
The Ladder: A Reliable Leaderboard for Machine Learning Competitions

Moritz Hardt M@MRTZ.ORG

Avrim Blum AVRIM@CS.CMU.EDU

Carnegie Mellon University

Abstract

The organizer of a machine learning competi-
tion faces the problem of maintaining an accurate
leaderboard that faithfully represents the quality
of the best submission of each competing team.
What makes this estimation problem particularly
challenging is its sequential and adaptive nature.
As participants are allowed to repeatedly evaluate
their submissions on the leaderboard, they may
begin to overfit to the holdout data that supports
the leaderboard. Few theoretical results give ac-
tionable advice on how to design a reliable leader-
board. Existing approaches therefore often resort
to poorly understood heuristics such as limiting
the bit precision of answers and the rate of re-
submission.

In this work, we introduce a notion of leader-
board accuracy tailored to the format of a com-
petition. We introduce a natural algorithm called
the Ladder and demonstrate that it simultaneously
supports strong theoretical guarantees in a fully
adaptive model of estimation, withstands practical
adversarial attacks, and achieves high utility on
real submission files from an actual competition
hosted by Kaggle.

Notably, we are able to sidestep a powerful recent
hardness result for adaptive risk estimation that
rules out algorithms such as ours under a seem-
ingly very similar notion of accuracy. On a practi-
cal note, we provide a completely parameter-free
variant of our algorithm that can be deployed in a
real competition with no tuning required whatso-
ever.

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

1. Introduction
Machine learning competitions have become an extremely
popular format for solving prediction and classification prob-
lems of all kinds. A number of companies such as Netflix
have organized major competitions in the past and some
start-ups like Kaggle specialize in hosting machine learning
competitions. In a typical competition hundreds of partici-
pants will compete for prize money by repeatedly submitting
classifiers to the host in an attempt to improve on their pre-
viously best score. The score reflects the performance of
the classifier on some subset of the data, which are typically
partitioned into two sets: a training set and a test set. The
training set is publicly available with both the individual
instances and their corresponding class labels. The test set is
publicly available as well, but the class labels are withheld.
Predicting these missing class labels is the goal of the partic-
ipant and a valid submission is simply a list of labels—one
for each point in the test set.

The central component of any competition is the leaderboard
which ranks all teams in the competition by the score of their
best submission. This leads to the fundamental problem
of maintaining a leaderboard that accurately reflects the
true strength of a classifier. What makes this problem so
challenging is that participants may begin to incorporate
the feedback from the leaderboard into the design of their
classifier thus creating a dependence between the classifier
and the data on which it is evaluated. In such cases, it is
well known that the holdout set no longer gives an unbiased
estimate of the classifier’s true performance. To counteract
this problem, existing solutions such as the one used by
Kaggle further partition the test set into two parts. One part
of the test set is used for computing scores on the public
leaderboard. The other is used to rank all submissions after
the competition ended. This final ranking is often referred
to as the private leaderboard. While this solution increases
the quality of the private leaderboard, it does not address the
problem of maintaining accuracy on the public leaderboard.
Indeed, numerous posts on the forums of Kaggle report
on the problem of “overfitting to the holdout” meaning that

The Ladder: A Reliable Leaderboard for Machine Learning Competitions

some scores on the public leaderboard are inflated compared
to final scores. To mitigate this problem Kaggle primarily
restricts the rate of re-submission and to some extent the
numerical precision of the released scores.

Yet, in spite of its obvious importance, there is relatively
little theory on how to design a leaderboard with rigorous
quality guarantees. Basic questions remain difficult to as-
sess, such as, can we a priori quantify how accurate existing
leaderboard mechanisms are and can we design better meth-
ods?

While the theory of estimating the true loss of a classifier or
set of classifiers from a finite sample is decades old, much
of theory breaks down due to the sequential and adaptive na-
ture of the estimation problem that arises when maintaining
a leaderboard. First of all, there is no a priori understanding
of which learning algorithms are going to be used, the com-
plexity of the classifiers they are producing, and how many
submissions there are going to be. Indeed, submissions are
just a list of labels and do not even specify how these labels
were obtained. Second, any submission might incorporate
statistical information about the withheld class labels that
was revealed by the score of previous submissions. In such
cases, the public leaderboard may no longer provide an unbi-
ased estimate of the true score. To make matters worse, very
recent results suggest that maintaining accurate estimates
on a sequence of many adaptively chosen classifiers may be
computationally intractable (Hardt & Ullman, 2014; Steinke
& Ullman, 2014).

1.1. Our Contributions

We introduce a notion of accuracy called leaderboard accu-
racy tailored to the format of a competition. Intuitively, high
leaderboard accuracy entails that each score represented on
the leaderboard is close to the true score of the correspond-
ing classifier on the unknown distribution from which the
data were drawn. Our primary theoretical contributions are
the following.

