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Abstract

Spectral clustering is one of the most impor-
tant algorithms in data mining and machine in-
telligence; however, its computational complex-
ity limits its application to truly large scale data
analysis. The computational bottleneck in spec-
tral clustering is computing a few of the top
eigenvectors of the (normalized) Laplacian ma-
trix corresponding to the graph representing the
data to be clustered. One way to speed up the
computation of these eigenvectors is to use the
“power method” from the numerical linear alge-
bra literature. Although the power method has
been empirically used to speed up spectral clus-
tering, the theory behind this approach, to the
best of our knowledge, remains unexplored. This
paper provides the first such rigorous theoreti-
cal justification, arguing that a small number of
power iterations suffices to obtain near-optimal
partitionings using the approximate eigenvectors.
Specifically, we prove that solving the k-means
clustering problem on the approximate eigen-
vectors obtained via the power method gives an
additive-error approximation to solving the k-
means problem on the optimal eigenvectors.

1. Introduction

Consider clustering the points in Figure 1. The data in this
space are non-separable and there is no apparent clustering
metric which can be used to recover this clustering struc-
ture. In particular, the two clusters have the same centers
(centroids); hence, distance-based clustering methods such
as k-means (Ostrovsky et al., 2006) will fail. Motivated by
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Figure 1. 2-D data amenable to spectral clustering.

such shortcomings of traditional clustering approaches, re-
searchers have produced a body of more flexible and data-
adaptive clustering approaches, now known under the um-
brella of spectral clustering. The crux of these approaches
is to model the points to be clustered as vertices of a graph,
where weights on edges connecting the vertices are as-
signed according to some similarity measure between the
points. Next, a new, hopefully separable, representation of
the points is formed by using the eigenvectors of the (nor-
malized) Laplacian matrix associated with this similarity
graph. This new, typically low-dimensional, representation
is often called “spectral embedding” of the points. We re-
fer the reader to (Fiedler, 1973; Von Luxburg, 2007; Shi
& Malik, 2000b) for the foundations of spectral cluster-
ing and to (Belkin & Niyogi, 2001; Ng et al., 2002; Liu
& Zhang, 2004; Zelnik-Manor & Perona, 2004; Smyth &
White, 2005) for applications in data mining and machine
learning. We explain spectral clustering and the baseline
algorithm in detail in Section 2.1.
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The computational bottleneck in spectral clustering is the
computation of the eigenvectors of the Laplacian matrix.
Motivated by the need for faster algorithms to compute
these eigenvectors, several techniques have been devel-
oped in order to speedup this computation (Spielman &
Teng, 2009; Yan et al., 2009; Fowlkes et al., 2004; Pa-
van & Pelillo, 2005; Bezdek et al., 2006; Wang et al.,
2009; Nystrom, 1930; Baker, 1977). Perhaps the most
popular of the above mentioned techniques is the “power
method” (Lin & Cohen, 2010). The convergence of the
power method is theoretically well understood when it
comes to measure the principal angle between the space
spanned by the true and the approximate eigenvectors (see
Theorem 8.2.4 in (Golub & Van Loan, 2012)). We refer
readers to (Woodruff, 2014) for a rigorous theoretical anal-
ysis of the use of the power method for the low-rank matrix
approximation problem. However, these results do not im-
ply that the approximate eigenvectors of the power method
are useful for spectral clustering.

Contributions. In this paper, we argue that the eigenvec-
tors computed via the power method are useful for spectral
clustering, and that the loss in clustering accuracy is small.
We prove that solving the k-means problem on the approx-
imate eigenvectors obtained via the power method gives an
additive-error approximation to solving the k-means prob-
lem on the optimal eigenvectors (see Lemma 5 and Thm 6).

