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Abstract

This supplemental document presents details concerning analytical derivations that support the the-
orems made in the main text “Spectral MLE: Top-K Rank Aggregation from Pairwise Comparisons”,
accepted to the 32th International Conference on Machine Learning (ICML 2015). One can find here the
detailed proof of Theorems 2 - 4.

1 Main Theorems

We repeat the main theorems as follows for convenience of presentation.

Theorem 2 (Minimax Lower Bounds). Fize € (0,3), and let G ~ Gy p.,.. If

(I—¢€)logn—2

L < ¢
npobsA%(

(1)
holds for some absolute constanﬂ ¢ > 0, then for any ranking scheme 1), there exists a preference vector w
with separation Ak such that the probability of error Py (1) > e.

Theorem 3. Let cy,c1,c2,c3 > 0 be some sufficiently large constants. Suppose that L = O (poly (n)), the
comparison graph G ~ Gy, ... with pons > cologn/n, and assume that the separation measure satisfies

logn
npobsL .

Ag > ¢

(2)

Then with probability exceeding 1 — 1/n?, Spectral MLE perfectly identifies the set of top-K ranked items,
provided that the parameters obey T > cologn and

gt = C3 {fmin + % (fmax - gmin)} 5 (3)

L logn L logn
where Emin 1= AP and Emax = ’/pobsL'

Theorem 4. Suppose that G ~ Gy, p... with pobs > c1logn/n for some large constant ci, and that there

exists a score W™ € [Winin, Wmax)" independent of G satisfying

ﬁ/?b - wz| S Ewmaxa v1 S { S n; (4)
[ —w|| < §wl|. ()
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! More precisely, ¢ = wi, /(2w ..).



Then with probability at least 1 — con™* for some constant co > 0, the coordinate-wise MLE

wM® i =arg max L(r, W\ yY;) (6)
Te[wmi]nwmax
satisfies
20 (6 ¥ —}OgL) wd 1 1
lwi — w™e| < T max 5+t e, 8% (7)
Wihin NPobs npObSL
simultaneously for all scores w € [wmin,wmax]n obeying
i — wi| < [0 —w|, 1<i<n. (8)

2 Performance Guarantees of Spectral MLE

In this section, we establish the theoretical guarantees of Spectral MLE in controlling the ranking accuracy
and (. estimation errors, which are the subjects of Theorem [3] and Theorem [d] The proof of Theorem [3]
relies heavily on the claim of Theorem [} for this reason, we present the proofs of Theorem [3] and Theorem
in a reverse order. Before proceeding, we recall that the coordinate-wise log-likelihood of 7 is given by

1 - i~
—log L (7, w\;;y;) = i7 10 — + (1 —y;;) lo J . 9
7 log L (7, w\;1y,) j:%:egyg 8, T vi)los 2 9)
and we shall use w\; (resp. w\;) to denote the vector w = [wy, - -+ ,wy] (vesp. W = [iy,- - ,W,]) excluding

the entry w; (resp. w;).

2.1 Proof of Theorem {4

To prove Theorem 4] we aim to demonstrate that for every 7 € [wmin, Wmax] that is sufficiently separated
from the ground truth w; (or, more formally, |7 — w;| 2 max {6 + Eﬂfﬁ, ,/&%}), the coordinate-wise
likelihood satisfies

log L (w,;, W i yz) > log L (7'7 W i yl) (10)

and, therefore, 7 cannot be the coordinate-wise MLE.
To begin with, we provide a lemma (which will be proved later) that concerns for any single T that
is well separated from w;.

Lemma 1. Fiz any v > 3. Under the conditions of Theorem for any T € [Wmin, Wmax] obeying

w? 25 &logn logn
;P — . max — |4 , 20 , 11
‘w T| - wilin max{ 4 ( * NPobs ) npobsL ( )
one has 5 |
1 . 1 R Whax lOgN
Zlogﬁ(wuw\i;yi) - ZIOg‘C(Tu'w\i;yi) > 1000, I (12)

min
with probability exceeding 1 — 4n~" — 2n=19; this holds simultaneously for all W; € [Wuin, Wmax)" satisfying
[EN
To establish Theorem |4 we still need to derive a uniform control over all 7 satisfying . This will be
accomplished via a standard covering argument. Specifically, for any small quantity € > 0, we construct a
set NV; (called an e-cover) within the interval [Wmin, Wmax| such that for any 7 € [Wmin, Wmax), there exists an
7o € N, obeying
|7 — 70| <e and |ro— w;| > |7 — w;l. (13)



log L

It is self-evident that one can produce such a cover N, with cardinality {M] + 1. If weset y =6+ Tog

