where we write X ⌫ Y for any two symmetric matrices
X,Y 2 Sm if and only if X � Y 2 Sm

+ . Notice that the
block components of the matrix in the equation above are
all linear with respect to A,C and t and therefore the con-
vexity of epi f follows by directly observing that for any
couple (t1, A1, C1), (t2, A2, C2) 2 epi f , the PSD con-
straint holds for any convex combination of the two.

We finally prove that the mapping between minimiz-
ers stated in Theorem (3.1). First notice that for any
(C,A) 2 Rn⇥T ⇥ ST

+ we have Q(C,A) = R(CA,A),
with (CA,A) 2 domR since clearly Ran(A) ◆
Ran(AC>KCA). Therefore inf {Q(C,A) | C 2
Rn⇥T , A 2 ST

+} � inf {R(C,A) | (C,A) 2 C}.
Analogously, given a point (C,A) 2 C we have that
R(C,A) = R(CA†A,A) since Ran(C>K) ✓ Ran(A)
and thus V (y,KCAA†) = V (y,KC). Therefore
R(C,A) = R(CA†A,A) = Q(CA†, A), implying that
inf {R(C,A) | (C,A) 2 C} � inf {Q(C,A) | C 2
Rn⇥T , A 2 ST

+} and concluding the proof.

A Barrier Method to Optimize (R)

Proof. (Theorem 3.3) To prove the existence of finite min-
imizers we need to show that there exists a minimizing se-
quence for S� such that it converges to a point in domS� =
Rn⇥T ⇥ ST

++. To see this, consider a generic minimiz-
ing sequence, i.e. a sequence {(Cn, An)}n2N ⇢ domS�

such that S�(Cn, An) ! infC,AS
�(C,A). Notice that we

can separate Cn in Cn = bCn,+C?
n with bCn 2 Ran(K)
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the range of the Gram matrix K and C?
n 2 Ker(K) its

nullspace and that therefore S�( bCn, An) = S�(Cn, An).
This implies that the sequence ( bCn, An) is bounded, since,
if it was not, we would have the coercive penalty F or the
tr(A�1

n
bC>
n K bCn) to go to infinity as n grows. But this

is not possible since S�( bCn, An) ! infC,AS
�(C,A) <

+1. Therefore ( bCn, An) admits a converging subse-
quence. Suppose without loss of generality that (Cn, An)
converges to a point (C⇤, A⇤) 2 domS� = Rn⇥T ⇥ ST

+.
We want to show that (C⇤, A⇤) is actually in the domS� =
Rn⇥T ⇥ ST

++, i.e. that A⇤ is positive definite. But this
is obvious since � > 0 and therefore if the An were
to converge to a point in ST

+\ST
++, we would have that

�2 tr(A�1
n ) ! +1 and therefore S�(cCn, An) ! +1

as n ! +1. Finally, by the continuity of S� , we
have S�( bCn, An) ! S�(C⇤, A⇤), therefore proving that
(C⇤, A⇤) 2 argminC,A S�(C,A).

The second part of the proof requires the following prelim-
inary steps:

1. minC,AR(C,A) = infA,CS
0(C,A) and they have

same infimizers.

2. g(�) = infA,CS
�(C,A) is continuous (in fact con-

vex) with minimum in 0.

We prove the first point in Lemma 7.2, while the second
observation follows from the fact that the function g is the
point-wise infimum of a jointly convex function over a con-
vex set. This requires to show that �2tr(A�1) is jointly
convex which follows the same reasoning as for the con-
vexity of tr(A�1C>KC) in Theorem (3.1).

Let us consider two sequences �n > 0 and
{(Cn, An)}n2N ⇢ domS� = Rn⇥T ⇥ ST

++

satisfying the hypothesis of the Theorem, i.e.
S�

n(Cn, An) = minC,AS
�
n(C,A). We will first

prove the result for Cn in the range of the Gram matrix
K. Notice that under this requirement, the (Cn, An) are
bounded, since, analogously as for the proof above, if
they were not we would have the coercive penalty F or
the tr(A�1

n C>
n KCn) to go to infinity as n grows. But

this is not possible since S�
n(Cn, An) ! g(0) < +1.