2. Background
2.1. Spectral Clustering

We first review one mathematical formulation of spectral
clustering. Let x;,Xg,...,%, € R? be n points in d di-
mensions. The goal of clustering is to partition these points
into k disjoint sets, for some given k. To this end, de-
fine a weighted undirected graph G(V, E) with |V| = n
nodes and |E| edges: each node in G corresponds to an
X;; the weight of each edge encodes the similarity between
its end points. Let W € R"*" be the similarity matrix
— Wy = e Uki=il/0 4 2§ and W;; = 0 — that
gives the similarity between x; and x;. Here, o is a tuning
parameter. Given this setup, spectral clustering for k = 2
corresponds to the following graph partitioning problem:

Definition 1 (The Spectral Clustering Problem for
k = 2 (Shi & Malik, 2000b)). Let x;,Xg,...,X, € R?
and k = 2 be given. Construct graph G(V, E) as described
in the text above. Find subgraphs A and B of G that mini-
mize the following:

Ncut(A, B) = cut(A,B)~<

where, cut(A4, B) = 3y cax,ep Wijs assoc(4,V) =
ineA,xj ev Wi aSSOC(B7 V) = ineB,xj ev W;;.

1 1
assoc(A, V) + assoc(B,V)) ’

This definition generalizes to any & > 2 in a straight-
forward manner (we omit the details). Minimizing
Ncut(A, B) in a weighted undirected graph is an NP-
Complete problem (see appendix in (Shi & Malik, 2000b)
for proof). Motivated by this hardness result, Shi and Ma-
lik (Shi & Malik, 2000b) suggested a relaxation to this
problem that is tractable in polynomial time using the Sin-
gular Value Decomposition (SVD). First, (Shi & Malik,
2000b) shows that for any G, A, B and partition vector
y € R”™ with 41 to the entries corresponding to A and
—1 to the entries corresponding to B the following iden-
tity holds: 4 - Ncut(A, B) = y'(D — W)y/(y" Dy).
Here, D € R™*" is the diagonal matrix of degree nodes:
D, = > ; Wi;. Hence, the spectral clustering problem
in Definition 1 can be restated as finding such an optimum
partition vector y, which, as we mentioned above, is an
intractable problem. The real relaxation for spectral clus-
tering asks for a real-valued vector y € R™:

Definition 2 (The real relaxation for the spectral clustering
problem for k£ = 2 (Shi & Malik, 2000b)). Given graph G
with n nodes, adjacency matrix W, and degrees matrix D
findy € R™ such that:

(y"(D-W)y)
(yTDy)

y = argmin
y€R" yTD1,

Once such a y is found, one can partition the graph into
two subgraphs by looking at the signs of the elements in
y. When £ > 2, one can compute k eigenvectors and then
apply k-means clustering on the rows of a matrix, denoted
as Y, containing those eigenvectors in its columns.

Motivated by these observations, Ng et. al (Ng et al.,
2002) (see also (Weiss, 1999)) suggested the following al-
gorithm for spectral clustering ! (inputs to the algorithm are
the points x1, ..., X, € R? and the number of clusters k).

1. Construct the similarity matrix W € R™ " as W;; =
e~ Uxi=x; 11/ (for i # j); Wi = 0 and o is given.

2. Construct D € R™*™ as the diagonal matrix of degrees of
the nodes: D;; = Z]. Wi;.

3. Construct W = D" 2WD~ 2 ¢ R"" 2

4. Find the largest k eigenvectors of W and assign them as
columns to a matrix Y € R™*% 3,

5. Apply k-means clustering on the rows of Y, and use this
clustering to cluster the original points accordingly.

"Precisely, Ng et. al suggested an additional normalization
step on Y before applying k-means, i.e., normalize Y to unit row
norms, but we ignore this step for simplicity.

’Here, L = D — W is the Laplacian matrix of G and L=
I, — W is the so called normalized Laplacian matrix.