€
in Lemma [T} taking the union bound over N; gives

6
Wmax log n

100w$ L

min

1 . 1 )
I log £ (wiaw\i;yi) - Zlogﬁ (7—07w\i;yi) > (14)

. . 6+128L )5 .
simultaneously over all 79 € N, obeying |w; — 19| > M max {% (6 + §lo&) , 20, /-osn }; this

Win NPobs NPobs L
occurs with probability at least 1 — 4 |N]| nO TR 8 N n—10.
We then proceed by bounding the difference between log £ (T, W5 yl) and log £ (7'0, W35 yi). To achieve
this, we first recognize that the Lipschitz constant of %1og£ (7’, w\;; yl) (cf. @)) is bounded above by

1 |8log£(7','ﬁ)\i;yi) Z <1 1 ) 1
7 = Yig | — — . —(1—%,]‘)%
L or i Tee T THW T+ W
(a) 2 (b 12
S deg (Z) . S i npobs .
Wmin ) Wmin

where (a) follows since

1 1 1
Yij < - ) - (1=yij) ——=

T THw; T + W

1

T+wj

yi,j _ 1 2

T T+ W

Vs |
T

<

)
Wmin

and (b) holds since deg(i) < 2.4npons with probability 1 — O (n*4) as long as pops > Cll% for some
sufficiently large ¢; > 0. As a result, by picking

6
Wnax logn

00ws L w’

logn

min max
12 npobs 5 ’
5 240wy ;,, MPobsL

one can make sure that for any |7 — 79| <,

1 . 1 . 12 npgons
Zlogﬁ (va\i;yi) 7 log £ (T(lvw\i;yi) <e- 5 wl:nibn ) (16)
1 . 1 R wfnax logn
= Zlogﬁ (T,w\i;yi) < Zlogﬁ (To,w\i;yi) + T00ws — I (17)

min

In addition, with the above choice of € in place, the cardinality of the e-cover is bounded above by

240npops L wl;
npobsL Wi | Ly o2
logn w?

max

i< [ = |

for any sufficiently large n.
Putting and together suggests that for all 7 € [Wmin, Wmax] sufficiently apart from the ground
truth w;, namely,

(6+ %) wi 25
ogn | Ymax Elogn logn
i : —w;| = o ) )
VT € [Wmin, Wmax] |7 —wi| > wﬁ]in max{ 4 (5 * NPobs ) 20 probsL} 18)
one necessarily has
llogﬁ (wi w y) - llogL(T w y)
T s Wiy Yq I3 s W\i» Yj
1 . 1 . 1 . 1 R
= i3 log £ (wu’w\i;yi) T log £ (7-07w\i;yi) + i3 log £ (To,w\ﬁyi) T log £ (va\i;yi)
> 0, (19)



with probability at least 1 — 4|N6|n767% —0(n*) >1- An2Ln 5~ Ton — O(n=) = 1-0(n").
Consequently, any T € [Wmin, Wmax] that obeys (18) cannot be the coordinate-wise MLE, which in turn
justifies the claim of Theorem |4 (which is slightly weaker than what we prove here).