Therefore, by points 1. and 2., g(0) = minC,AR(C,A)
and the limit points of (Cn, An) are minimizers for
R. This finally implies that there exists a sequence
{(C⇤

n, A
⇤
n)}n2N ✓ argminC,AR(C,A) such that

kCn�C⇤
nkF+kAn�A⇤

nkF tends to zero as n goes to infin-
ity. To see this, suppose by contradiction that it is not true
and that there exists a subsequence {(Cn

k

, An
k

)}k2N and
an M > 0 such that kCn

k

� C⇤kF + kAn
k

�A⇤kF > M
for all k > 0 and for all (C⇤, A⇤) 2 argminC,A R(C,A).
Now, since (Cn

k

, An
k

) is a subsequence of (Cn, An),
we have that: (i) (Cn

k

, An
k

) is bounded (hence admits

a converging subsequence) and (ii) every converging
subsequence tends to a minimizer of R. This clearly
contradicts the hypothesis.

Now, consider the general case in which Cn is not in
the range of K: notice that similarly as before, Cn

can be separated in Cn = bCn + C?
n with bCn 2

Ran(K) the range of K and C?
n 2 Ker(K) its nullspace.

Clearly, S�
n( bCn, An) = S�

n(Cn, An) ! g(0) and
therefore, from the discussion above we have a sequence
{( bC⇤

n, A
⇤
n)}n2N ✓ argminC,A R(C,A) such that k bCn �

bC⇤
nkF + kAn �A⇤

nkF ! 0 as n ! +1. We can now ob-
serve that the sequence (C⇤

n, A
⇤
n) = ( bC⇤

n + C?
n , A⇤

n) satis-
fies the statement of the Theorem: indeed (i) the (C⇤

n, A
⇤
n)

are minimizers for R since R(C⇤
n, A

⇤
n) = R( bC⇤

n, A
⇤
n) and

(ii) kCn �C⇤
nkF = k bCn � bC⇤

nkF ! 0 for n ! +1.

Lemma 7.2. minA,CR(C,A) = infA,CS
0(C,A) and

they have same infimizers:

Proof. This fact follows from the observation that for all
� > 0, domS� = domS0 is equal to the interior of
domR and that all minimizers for R belong to domR.
To show this second statement we will prove that for any
sequence {(Cn, An)}n2N ⇢ domR and converging to
some point (C̄, Ā) 2 Rn⇥T ⇥ ST

+ \ domR, we have that
R(Cn, An) ! +1 as n goes to infinity. For simplicity of
notation let us denote B̄ = C̄>KC̄ and analogously Bn =
C>

n KCn. Since from hypothesis Ran(Ā) 6◆ Ran(C̄>KC̄)
we have that Ker(Ā) 6✓ Ker(B̄), or, in other words, there
exists an eigenvector v̄ for Ā such that v 2 Ker(A) and
kB̄v̄k2 > 0.

Since the sequence An converges to Ā, we can identify
a sequence of eigenvectors vn for An such that vn ! v̄
and their associated eigenvalue �n ! 0 as n goes to in-
finity. Notice that we can assume without loss of gener-
ality that �n > 0 for all n since �n = 0 would imply
vn 2 Ker(An) ✓ Ker(Bn) but we have from hypothesis
that kBnvnk2 ! kB̄v̄k > 0. Therefore we have

tr(A†
nBn) � ��1

n v>n Bnvn = ��1
n kBnvnk22 ! +1

as n goes to infinity.

Spectral Regularization

Proposition 3.6 follows directly from the following result

Proposition 7.3. Let A,M 2 Sn
+ with Ran(A) ◆

Ran(M), rank(M) = r. Let M = U⌃U> be an eigende-
composition of M with U 2 On and ⌃ 2 Sn

+ a diagonal
matrix with eigenvalues in decreasing order. Then, there
exists a matrix A⇤ = U�U> 2 Sn

+ with � 2 Sn
+ diagonal
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with �i,i = 0 8i < r, such that

tr(A†
⇤M) = tr(A†M) and kA⇤kp  kAkp 8p � 1

(9)
with the equality holding if and only if A⇤ = A.