3The top k eigenvectors of D :WD" 2 correspond to the
bottom k eigenvectors of I,, — D :WD:.
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This algorithm serves as our baseline for an “exact spectral

clustering algorithm”. One way to speedup * this baseline
algorithm is to use the power method (Lin & Cohen, 2010)
in Step 4 to quickly approximate the eigenvectors in Y’; that
is,

e Power method: Initialize S € R™** with i.i.d random
Gaussian variables. Let Y € R™** contain the left singular
vectors of the matrix

B=(WW' )PWs = W*"'g,

for some integer p > 0. Now, use Y instead of Y in step 5
above.

The use of the power method to speedup eigenvector com-
putation is not new. Power method is a classical technique
in the numerical linear algebra literature (see Section 8.2.4
in (Golub & Van Loan, 2012)). Existing theoretical analy-

sis provides sharp bounds for the error |[YY” — YYT”Q
(see Theorem 8.2.4 in (Golub & Van Loan, 2012); this the-
orem assumes that S has orthonormal columns and it is not
perpendicular to Y.) (Halko et al., 2011; Woodruff, 2014)
also used the power method with random Gaussian initial-
ization and applied it to the low-rank matrix approximation
problem. The approximation bounds proved in those pa-

~ ~ ~T ~
pers are for the term |[W — YY W||5. To the best of our
knowledge, none of these results indicates that the approx-
imate eigenvectors are useful for spectral clustering pur-
poses.

2.2. Connection to k-means

The previous algorithm indicates that spectral clustering
turns out to be a k-means clustering problem on the rows
of Y, the matrix containing the bottom eigenvectors of the
normalized Laplacian matrix. The main result of our paper
is to prove that solving the k-means problem on Y and us-
ing this to cluster the rows in Y gives a clustering which is
as good as the clustering by solving the k-means problem
on Y. To this end, we need some background on k-means
clustering; we present a linear algebraic view below.

Fori = 1: n,lety; € R¥ be arow of Y as a column
vector. Hence,

Y = Y2 c Rnxk

*This can be implemented in O(n?kp+ k*n) time, as we need
O(n*kp) time to implement all the matrix-matrix multiplications
(right-to-left) and another O (k?n) time to find Y. As we discuss
below, selecting p &~ O(In(kn)) and assuming that the multi-
plicative spectral gap of between the k' and (k+1)" eigenvalue

of W is large suffices to get very accurate clusterings. This leads
to an O(kn” In(kn)) runtime for this step.

Let k be the number of clusters. One can define a partition
of the rows of Y by a cluster indicator matrix X € R™**,
Each column j = 1,..., k of X represents a cluster. Each
row ¢ = 1,...,n indicates the cluster membership of y,.
So, X;j = 1/,/5;, if and only if the data point y; is in the
jth cluster (s; = [|X9|]o; X is the jth column of X
and || X9 ||, denotes the number of non-zero elements of
X)), We formally define the k-means problem as follows:

Definition 3. [THE k-MEANS CLUSTERING PROBLEM]
Given' Y € R™*F (representing n data points — rows — de-
scribed with respect to k features — columns) and a positive
integer k denoting the number of clusters, find the indicator
matrix Xopt € R™** which satisfies,

Xopt = argmin ||[Y — XXTY||2.
Xex

Here, X denotes the set of all m X k indicator matrices X.
Also, we will denote

1Y — XothT Y7 = Fopt-

opt

This definition is equivalent to the more traditional defi-
nition involving sum of squared distances of points from
cluster centers (Boutsidis & Magdon-Ismail, 2013; Cohen
et al., 2014) (we omit the details). Next, we formalize the
notion of a “k-means approximation algorithm”.

Definition 4. [k-MEANS APPROXIMATION ALGORITHM]
An algorithm is called a “vy-approximation” for the k-
means clustering problem (v > 1) if it takes inputs the
dataset Y € R™F and the number of clusters k, and re-
turns an indicator matrix X, € R™** such that w.p. 1=65,

1Y =X, XTY i <y min [|Y = XXTY[[f =7 Fopr.