Proof of Lemma [1 We start by evaluating the true coordinate-wise likelihood gap
log £ (wi, w;3y;) — log £ (7, w\i3y;) (20)

for any fixed 7 # w; independent of y;. Here, y; := {y, ; | (¢,5) € £} is assumed to be generated under the
BTL model parameterized by w, which clearly obeys
1 w; Wy

Wy
Ely ;] = — and Varly; ;] = Zm
1 7 ]

In order to quantify the average value of , we rewrite the likelihood function as

1 . — .. T s g wj
ZlogE(va\iayi) = Z {y’b,] log <7‘—|—wj) +(17yl,j)1og (T-‘r’wj)} (21)

Ji(i.g)€€
T wy
= ;log [ — 1 J 22
> () S () .
j:(i,4)€E j:(i,5)€€

Taking expectation w.r.t. y, using the form reveals that

w; wj
g] _ Z { .1—1: - log (’LUij:’wj > + 'Lj—j ' log (wi;;wj ) }
jpes LT T Wi Tw;
- ¥ KL< i H T > (23)
w; +w; I T4 w;

J:(i,5)€€

L

1 1
E {L log £ (wivw\i;yi) ——logl (T, w\i;yi)

where KL (p||g) stands for the Kullback-Leibler (KL) divergence of Bernoulli (¢) from Bernoulli (p). Using
Pinsker’s inequality |1, Theorem 2.33], that is, KL (p||¢) > 2 (p — q)2, we arrive at the following lower bound

2
w; T
>2 —
g]_ Z (’wﬂrwj T+wj>

J:(i,5)€E

1 1
E {Llogﬁ (wi,w\i;yi) - Zlogﬁ (T, w\i§yi>

w?

— 2 (w; — 7)? J . (24)
j:(%eg (wi +w;)* (7 +w;)”

That being said, the true coordinate-wise likelihood of w; strictly dominates that of 7 in the mean sense.

However, when running Spectral MLE, we do not have access to the ground truth scores w;; what we
actually compute is L(w;, w\;;y,;) (resp. L(7,w\;;y,;)) rather than £ (w;y;) (resp. L(7,w\;;y;)). Fortu-
nately, such surrogate likelihoods are sufficiently close to the true coordinate-wise likelihoods, which we will
show in the rest of the proof. For brevity, we shall denote respectively the heuristic and true log-likelihood
functions by

{gi (wi) = log £ (wi,w\i3y;), (25)

0 (w;) = 11og L (wi, w\;;y;)
whenever it is clear from context. Note that w,; could depend on y;.
As seen from , for any candidate T € [Wmin, Wmax], we can quantify the difference between lz (1) and

0* (1) as
) + Z {log (rfiﬂ) — log (Tq_:]w)} (26)

J:(i,9)€€

w

J
Wy

b(ry—0(r) = Y yi,jlog<

Ji(i,5)€E



As a consequence, the gap between the true loss £* (w;) — £* (1) and the surrogate loss ¢; (w;) — ¢; () is given
by

b (ws) = B (1) = (" (wg) = £ (7)) = s (wi) = € (wi) = (b (1) = £ (7))

5 () () (2 ()}

J:(i.5)€€

() ()

J:(i,9)€€

This gap relies on the function

T+t T+ w;
t):=1 —1 — 5 te mins Wmax]| »
9(0) = tog (5% ) 1o (T ). ¢ € [wins s

which apparently obeys the following two properties: (i) g (w;) = 0; (ii)

dg (t) 1 1 |7 — w;] |7 — w;|
= - = , Vte ins .
‘ ot THE witt| (wit)(rEt) o dwd, [rmin Wmas]
Taken together these two properties demonstrate that
1
|g(t)| S 4 2 |T_wi||t_wj|7 vVt € [wmin;wmax]-
Whin

Substitution into gives

) ) . . 1 )
b (wi) = £ (1) = (& (wi) = (7))| < 5|7 —wi D iy —wy
min Ji(ig)ee
1 AU
< mh’—wi\ Z wjb—wj|. (29)
i J:(i,5)€E

Notably, this is a deterministic inequality which holds for all @; obeying |w; —w;| < [@}" —w;| (1 < j < n).
A desired property of the upper bound is that it is independent of G and the data y,, due to our
assumption on w"’.
We now move on to develop an upper bound on . From our assumptions on the initial estimate, we
have
I — w|)* < @ - w|* < 6% w]]” < nuw, .57

max

Since G and w" are statistically independent, this inequality immediately gives rise to the following two
consequences:
N ~ ub ~ ub
E {Z]ﬁ(m‘)es |} — wn” = Pobs|lw"™” — wl1 < pobsv/n[[W"” — w|
< npobswmax(S (30)
and )
E {me‘)ee |} — w;] } = Pobs || — W[5 < npops],axd”. (31)