1. We show that there is a simple and natural algorithm
we call Ladder that achieves high leaderboard accuracy
in a fully adaptive model of estimation in which we
place no restrictions on the data analyst whatsoever. In
fact, we don’t even limit the number of submissions
an analyst can make. Formally, our worst-case upper
bound shows that if we normalize scores to be in [0, 1]
the maximum error of our algorithm on any estimate
is never worse than O((log(kn)/n)1/3) where k is the
number of submissions and n is the size of the data
used to compute the leaderboard. In contrast, we ob-
serve that the error of the Kaggle mechanism (and sim-
ilar solutions) scales with the number of submissions
as
√
k so that our algorithm features an exponential

improvement in k.

2. We also prove an information-theoretic lower bound on
the leaderboard accuracy demonstrating that no estima-
tor can achieve error smaller than Ω((log(k)/n)1/2).

Complementing our theoretical worst-case upper bound and
lower bound, we make a number of practical contributions:

1. We provide a parameter-free variant of our algorithm
that can be deployed in a real competition with no
tuning required whatsoever.

2. To demonstrate the strength of our parameter-free algo-
rithm we conduct two opposing experiments. The first
is an adversarial—yet practical—attack on the leader-
board that aims to create as much of a bias as possible
with a given number of submissions. We compare
the performance of the Kaggle mechanism to that of
the Ladder mechanism under this attack. We observe
that the accuracy of the Kaggle mechanism diminishes
rapidly with the number of submissions, while our
algorithm encounters only a small bias in its estimates.

3. In a second experiment, we evaluate our algorithm on
real submission files from a Kaggle competition. The
data set presents a difficult benchmark as little over-
fitting occurred and the errors of the Kaggle leader-
board were generally within the expected statistical
deviations given the properties of the data set. Even
on this benchmark our algorithm produced a leader-
board that is very close to that computed by Kaggle.
Through a sequence of significance tests we assess that
the differences between the two leaderboards on this
competition are not statistically significant.

In summary, our algorithm supports strong theoretical re-
sults while suggesting a simple and practical solution. Im-
portantly, it is one and the same parameter-free algorithm
that withstands our adversarial attack and simultaneously
achieves high utility in a real Kaggle competition.

An important aspect of our algorithm is that it only releases
a score to the participant if the score presents a statistically
significant improvement over the previously best submission
of the participant. Intuitively, this prevents the participant
from exploiting or overfitting to minor fluctuations in the
observed score values.

1.2. Related Work

There is a vast literature on preventing overfitting in the
context of model assessment and selection. See, for exam-
ple, Chapter 7 of (Hastie et al., 2001) for background. Two
particularly popular practical approaches are various forms

The Ladder: A Reliable Leaderboard for Machine Learning Competitions

of cross-validation and bootstrapping. It is important to note
though that when scoring a submission for the leaderboard,
neither of these techniques applies. One problem is that
participants submit only a list of labels and not the corre-
sponding learning algorithms. In particular, the organizer
of the competition has no means of retraining the model
on a different split of the data. Similarly, the natural boot-
strap estimate of the expected loss of a classifier given a
finite sample is simply the empirical average of the loss on
the finite sample, which is what existing solutions release
anyway. The other substantial obstacle is that even if these
methods applied, their theoretical guarantees in the adaptive
setting of estimation are largely not understood.

A highly relevant recent work (Dwork et al., 2015), that in-
spired us, studies a more general question: Given a sequence
of adaptively chosen bounded functions f1, . . . , fk : X →
{0, 1} over a domain X, estimate the expectations of these
function E f1, . . . ,E fk over an unknown distribution D,
given n samples from this distribution. If we think of each
function as expressing the loss of one classifier submitted to
the leaderboard, then such an algorithm could in principle
be used in our setting. The main result of (Dwork et al.,
2015) is an algorithm that achieves maximum error

O
(

min
{

log
3
7 (k) log

1
7 (|X|)/n 2

7 , (log |X| log(k)/n)
1
4

})
.

This bound readily implies a corresponding result for leader-
board accuracy albeit worse than the one we show. One
issue is that this algorithm requires the entire test set to be
withheld and not just the labels as is required in the Kag-
gle application. The bigger obstacle is that the algorithm
is unfortunately not computationally efficient and this is
inherent. In fact, no computationally efficient algorithm
can give non-trivial error on k > n2+o(1) adaptively chosen
functions as was shown recently (Hardt & Ullman, 2014;
Steinke & Ullman, 2014) under a standard computational
hardness assumption.

Matching this hardness result, there is a computationally
efficient algorithm in (Dwork et al., 2015) that achieves
an error bound of O(k1/5 log(k)3/5/n2/5) which implies a
bound on leaderboard accuracy that is worse than ours for all
k > n1/3. They also give an algorithm (called EffectiveR-
ounds) with accuracyO(

√
r log(k)/n) when the number of

“rounds of adaptivity” is at most r. While we do not have a
bound on r in our setting better than k1, the proof technique
relies on sample splitting and a similar argument could be
used to prove our upper bound. However, our argument does
not require sample splitting and this is very important for
the practical applicability of the algorithm. Subsequently to
our result, (Bassily et al., 2015) and (Nissim & Stemmer,

1The parameter r corresponds to the depth of the adaptive tree
we define in the proof of Theorem 3.1. While we bound the size
of the tree, the depth could be as large as k.