An example of such an approximation algorithm is in (Ku-
mar et al., 2004) with vy = 14+ ¢ (0 < € < 1) and §,
a constant in (0,1). The corresponding running time is
O(nk - 2/9°y A trivial algorithm with v = 1 but
running time Q(n*) is to try all possible k-clusterings of
the rows of Y and keep the best.

3. Main result

Next, we argue that applying a k-means approximation al-
gorithm on Y and Y gives approximately the same clus-
tering results for a sufficiently large number of power it-
erations p. Hence, the eigenvectors found by the power
method do not sacrifice the accuracy of the exact spec-
tral clustering algorithm. This is formally shown in Theo-
rem 6. However, the key notion of approximation between
the exact and the approximate eigenvectors is captured in
Lemma 5:
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Lemma 5. [See Section 4.1 for proof] For any €,6 > 0, let

%ln<4-n-8_1-6_1~\/E)
In ()

o W)
Tt (Vv)

is the multiplicative eigen-gap between the k-th and the
(k + 1)-th singular value of W. Then, with probability

~ =T
atleast 1 —e=2" —2.356: |[YY? - YY ||z <&

p=

)

where

In words, for a sufficiently large value of p, the orthog-
onal projection operators on span(Y) and span(Y) are
bounded, in Frobenius norm, for an arbitrarily~ small e.

Here and throughout the paper we reserve o1 (W) to de-
note the largest singular value of W:

o1(W) > UQ(W) > > an(W) > 0;

and similarly for L:

AL(L) > Ao(L) > - > An(E).

Next, we present our main theorem (see Section 4.2 for the

proof).

Theorem 6. Construct Y via the power method with

%-ln(4-n-5_1~(5_1-\/E)
In (&)

P>

)

where

Tk (W) _ 1- Un—k+1(f‘)
Ok+1 (W) -0, k(L)

T =

Here, L= I, — W s the normalized Laplacian matrix.
Consider running on the rows of Y a ~y-approximation k-
means algorithm with failure probability é.,. Let the out-
come be a clustering indicator matrix X5 € R™*k_ Also,
let Xopt be the optimal clustering indicator matrix for Y.
Then, with probability at least 1 — e 2" — 2.35§ — 4.,

Y =X XDV 2 < (1442) 7| Y =Xope XD, Y 2442,

opt

3.1. Discussion

Several remarks are necessary regarding our main theorem.
First of all, notice that the notion of approximation in clus-
tering quality is with respect to the objective value of k-
means; indeed, this is often the case in approximation al-
gorithms for k-means clustering (Cohen et al., 2014). We

acknowledge that it would have been better to obtain re-
sults on how well X5 approximates X, directly, for ex-
ample, via bounding the error | X5 — X,,¢||%; however,
such results are notoriously difficult to obtain since this is
a combinatorial objective.

Next, let us take a more careful look at the effect of the
parameter 7. It suffices to discuss this effect for two
cases: 1) 7 = 1; and 2) 7 > 1. To this end, we
need to use a relation between the eigenvalues of W and
L =D :LD 2 (see proof of theorem for explanation):
forall? =1,2,...,n, the relation is:

0i(W)=1—-0,_;41(L).

3.1.1.’yk =1

First, we argue that the case v, = 1 is not interesting from
a spectral clustering perspective and hence, we can safely
assume that this will not occur in practical scenarios. vy is
the multiplicative eigen-gap between the kth and the (k +
1)th eigenvalue of W

Ok (W) 11— An—ky1(L)
T (W) e

The folklore belief (see end of Section 4.3 in (Lee et al.,
2012)) in spectral clustering says that a good k to select in
order to cluster the data via spectral clustering is when

/\n—k+1 (]:) < )\n—k(fl)

In this case, the spectral gap is sufficiently large and
will not be close to one; hence, a small number of power
iterations p will be enough to obtain accurate results. To
summarize, if v, = 1, it does not make sense to perform
spectral clustering with k clusters and the user should look
for a k' > k such that the gap in the spectrum, ~y;/ is not
approaching and at the very least is strictly larger than 1.