Recall our assumption that max; |2ZJ}‘b — wj| < EWpax. For any fixed v > 3, if pops > 21‘? ™. then with
probability at least 1 — 2n~7,
(1)

Yoot -wl < B D | —w| + \/2710%7”3 [Zr(m‘)es |5 — w]ﬂ + Q%fwmaxlog”
j:(¢,5)€E j:(¢,5)€E

2
npobswmax6 + V 2’7 * NPobs log n’wmax(S + %gwmax 10g n

(ii) 2
< (14 v/7) MPobsWmaxd + gﬁwmax logn

(iii)
< ’anobswmaxa + YEWmax 10g n,

IN



where (i) comes from the Bernstein inequality as given in Lemma {4 (ii) follows since logn < Pe=% by
assumption, and (iii) arises since 1 + V7 < v whenever v > 3. This combined Wlth allows us to control

b)) = (6 ) = 0 ()] < T2 4 €t (32)

with high probability. . .
The above arguments basically reveal that ¢; (w;) — ¢; (7) is reasonably close to £* (w;) — £* (7). Thus, to

show that f; (w;) — £; () > 0, it is sufficient to develop a lower bound on £* (w;) — £* (7) that exceeds the
gap . In expectation, the preceding inequality gives
w}

B[ (w) =016 2 2w 3 o

2

Ji(i,5)EE
2
Winin 2 -
Sk (w; — )" deg (4) . (33)
max

Recognizing that y; ; = T Zl 1 y( )

is a sum of independent random variables y( ~ Bernoulli (w,:”jw, ), we
i J

can control the conditional variance as

Var [¢* (w;) — € (1) |G] 2 Var Z i log (2 ) g

(i,5)€€
w; 1 ww,; ® 1 (w;—71)
_ 10g2 (J) - ) 5 < % > Z max
™/ iGee L witwy)? T Lmin{ufr }J(w)es i
w1211ax 1 2 .
S gt (wi—7)"deg (i), (34)

where (a) is an immediate consequence of , and (b) follows since ’10g g ‘ < 222 for any 8 > a > 0. Note
that 0 < Ly(l) <7 1. Making use of the Bernstein inequality, and Suggests that: conditional on G,

K3

¢ (w;) — € (r) > B0 (w;) — € (7) |G] — \/2yVar [€* (w;) — & () |G]logn — 2ylogn - [log (%)

3L
2
w 2 N V2YWmax [w; — 7| [deg(i)logn 2y |w; — [logn
min_ (0 )2 g _ 35
8wl .. (wi = )" deg (i) 2w2, L 3Lwnpin (35)

holds with probability at least 1—2n~"7, where the last inequality follows again from the inequality ’log (g) ‘ <

%forany52a>0.

The above bound relies on deg(i), which is on the order of npyps with high probability. More precisely,
taking the Chernoff bound |2, Corollary 4.6] as well as the union bound reveals that: there exists some
constant ¢; > 1 such that if pops > w , then

4 6
= MPobs < deg (i) < gnpobs, Vi<i<mn (36)
with probability at least —35. This taken collectively with and the assumption npyps > 2logn implies



that

2
. . Wi 5 4 Y Winax |Wi — 7| [6npops logn 2y |w; — 7| logn
C(wi) =05 (1) = Swh (w; — ) TEMPobs T/ 5 o 57 - Y7

>

wIQnin ( )2 3y + 2y 1 Wmax ‘wi - 7-| NPobs logn
——(w; —T) " NPobs — | \/ — + 5 —F= \/
10w§(1ax Peb 5 3 \/i wrznin L
2
Wi 2 Wmax |wz - T| M Pobs IOgn
> min ; — obs — 37
2 Towi (wi = 7)" npobs —7—— 5 7 (37)

min
2
Whin

20w4

max

2 (wz - T)2 M Pobs (38)

with probability at least 1 — 2n~7 —2n "1, as long as

2
Wmax [Wi — 7| [npobs logn Wi 2
. < Ww; —T) N 5
7 w? L ~ 20wi . (w5 = 7)” 7Pobs

min

R
wi — 7] > 207y - Wy ax logn . 39
7
wh i NPobs L

Finally, we are ready to control /; (w;) — ¢; (r) from below. Putting and together, we see that
with high probability,