Proof. To keep the notation uncluttered we prove the re-
sult for ⇥ = A†. Consider an eigendecompositionn ⇥ =
S⇤S> with S 2 On and ⇤ 2 Sn

+ diagonal with eigenval-
ues in decreasing order. Let us define R = U>S 2 On.
Then

tr(⇥M) = tr(R⇤R>⌃) =
r
X

i=1

�i

n
X

j=1

R2
ij�j =

r
X

i=1

�i�i

where �i and �i are respectively the i-th eigenvalues of M
and ⇥ and we have defined �i =

Pn
j=1 Rij�j for i  r

and �i = 0 otherwise. Hence, if we consider a diagonal
matrix � 2 Sn

+ such that �ii = �i and set ⇥0 = U�U> we
obtain the left equivalence of eq. (9), namely tr(⇥M) =
tr(⇥0M). Now, consider the p-Schatten norm of ⇥0

k(⇥0)†kp =

 

r
X

i=1

1

�pi

!1/p

=

0

@

r
X

i=1

1
⇣

Pn
j=1 R

2
ij�j

⌘p

1

A

1/p

.

Notice that Rij = U>
i · Sj corresponds to the projection

of the i-th eigenvector of M on the j-th eigenvector of ⇥.
Since Ran(⇥) = Ran(A) ◆ Ran(M), for any eigenvector
s 2 Rn in the nullspace of ⇥ (i.e. with associated eigen-
value � = 0), we have that U>

i ·s = 0 for all i  r. Hence,
8i  r, 1 = R>

i · Ri =
Pn

j=1 R
2
ij =

Pk
j=1 R

2
ij , where

k = rank(A). Therefore, since the R2
ijs add up to 1 and

the scalar function (1/x)p is convex in x 2 R++, we have

r
X

i=1

1
⇣

Pn
j=1 R

2
ij�j

⌘p 
r
X

i=1

k
X

j=1

R2
ij

1

�pj



k
X

j=1

1

�pj

n
X

i=1

R2
ij =

k
X

j=1

1

�pj
= k⇥†kpp

where we have made use of the fact that for all j = 1, . . . , n
we have

Pn
i=1 Rij = R>

j ·Rj = 1. Therefore, k(⇥0)†kp 
k⇥†kp. By taking A0 = (⇥0)† we have the desired result.

Applied to the minimization in problem (R) with C 2
Rn⇥T fixed and p-Schatten penalty, Proposition 7.3 states
that a minimizer AC 2 ST

+ has the same system of eigen-
values as C>KC and their spectrum have same sparsity
pattern (i.e. Ran(C>KC) = Ran(A)). This observation
leads directly to the closed formula to find a A⇤ stated in
Proposition 3.6.

Proof. (Proposition 3.6) Consider the eigendecomposition
C>KC = M = U⌃U> with U 2 OT and ⌃ 2 ST

+

diagonal with the eigenvalues arranged in descending or-
der. We apply Proposition 7.3 and obtain the minimizer
A⇤ = U�U> for � 2 ST

+ diagonal with same sparsity pat-
tern as ⌃. We can rewrite the target function as

r
X

t=1

�t
�t

+ � �t.

where r = rank(M). Therefore, the optimization prob-
lem consists in minimizing the target function above with
respect to the �ts. This is an unconstrained convex opti-
mization of a differentiable coercive function bounded be-
low and therefore it is sufficient to set the gradient to zero
and solve with respect to the �t. It is clear that for each
t = 1 . . . r, the minimizer is of the form �t = p+1

p

�t/�,
leading to the desired solution.

Linear Multi-task Learning
Several works in multi-task learning have focused on lin-
ear models where the multi-output predictor f : Rd ! RT

is parameterized by a matrix W 2 Rd⇥T whose columns
wt 2 Rd are associated to the individual task-predictors
ft(x) = hwt, xiRd for any x 2 Rd. In this tasks struc-
ture can be imposed considering suitable matrix penalty
⌦ : Rd⇥T ! R and regularization schemes of form

min.
W2Rd⇥T

V (Y,XW ) + ⌦(W ) (10)

where X 2 Rn⇥d is the matrix whose rows correspond to
the (transposed) input points in the training sets, ordered
accordingly to the order in Y 4. We can recognize two
main classes of penalty functions. A first class correspond
to methods that impose structured sparsity on the input fea-
tures across the multiple tasks, for instance considering the
penalty ⌦(·) = k · k2,1 (Argyriou et al., 2008a), which en-
courages whole rows of W to be simultaneously sparse,
see also (Jayaraman et al., 2014; Zhong & Kwok, 2012). A
second class corresponds to spectral regularization meth-
ods defined by penalties ⌦ acting on the singular values of
W . Examples in this class include methods that impose
low-rank assumptions (Argyriou et al., 2008a) on the tasks,
or search after tasks-cluster structures (Jacob et al., 2008).
Ideas related to a combination of the above methods can
also be considered (Chen et al., 2012).