This gap assumption is not surprising from a linear alge-
braic perspective as well. It is well known that in order the
power iteration to succeed to find the eigenvectors of any
symmetric matrix, the multiplicative eigen-gap in the spec-
trum should be sufficiently large, as otherwise the power
method will not be able to distinguish the kth eigenvector
from the (k + 1)th eigenvector. For a more detailed discus-
sion of this we refer the reader to Thm 8.2.4 in (Golub &
Van Loan, 2012).

3129, >1

We remark that the graph we construct to pursue spectral
clustering is a complete graph, hence it is connected; a
basic fact in spectral graph theory (see, for example, (Lee
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et al., 2012)) says that the smallest eigenvalue of the Lapla-
cian matrix L of the graph equals to zero (A, (L) = 0) if
and only if the graph is connected. An extension of this
fact says that the number of disconnected components in
the graph equals the multiplicity of the eigenvalue zero in
the Laplacian matrix L. When this happens, we have

on(L) =0,-1(L) = ... = 0p—i41(L) =0,

and, correspondingly,

on(L)=0p_1(L) = ... = 0p_p+1(L) = 0.

What happens, however, when the k£ smallest eigenvalues
of the normalized Laplacian are not zero but close to zero?
Cheeger’s inequality and extensions in (Lee et al., 2012) in-
dicate that as those eigenvalues approaching zero, the graph
is approaching a graph with k£ disconnected components,
hence clustering such graphs should be “easy”, that is, the
number of power iterations p should be small. We formally
argue about this statement below. First, we state a version
of the Cheeger’s inequality that explains the situation for
the k = 2 case (we omit the details of the high order exten-
sions in (Lee et al., 2012)). The facts below can be found
in Section 1.2 in (Bandeira et al., 2013)). Recall also the
graph partitioning problem in Definition 1. Let the min-
imum value for Ncut(A, B) be obtained from a partition
into two sets A,y and B, then, implies

1 ~ / -
5)\774,1(:[1) < Ncut(Aopt, Bopt) < 2 2)\»”,1(11)

Hence, if \,_;(L) — 0, then Neut(Aopt, Bopt) —
0, which makes the clustering problem “easy”, hence
amenable to a small number of power iterations.

Now, we formally derive the relation of p as a func-
tion of an,kﬂ(f;). Towards this end, fix all values
(n,¢€,0,0,_r(L)) to constants, e.g., n = 103, & = 1073,
6 =102, and 0,,_1(L) = 1/2. Also, z = 0,,_p41(L).
Then,

1 In(4-109)
C2In(2-2-z)°

Simple calculus arguments show that as 0 < = < 1/2 (this
range for z is required to make sure that v, > 1) increases,
then f(z) also increases, which confirms the expectation
that for an eigenvalue 2 := ¢,,_j1 (L) approaching to 0,
the number of power iterations is approaching zero as well.
We plot f(x) in Figure 2. The number of power iterations

is always small since the dependence of p on 0,41 (L) is
logarithmic.

p:= f(z)

3.1.3. DEPENDENCE ON ¢

Finally, we remark that the approximation bound in the the-
orem indicates that the loss in clustering accuracy can be

100
|

80
|

40

20
|

0.0 0.1 0.2 0.3 0.4 0.5

Figure 2. Number of power iterations p vs the eigenvalue = :=

0n—k+1(L) of the normalized Laplacian.

made arbitrarily small since the dependence on £~ is log-
arithmic with respect to the number of power iterations. In
particular, when ¢ < |[Y — XothoTptYH%, we have a rel-
ative error bound: || Y — X5 X1y <