or, equivalently,

) j . |7 — w;i| YWmax (NPobsd + & logn)

li(wi) =i (r) = 0 (wi) = £ (7) dwl,,
2
Winin 2 |T - wl| YWmax
> 20wl (wi = T)" NPobs — W (npobsd + & logn)
2
Wi 2
> — = T obs 40
o (=7 (40)
w’ logn
max 41
- 100w, L’ (41)
where holds under the condition
25yw3, 1
= wg] > 27V (5+5 ogn)7
4rwmin N Pobs
and follows from the assumption . This establishes the claim . O

2.2 Proof of Theorem [3l

The accuracy of top-K identification is closely related to the ¢, error of the score estimate. In the sequel,
we shall assume that wpa.x = 1 to simplify presentation, and our goal is to demonstrate that

logn 1 [logn
® _ H < )28 = [T e wieN 42
H’LU w 0o ™ \/npobsL + 2t pobsL €t7 , ( )
where
1
gt = C3 {gmin + ? (gmax - €min)} ’ vt Z -1 (43)
with &pnin = nlg?gan and &pax = ;O;%. If T > ¢y logn for some sufficiently large co > 0, then this gives

logn
npobsL

Hw(T) _wH = :gmin-



logn
NPobs L

The key implication is the following: if wx —wrg_1 > 1 for some sufficiently large ¢; > 0, then

3

w§T) > w; — Wy — ’wET) — — wj‘ > W — Wil — 2 Hw(T) — wH >0
forall1 <i¢ < K and j > K + 1, indicating that Spectral MLE will output the first K items as desired. The
remaining proof then boils down to showing .

We start from ¢ = 0. When the initial estimate w(®) is computed by Rank Centrality, the ¢, estimation

error satisfies [3]
Hw(o) —wH logn
npobsL

= C4§min =0 (44)

with high probability, where ¢4 > 0 is some universal constant independent of n, pops, L and Ag. A by-
product of this result is an upper bound

1
Hw(o) — 'wH < Hw(o) — wH <llw| <dvn=rcy o8 (45)
o0 pobsL
which together with the fact Hw(o) — wHOO < Wmax — Wmin < 1 give
1
Hw(o) — wH < min< ¢4 ﬁ, 1 p = min {cs€max, 1} - (46)
00 pobsL

This justifies that w(®) satisfies the claim . Notably, w(® is independent of £ and 4" and, therefore,
independent of the iterative steps.

In what follows, we divide the iterative stage into two phases: (1) ¢t < Ty and (2) t > Tp, where Tp is a
threshold such that
logn

_— iff ¢ <17 47
npobsL’ 1 =~ 10, ( )

&t 2 €10€min = C10

for some large constant cjg. As is seen from the definition of &, Ty < logn holds as long as L = O (poly (n)).
For the case where t < Tj, we proceed by induction on ¢ w.r.t. the following hypotheses:

o My: ||w(mle) - 'w||o<> < 1¢ holds at the ¢! iteration (the iteration where we compute w(t*+1);

e B;: all entries wlm of w(™ (7 <t — 1) satisfying \wzﬁ) — w;| > 1.5¢; have been replaced by time ¢;
(7)

e H;: none of the entries w;"’ (1 <t — 1) satistying |w§7) —w;| < %ft have been replaced by time t.

We note that B; and H; are immediate consequences of My, B;_1, and H;_1. First of all, with 5;_; in mind,
we only need to examine those entries wET) obeying |w§7) — w;| > 1.5&; that have not been replaced by time
t — 1. To this end, we recall that Spectral MLE replaces wlm iff |wET) — w?ﬂe| > &. With M, in place, for
each ¢ obeying |w£T) — w;| > 1.5&;, one has

T mle T mle 1
|w§ )—wi1|2|w£ )—wi|—\wi1 —wi|>1.5§t—§§t:§t

and hence it is necessarily replaced by w™® by time ¢. Similarly, for any i obeying |w§7) — w;| < 0.5&, one
has