Most Linear multi-task learning problems of the form (10)
with ⌦ spectral penalty, can be formulated in terms of
problem (R) for a suitable choice of F . Indeed it can
be shown that for several spectral norms, such as the p-

4Again V would weight with zeros the loss associated to en-
tries for which examples are not available during training
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schatten norms, the penalty ⌦ can be written as

⌦(W ) = inf
A2ST

++

trace(WA�1W>)+F⌦(A) 8W 2 Rn⇥T

Here we report the example of the nuclear norm k · k⇤,
that has already been observed in similar form in (Argyriou
et al., 2008a; Grave et al., 2011) and that can be easily de-
rived from Prop. 3.6 for the case p = 1.

kWk⇤ =
1

2
inf

A2ST

++

trace(WA�1W>) + trace(A).

Indeed, from Prop. (3.6) we have that the solution to the
minimization problem is A⇤ =

p

(W topW ) and there-
fore, the minimum of such functional will be exactly
trace(

p
WW>) = kWk⇤.

Impose Tasks Relationships by enforcing
structure on the feature space
Relations among tasks can be also modeled by enforcing
shared structures on the input space. For instance in (Ar-
gyriou et al., 2008a), the authors generalized a feature se-
lection framework to the multi-task setting by formulating
the linear problem

minimize
U2Od,M2Rd⇥T

V (Y,XUM) + �kMk2,1 (11)

where X 2 Rn⇥d is the matrix whose i-th row corre-
sponds to the input vector xi 2 Rd and the (2, 1)-norm
kMk2,1 =

Pd
k=1 kMkk2 is introduced to enforce spar-

sity among the rows Mk of M . This penalty generalizes
feature selection to the multi-task case by directly manip-
ulating the covariance on the input space. However, since
input and output distributions are connected by the training
data, it is reasonable to expect this process to indirectly af-
fect also the covariance on the output space. Indeed, in this
Section we present an interesting result connecting multi-
task problems that impose structure on the input covariance
and problems that instead aim to control the output covari-
ance (i.e. in the form of (R)).
To show this connection, we need to discuss in more de-
tail the work in (Argyriou et al., 2008a). Although (11) is
not convex, the authors prove that there exists an equivalent
convex formulation of the form

minimize
W2Rd⇥T ,D2Sd

+,

Ran(D)◆Ran(W ),tr(D)1

V (Y,XW ) + � tr(W>D†W ).

(12)
The authors then proceed to generalize this framework to
the nonlinear case using the advantages of the RKHS nota-
tion. In this setting, the original idea of identifying a low
dimensional set of directions in the feature space translates

naturally to the problem of finding a small set of orthog-
onal directions in the Hilbert space. To this end, the au-
thors perform a preprocessing step whose goal is to identify
an orthonormal basis of functions  1, . . . ` 2 Hk for set
spanned by the k(xi, ·) and define a matrix eK 2 Rn⇥` such
that eKij =  j(xi). A possible way to do this is by consid-
ering a eigenvalue decomposition U⌃U> of K and taking
eK = U⌃1/2 (taking out from ⌃1/2 the columns equal to
zero). It is easy to show that the standard learning problem
in RKHS settings can be cast equivalently in this new no-
tation. However, this framework has the further advantage
that it can be generalized to take into account the eventual-
ity of a transformation in the feature space, leading to the
extension of problem (12) for the non linear case

minimize
B2R`⇥T ,D2S`

+,

Ran(D)◆Ran(B),tr(D)1

V (Y, eKB) + � tr(B>D†B) (13)