< ((L+4e) 7 +49) [[Y = XopeXop Y7
< (148e) 7 Y — XopXop YIIE,

where the last relation uses 1 < 7. One might wonder
that to achieve this relative error performance, ¢ — 0, in
which case it appears that p is very large. However, this
is not true since the event that £ — 0 is necessary occurs
only when HY—XothZptYH% — 0, which happens when
Y ~ X,p¢. In this case, from the discussion in the previous
section, we have o, _j41(L) — 0, because Y is “close” to
an indicator matrix if and only if the graph is “close” to
having k disconnected components, which itself happens if
and only if ¢, ;11 (L) — 0. It is easy now to calculate
that, when this happens, p — 0 because, from standard

calculus arguments, we can derive:

lim

x—0 1—x
In (1—anfk(£>)
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4. Proofs
4.1. Proof of Lemma 5
4.1.1. PRELIMINARIES

We first introduce the notation that we use throughout the
paper. A,B,... are matrices; a,, ... are column vectors.
I, is the n x n identity matrix; 0, »,, is the m X n matrix of
zeros; 1,, is the n x 1 vector of ones. The Frobenius and the
spectral matrix-norms are [|A[|Z = 3, - A and [|A |y =
max|x|,=1 |[Ax[|2, respectively. The thin (compact) SVD
of A € R™*™ of rank p is

- 0 A\
A=(U Up—k)( 0 Ep—k)(V,T_k . (M

UacRmxp

A ERPXP VZGRPXTL

with singular values o (A) > > o (A) >
ok+1(A) > ... > 0,(A) > 0. The matrices Uy, €
R™** and U,_j, € R™*(»=k) contain the left singular
vectors of A; and, similarly, the matrices Vi € Rnxk
and V,_;, € R™*(P=k) contain the right singular vectors.
¥, € RF*F and Yok € R(p=k)x(P=k) contain the sin-
gular values of A. Also, AT =V AEEU? denotes the
pseudo-inverse of A. For a symmetric positive definite ma-
trix (SPSD) A = BB”, \; (A) = ¢ (B) denotes the i-th
eigenvalue of A.

4.1.2. INTERMEDIATE LEMMAS

To prove Lemma 5, we need the following simple fact.
Lemma 7. For any Y € R™F and Y e R™F with
YIY = Y'Y =1,

YY" - YYTIR <2k YY? - VY3

Proof. This is because || X||2 < rank(X)||X]|2, for any X,
and the fact that rank(YY” — ??T) < 2k. To justify this,
notice that YY7 — YYT can be written as the product of

two matrices each with rank at most 2k:

T o7 - \'d
YY'-YY =(Y Y) T |

We also need the following result, which appeared as
Lemma 7 in (Boutsidis & Magdon-Ismail, 2014).

Lemma 8. For any matrix A € R™*" with rank at least
k, let p > 0 be an integer and draw S € R™** a matrix of
i.i.d. standard Gaussian random variables. Fix § € (0,1)
ande € (0,1). Let Q1 = (AATY?AS, and Qs = Ay,. If

p>lIn (471871571) I~ <<m> ’

then wp. 1 —e™2" — 2.356, QlﬂTl — QgQEH% < e

4.1.3. CONCLUDING THE PROOF OF LEMMA 5

Applying Lemma 8 with A = W and

p>1In (4n5_16_1) In* UZL(?‘;B) )
gives

IYY? - YY |2 <&
Rescaling ¢’ = ¢/V/k, i.e., choosing p as

p>In (4n5_15_1\/E) In~" A7) (VV) .
Ok+1 (W>
gives

IYY” YY" |2 < e2/k.

Combining this bound with Lemma 7 we obtain:
IYYT-YY" 2 <2kl YYT YY" |} < 2k (2/k) = 2,

as advertised.