3

T mle T mle 1 1
g7 — ] < T = wil [ — ] < 6+ 6 =6

and, therefore, it cannot be replaced by time ¢. These establish B; and H;. As a consequence, it suffices to
verify M, which is achieved by induction.
When t = 0, applying Theorem |4/ and setting w"? = w(®), we see that

logn

mle

”'LU _wHoo S C?fmin"'CQ gmax

NPobs



for some universal constants c¢7,cg > 0, where we have made use of the properties and . When ¢y is
sufficiently large, the definition of Ty (cf. ) gives & > c7y /)~ additionally, cg-B™ ¢, < Emax < &0

Npobs L’ NPobs

holds as long as i‘;g:‘ is sufficiently small. Putting these conditions together gives

logn

mle _ w”oo § C7£min + cocy np

1
||’U) gmax < 5507

obs
which verifies the property M.

We now turn to extending these inductive hypotheses to the t*? iteration, assuming that all of them hold
up to time ¢ — 1. Taken together M;_; and B;_; immediately reveal that

Hw“) — wH <156 1. (48)

In order to invoke Theorem [4] for the coordinate-wise MLEs, we need to construct a looser auxiliary score
estimate w"?. With B,_1, H;_1 and in mind, we propose a candidate for the t'" iteration as followsﬂ

ub {w1 +1.5&_q, if |w§0) —w;| > $&-1, (49)

P w§0) else.

fter - According to B;_; and H;_1, (i) none of the entries wEO) with

|w£0) — w;| < 1&_1 have been replaced so far; (ii) if an entry w§0) has ever been replaced, then the error of
the new iterate cannot exceed 1.5¢;_1 (otherwise it’ll be replaced by the MLE in time ¢ — 1 which gives an

error below 0.5¢;_1). As a result, w"" clearly satisfies

which is clearly independent of £*" and y

‘wgt) —w,| < ‘w?b — wi| < 1.5¢;_1, (50)
(1) 1.5&_
and Hw(t) - wH < H'w(“b) - 'w‘ < L1361 Hw(o) - 'wH < 3d]|wl|. (51)
0.58;—1
Here, (i) arises since if wgo) is replaced, then the error wl(o) — wi‘ is at least 0.5&;_1, whereas the replaced

pointwise error is 1.5&;_1, which inflates the original error by no more than 3 times. With these in place,
applying Theorem [4] gives
logn

NPobs

mele - w”oo < CSfmin + 1.509

gtfla

which relies on the fact § < 4/ nlog . Recognize that
Pobs

1
& > cg€min and  1.5¢g ogn

o1 <&
MPobs

hold in the regime where ¢t < T, and 125" < 1, which taken together give

MPobs

mle_wH < 1&5

lw <3

as claimed in M;. Having verified these inductive hypotheses, we see from the above argument that the
worst case £, error bound at the t'" iteration is at most 1.5¢;, which in turn leads to the claim for any
t <Tp.

)

be easily addressed if we do the following: (1) change w}lb to w; — 1.5A;_1 instead if w; — 1.5A¢_1 € [Win, Wmax]; (2) if it is
still infeasible, set w;-lb to be Wmax if |w; — Wmax| > |W; — Wmin| and wmin otherwise. For simplicity of presentation, however,
we omit these boundary situations and assume w; + 1.5A¢_1 < wmax throughout, which will not change the results anyway.

2(Careful readers will note that when \wgo —w;| > %At_h the resulting w;-lb might exceed the range [Wmin, Wmax]. This can



Starting from ¢ = T + 1, we fix the auxiliary score as follows

%

(52)

b w; + 1.5¢r,, if |w£0) — w;| > %500,
wgo) else,

where we recall that £ = c3&min and &r, = c10€min- This apparently satisfies

< |wfb —w;| < 1.5¢g,

’wl(t) — W;

for t = Ty 4+ 1, due to the preceding analysis for ¢ < Ty. Moreover, the number of indices that satisfy
|w§o) — w;| > 1€, denoted by k, obeys

2
1 2 482 ||w||?
k-|z6) < Hw _w(O)H < 62||w||2 — k< M7
2 £
which further gives
2
wa_wWSme—wH+ 3 (1.5¢7,)° < 82||wl|? + 2.25k¢2,
i \wio) wi>3 Ao
9 2
§vaF<1%§?>.