As can be noticed, the structure of problem (13) is very
similar to the one of problem (R) and indeed, as stated in
Corollary 7.5 the two are equivalent when trace regular-
ization is imposed on (R). However, as shown in Theo-
rem 7.4, a more general equivalence holds.
Theorem 7.4. Let � > 0, p � 1, Rn⇥T , {xi, yi}ni=1 ⇢
Rd ⇥ RT a set of input-output pairs with y 2 Rn⇥T the
matrix whose i-th row corresponds to yi. Let  1, . . . , ` 2
Hk be an orthonormal basis for span{k(xi, ·}ni=1 and eK 2
Rn⇥` with eKij =  j(xi). Then

minimize
B2R`⇥T ,D2S`

+,

Ran(D)◆Ran(B)

S(B,D) = V (Y, eKB)+tr(B⇤D†B)+� kDkp

(T )
is a convex optimization problem equivalent to (R) with
penalty function F (A) = kAkp. In particular the two
problems achieve the same minimum and, given a mini-
mizer for one problem it is possible to obtain a solution
for the other and vice-versa.

The crucial aspect of the proof of Theorem 7.4 (which we
prove below) consists in identifying the two mappings that
allow to obtain a minimizer for problem (R) from a solu-
tion of (T ) and vice-versa.
As a corollary of Theorem (7.4) we get the exact equiva-
lence to the problem proposed in (Argyriou et al., 2008a).
Corollary 7.5. Problem (13) is equivalent to (T ) for p = 1.
In particular the two problems achieve the same mini-
mum for � = �2/4. As a consequence of Theorem 7.4
this implies also that (13) is also equivalent to (R) when
F (·) = k · k1 = tr(·).
This result follows from the direct comparison of the
minimizers for the problems (T ) (from Proposition 3.6)
and (13) (from (Argyriou et al., 2008a)). Notice, that al-
though equivalent as convex optimizations, it is in general
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more convenient to solve problems in the form (R) rather
than (T ) since in most cases T << `.

Proof. Theorem 7.4.

From the discussion in (Argyriou et al., 2008a) we can
rewrite problem (R) in the equivalent formulation

minimize
B2R`⇥T ,A2ST

+ ,

Ran(A)◆Ran(B>)

T (B,A) = V (Y, eKB)+tr(A†B>B)+� kAkp

(U )
Therefore, to prove Theorem 7.4 it is sufficient to show
that problem (T ) and (U ) are equivalent. Assume with-
out loss of generality T  `. Consider an arbitrary ma-
trix B 2 R`⇥T and a singular value decomposition B =

V

✓

⌃
0

◆

U> where 0 2 R(`�T )⇥T identifies a matrix of

all zeros, V 2 O`, U 2 OT and ⌃ 2 ST
+ a diagonal matrix

with eigenvalues in descending order. From Propositon 7.3,
we obtain that the minimizers of the two functions S(B, ·)
and T (B, ·) are unique and can be written respectively in
the forms

DB = V

✓

�D 0
0 0

◆

V > 2 S`
+ and AB = U�AU

> 2 ST
+

where �D,�A 2 ST
+ have same sparsity pattern as ⌃ and

the zero matrices in the formulation of DB are of appro-
priate dimension. We can therefore write the minimum
value achieved by S(B, ·) as S(B,DB) = V (Y, eKB) +
tr(�†

D⌃2) + �k�Dkp and the minimum achieved by
T (B, ·) as T (B,AB) = V (Y, eKB)+tr(�†

A⌃
2)+�k�Akp.

In the light of these equations, it can be easily cheked that
by setting A

(D)
B = U�DU> 2 ST

+ we have

S(B,DB) = T (B,A
(D)
B ) � T (B,AB)

where the inequality follows from the fact that AB is a
minimizer for T (B, ·). Analogously, we can design a ma-
trix D

(A)
B 2 S`

+ such that T (B,AB) = S(B,D
(A)
B ) �

S(B,DB). Since the minimizers AB and DB are unique,
it follows that �D = �A. In the perspective of this result,
we have that for any minimizer (B⇤, D⇤) 2 R`⇥T ⇥ S`

+

for (T ), the couple (B⇤, A
(D⇤)
B⇤

) 2 R`⇥T ⇥ ST
+ is a min-

imizer for (U ) and furthermore, the two functions achieve
the same minimum value. The same result holds in the op-
posite direction.