4.2. Proof of Theorem 6

Let o

YYT' =YY +E,
where E is an n x n matrix with |E||r < ¢ (this follows
after taking square root on both sides in the inequality of
Lemma 5). Next, we manipulate the term || Y —X X§Y||F

as follows
1Y = X5X3Y e =

YY" = XsXIYYT|p
~ ~T ~ =T
IYY +E-X;XX(YY +E)p

< IYYT - X XIYY (e + (L - X5 XD)Elp

< VY - XsXIYY [ + B

= Y -X5XIY|r +|Elr

< VA min [¥ - XXTY)} + |Elle

< VA Y~ X X5, Y |r + Bl

= VI IYY X XD, YV | + | Ellr

= Vi IYY? —E -~ XouXL,(YY? ~E)llr + |Ellr
< VYT = X X0, YY lr +2- /7 |[Ellr

VI Y = Xop X0, Y e +2- 7 |E|r
= ﬁ'\/F0pt+2'\ﬁ'|‘EHF
S ﬁ'\/Fopt+2'ﬁ'5
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In the above, we used the triangle inequality for the Frobe-
nius norm, the fact that (I,, — X:YX,ZS) and (I,, — XothZpt)
are projection matrices > (combined with the fact that for
any projection matrix P and any matrix Z: |[|PZ|p <
Z||g), the fact that for any matrix Q with orthonormal
columns and any matrix X: ||XQ” |l = || X||F, the fact
that 1 < /¥ and the definition of a y-approximation k-

means algorithm.

Overall, we have proved:

HY_X:?XZ;Y”F S ﬁ V Fopt+2'ﬁ'€.

Taking squares on both sides in the previous inequality
gives:
1Y - X;XIY 3 <

IN

’V'Fopt+4'5'7\/Fopt+4"7'52

= ’7'(Fopt+4'6\/Fopt+4'52)

Finally, using \/Fopt < Fope shows the claim in the the-
orem. This bound fails with probability at most e~2" 4
2.356 + 0, which simply follows by taking the union
bound on the failure probabilities of Lemma 5 and the ~-
approximation k-means algorithm.

Connection to the normalized Laplacian. Towards this
end, we need to use a relation between the eigenvalues of
W and the eigenvalues of L = D LD 2. Recall that
the Laplacian matrix of the graph is L = D — W and
the normalized Laplacian matrix is L =1, — W. From
the last relation, it is easy to see that an eigenvalue of L
equals to 1 minus some eigenvalue of W; the ordering of
the eigenvalues, however, is different. Specifically, for ¢ =
1,2...,n, the relation is

Ai(W) =1- X1 (L),

where the ordering is:

M(W) =X (W) > >

and

ML) = (L) =2 -0 =

From this relation:

Tk (W) _1- An—rt1(L)
Ok+1 (W) 1= Ap—i(L) .

Te =

5 A matrix P is called a projection matrix if is square and P2 =
P.

5. Experiments

To conduct our experiments, we developed high-quality
MATLAB versions of the spectral clustering algorithms. In
the remainder of this section, we refer to the clustering al-
gorithm in (Shi & Malik, 2000a) as “exact algorithm”. We
refer to the modified version that uses the power method as
“approximate algorithm”. To measure clustering quality,
we used normalized mutual information (Manning et al.,
2008):

1(Q; C)
3 (H(Q)+ H(C))

NMI(Q;C) =

Here,
Q - {w17w27 "7wk}

is the set of discovered clusters and

C ={ci1,co,.,Ck}
is the set of true class labels. Also,

P(wi Ncj)

160:0) = 3557 Pl s o ey

is the mutual information between €2 and C,

H(Q) ==Y P(wy)log P(w)
k

and
H(C) = = P(cy) log P(cy)
k

are the entropies of () and C, where P is the proba-
bility that is estimated using maximum-likelihood. NMI
is a value in [0,1], where values closer to 1 repre-
sent better clusterings. The exact algorithm uses MAT-
LAB’s svds function to compute the top-k singular
vectors. The approximate algorithm exploits the tall-
thin structure of B and computes Y using MATLAB’s
svd function ®. The approximate algorithm uses MAT-
LAB’s normrnd function to generate the random Gaus-
sian matrix S. We used MATLAB’s kmeans function
with the options ‘EmptyAction’, ‘singleton’,
‘MaxIter’, 100, ‘Replicates’, 10. All our
experiments were run using MATLAB 8.1.0.604 (R2013a)
on a 1.4 GHz Intel Core i5 dual-core processor running OS
X 10.9.5 with 8GB 1600 MHz DDR3 RAM. Finally, all
reported running times are for computing Y for the exact
algorithm and Y for the approximate algorithm (given W).