If we pick ¢0 = ¢ < /2, then the above inequality gives rise to
p c3 €0

|[w"® — w|| < V195w]|.

Apply Theorem [ to deduce

logn logn logn 1
w™ —w|| <6+ ¢r, + = < €
|| HOO NPobs 0 npobsL npobsL 2 o

as long as Tl)of’:l is small and ¢1¢, c3 are sufficiently large.
T}Ee main point of the above calculation is that: for any entry wgo) satisfying |w§0) —w;| < %foo, one
must have
‘wgo) —wile] < ‘wgo) - wi‘ + ‘wimlc) —w;| < € < &,

and hence it will never be replaced. As a result, the auxiliary score remains valid for all iterations that
follow. Putting the above arguments together we obtain

logn
npobsL ’

t>1Tp.

- < 3 -
o 2

This establishes the claim for t > Ty, and in turn finishes the proof of the theorem.

3 Minimax Lower Bound

This section establishes the minimax lower limit given in Theorem To bound the minimax probability
of error, we proceed by constructing a finite set of hypotheses, followed by an analysis based on classical
Fano-type argument. For notational simplicity, each hypothesis is represented by a permutation o over [n],
and we denote by o(i) and o ([K]) the index of the i" ranked item and the index set of all top-K items,
respectively.

10



We now single out a set of hypotheses and some prior to be imposed on them. Suppose that the values
of w are fixed up to permutation in such a way that

WK, 1§’L§Ka
Wo(3) = .
w41, K <i<n,

where we abuse the notation wg,wg 1 to represent any two values satisfying
WK — WK 41
—= B _ Ak >0.
wmax

Below we suppose that the ranking scheme is informed of the values wg,wg 41, which only makes the
ranking task easier. In addition, we impose a uniform prior over a collection M of M := max{K,n — K} +1
hypotheses regarding the permutation: if K < n/2, then

P{O’([K}):S}:%, iftS={2,--- ,K}u{i}, (i=1,K+1,--,n); (53)
it K > n/2, then

1
Plo(K) =8} = 37 #S={L+ K+1\{i}, (=L K+1). (54)
In words, each alternative hypothesis is generated by swapping two indices of the hypothesis obeying
o ([K]) = [K]. Denoting by P. ps the average probability of error with respect to the prior we construct, one
can easily verify that the minimax probability of error is at least P as.
This Bayesian probability of error will be bounded using classical Fano-type bounds. To accommodate

partial observation, we introduce an erased version of y; ; := (yz(lj), e ,yg?) such that
Yijs with probability pops,
Zi; = ’
" erasure, else,

and set Z := {zivj}1<i<j<n' With a slight abuse of notation, we denote by ¢ and & the ground truth
permutation and the output of any ranking procedure, respectively. Making use of and gives

logM = H (o) = I (0;6) + H (0|6)

(a)
< I(0;Z)+ 1+ PeprlogM

® 1

< g > KL(Pzio—o, || Pzjo=cy) + 1+ Perslog M
0'170'26./\/1

e 1

= 9p 2 D KL(Pe ooy | Pajio=an) + 1+ Pearlog M
01,02€EM i#£j

= 1])\041)28 Z Z KL (]P)yi,ﬂa:Ul ” ]P)yi,j|‘7:‘72) +1+ Pe,M logM
01,02€EM i#j

(d) pobsL

YL (Pyg};‘gzgl I Pyg};‘g:m) +1+4 P logM

01,020€EM i#j
© 2wl
< maxpn DA% 414 Py log M,

where H (X), I (X;Y), and KL (P || Q) denote the entropy, mutual information, and Kullback-Leibler (KL)
divergence, respectively. Here, (a) results from the data processing inequality and Fano’s inequality [4];
(b) arises from Lemma [2| (see below); (c) follows from the independence assumption of the z; ;’s; (d) is a
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consequence of the fact that yg’? (1 <1< L)areiid.; and (e) follows from Lemma (see below). This
immediately yields
4
log M — %ﬁﬂnpobsLA%( -1

P > min
&M = log M

Consequently, one would have P, > P, ys > € if
2 4
%npobsLA% <(1—e€)logM —1.