5.1. Spectral Clustering Accuracy

We ran our experiments on four multi-class datasets from
the 1ibSVMTools webpage (Table 1). To compute W,

®1u,s,V] = svd(B’*B); tildeY=BxV*S" (-.5);
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Exact Approximate
Name p=2 Best under exact time
NMI | time (secs) | NMI | time (secs) | NMI | time (secs) | p
SatIlmage | 0.5905 1.270 0.5713 0.310 0.6007 0.690 6
Segment | 0.7007 1.185 0.2240 0.126 0.5305 0.530 10
Vehicle | 0.1655 0.024 0.2191 0.009 0.2449 0.022 6
Vowel 0.4304 0.016 0.3829 0.003 0.4307 0.005 3

Table 2. Spectral Clustering results for exact and approximate algorithms on the datasets from Table 1. For approximate algorithms, we
report two sets of numbers: (1) the NMI achieved at p = 2 along with the time and (2) the best NMI achieved while taking less time
than the exact algorithm. We see that the approximate algorithm performs at least as good as the exact algorithm for all but the Segment

dataset.
Name n d #nnz #classes
SatImage | 4435 | 36 | 158048 6
Segment | 2310 | 19 | 41469 7
Vehicle 846 | 18 | 14927 4
Vowel 528 | 10 5280 11

Table 1. The libSVM multi-class classification datasets (Chang
& Lin, 2011) used for our spectral clustering experiments.

we use the heat kernel:W;; = e—(xi=x;l1*)/oii  \where
x; € R and x; € R? are the data points and 0;; is a tuning
parameter; o;; is determined using the self-tuning method
described in (Zelnik-Manor & Perona, 2004). That is, for
each data point ¢, x; is computed to be the Euclidean dis-
tance of the ¢*" furthest neighbor from ¢; then o;; is set to
be x;x; for every (7, j); in our experiments, we report the
results for £ = 7. To determine the quality of the clustering
obtained by the approximate algorithm and to determine
the effect of p (number of power iterations) on the cluster-
ing quality and running time, we varied p from 0 to 10. In
columns 2 and 3, we see the results for the exact algorithm,
which serve as our baseline for quality and performance of
the approximate algorithm. In columns 4 and 5, we see
the NMI with 2 power iterations (p = 2) along with the
running time. Immediately, we see that even at p = 2,
the Vehicle dataset achieves better accuracy than the ex-
act algorithm while resulting in a 2.5x speedup. The only
outlier is the Segment dataset, which achieves poor NMI
at p = 2. In columns 6—8, we report the best NMI that
was achieved by the approximate algorithm while staying
under the time taken by the exact algorithm; we also report
the value of p and the time taken (in seconds) for this re-
sult. We see that even when constrained to run in less time
than the exact algorithm, the approximate algorithm bests
the NMI achieved by the exact algorithm. For example, at
p = 6, the approximate algorithm reports NMI=0.2449 for
Vehicle, as opposed to NMI=0.1655 achieved by the exact
algorithm. We can see that in many cases, 2 subspace itera-
tions suffice to get good quality clustering (Segment dataset
is the exception).
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Figure 3. Increase in running time (to compute Y') normalized
by running time when p = 0. The baseline times (at p=0) are
SatImage (0.0648 secs), Segment (0.0261 secs), Vehicle (0.0027
secs), and Vowel (0.0012 secs).

Figure 3 depicts the relation between p and the running
time (to compute Y) of the approximate algorithm. All
the times are normalized by the time taken when p = 0 to
enable reporting numbers for all datasets on the same scale.
As expected, as p increases, we see a linear increase.
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