min

Since M| = M > %, the above condition is necessarily satisfied when

2Wiax 2 who (1—€)logn — 2
npobs LA < (1 —€)logn —2 <+— L[< 2.
wfnin o K ( ) 2w§nax npobsA%(

which finishes the proof.
Lemma 2. Under the prior and , one has
1
lo:2) < 55 > KL(Pzio—o, || PZio=cs) - (55)
o1,02EM

Proof. Tt follows from the definition of mutual information that

(Z=z|0=09)
I(o;2) = Z ZP(J:CU,Z:z)log FZ=2
01EM 2z
! P(Z=z|o=0)
= P(Z=2|0=01)log
IR S S LR T
1 1 P(Z=z|0=0)
< LS Srz-z0 01>{M > P2 =zloza)
o1EM = o2EM
1
= W Z KL (]P)Z‘O'ZO'l || ]P)Z\o:zfg)v
o1,02€M
where the inequality is due to Jensen’s inequality. O
Lemma 3. If wi,Wk+1 € [Wmin, Wmax], then for any 01,09 € M:
2u};lna,x 2
DKL (Pyg}_yg:gl I Pyg}_;\g:gz) < —nl (56)
i#£] min

Proof. To start with, for any two measures P ~ Bernoulli (p) and @ ~ Bernoulli (¢), one has [5, Eqn. (7)]

2 -9 -9 -9
KL(P|Q)<x*(P| Q)= . + =y 4= (57)

where x? (P || Q) denotes the x? divergence.

Recall that given o = o1 (resp. o = 02), yz(lj) is Bernoulli distributed with mean r; :=

Py = ——220 ) If we set § = r; — 79, then yields

L ORACENE)

Woy (i)
Weq (i) TWeoq ()

(resp.

52 42
KL (P gy 1Py sy ) < < max 52,
Yy 5 lo=o1 1 7 y; Jlo=02 ro (1 —12) Winin
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where the last inequality follows since

2

Woy (i) Wos (j Whin
ro (1—7"2) _ 2(4) 2(5) 5 > e .
(W ) + Wos ) max

By construction, conditional on any hypotheses 01,02 € M, the resulting y, ; are different over at most
2n locations. For each of these O (n) locations, our construction of M ensures that
WK WK +1 o WK — WK+1 < Wmax A

0] = |re — 71| < — = <
WK + WK1 WK +Wr41 WK W41~ 2Wmin

K-

As a result, the total contribution is bounded above by

4dw? 2w
2 2
E KL (Pyiyl}\cr:al I Pyi}}\a:(n) <2n- (max§ ) max < winaanK'

L tJ min min
i#]

A Bernstein Inequality

Our analysis relies on the Bernstein inequality. To simplify presentation, we state below a user-friendly
version of Bernstein inequality.

Lemma 4. Consider n independent random variables z; (1 <1 < n), each satisfying |z| < B. Then there
exists a universal constant ¢y > 0 such that for any a > 2,

S

=1

n

ZZ[*]E

n 2
> < \|2alogn Y E[z2] + §B1ogn (58)

=1

with probability at least 1 — n%

This is an immediate consequence of the well-known Bernstein inequality

n n lt2
P —E >ty <2 — 2 . 59

1=1
[1] R. W. Yeung, Information theory and network coding. Springer, 2008.

References

[2] M. Mitzenmacher and E. Upfal, Probability and computing: Randomized algorithms and probabilistic
analysis. Cambridge University Press, 2005.

[3] S. Negahban, S. Oh, and D. Shah, “Rank centrality: Ranking from pair-wise comparisons,” 2012.
[Online]. Available: http://arxiv.org/abs/1209.1688

[4] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons, 2012.

[5] T. van Erven and P. Harremoes, “Renyi divergence and Kullback-Leibler divergence,” IEEE Transactions
on Information Theory, vol. 60, no. 7, pp. 3797-3820, July 2014. [3]

13


http://arxiv.org/abs/1209.1688

	Main Theorems
	Performance Guarantees of Spectral MLE
	Proof of Theorem 4
	Proof of Theorem 3

	Minimax Lower Bound 
	Bernstein Inequality