2015) improved upon the quantitative bounds of (Dwork
et al., 2015).

We sidestep the hardness result by going to a more special-
ized notion of accuracy that is surprisingly still sufficient
for the leaderboard application. However, it does not re-
solve the more general question raised in (Dwork et al.,
2015). In particular, we do not always provide a loss esti-
mate for each submitted classifier, but only for those that
made a significant improvement over the previous best. This
seemingly innocuous change is enough to circumvent the
aforementioned hardness results.

Acknowledgments

We thank Ben Hamner at Kaggle Inc., for providing us with
the submission files from the Photo Quality competition, as
well as many helpful discussions. We are grateful to Aaron
Roth for pointing out an argument similar to that appearing
in the proof of Theorem 3.1 in a different context. We thank
John Duchi for many stimulating discussions.

1.3. Preliminaries

Let X be a data domain and Y be a finite set of class labels,
e.g., X = Rd and Y = {0, 1}. Rather than speaking of
the score of a classifier we will use the term loss with the
understanding that smaller is better. A loss function is a
mapping of the form ` : Y × Y → [0, 1] and a classifier is
a mapping f : X → Y. A standard loss function is the 0/1-
loss defined as `01(y, y′) = 1 if y 6= y′ and 0 otherwise.

We assume that we are given a sample S =
{(x1, y1), . . . , (xn, yn)} drawn i.i.d. from an unknown dis-
tribution D over X × Y. We define the empirical loss of a
classifier f on the sample S as

RS(f)
def
=

1

n

n∑
i=1

`(f(xi), yi) .

The true loss is defined as

RD(f)
def
= E

(x,y)∼D
[`(f(x), y))] .

Throughout this paper we assume that S consists of n i.i.d.
draws from D and ` is a loss function with bounded range.

ly identified using B = O(η−1 log(t/η)) bits of informa-
tion. This shows that the tree itself cannot grow larger than
2B and we may take a union bound over all 2B nodes.

2. Sequential and adaptive loss estimation
In this section we formally define the adaptive model of esti-
mation that we work in and present our definition of leader-
board accuracy. Given a sequence of classifiers f1, . . . , fk

The Ladder: A Reliable Leaderboard for Machine Learning Competitions

and a finite sample S of size n, a fundamental estimation
problem is to compute estimates R1, . . . , Rk such that

Pr {∃t : |Rt −RD(ft)| > ε} 6 δ . (1)

The standard way of estimating the true loss is via the empir-
ical loss. If we assume that all functions f1, . . . , fk are fixed
independently of the sample S, then Hoeffding’s bound and
the union bound imply

Pr {∃t : |RS(ft)−RD(ft)| > ε} 6 2k exp(−2ε2n) .
(2)

In the adaptive setting, however, we assume that the
classifier ft may be chosen as a function of the previ-
ous estimates and the previously chosen classifiers. For-
mally, there exists a mapping A such that for all t ∈ [k],
ft = A(f1, R1, . . . , ft−1, Rt−1) . We will assume for sim-
plicity that A is a deterministic algorithm. The tuple
(f1, R1, . . . , ft−1, Rt−1) is nevertheless a random variable
due to the random sample used to compute the estimates.

Unfortunately, in the case where the choice of ft depends
on previous estimates, we may no longer apply Hoeffd-
ing’s bound to control RS(ft). In fact, recent work (Hardt
& Ullman, 2014; Steinke & Ullman, 2014) shows that no
computationally efficient estimator can achieve error o(1)
on more than n2+o(1) adaptively chosen functions (under
a standard hardness assumption). Since we’re primarily
interested in a computationally efficient algorithm, these
hardness results demonstrate that the goal of achieving the
accuracy guarantee specified in inequality (1) is too stringent
in the adaptive setting when k is large. We will therefore
introduce a weaker notion of accuracy called leaderboard
accuracy under which we can circumvent the hardness re-
sults and nevertheless achieve a guarantee strong enough
for our application.

2.1. Leaderboard accuracy

The goal of an accurate leaderboard is to guarantee that
at each step t 6 k, the leaderboard accurately reflects the
best classifier among those classifiers f1, . . . , fk submitted
so far. In other words, while we do not need an accurate
estimate for each ft, we wish to maintain that the t-th es-
timate Rt correctly reflects the minimum loss achieved by
any classifier so far. This leads to the following definition.

Definition 2.1. Given an adaptively chosen sequence of
classifiers f1, . . . , fk, we define the leaderboard error of
estimates R1, . . . , Rk as

lberr(R1, . . . , Rk)
def
= max

16t6k

∣∣∣∣ min
16i6t

RD(fi)−Rt
∣∣∣∣ (3)

Given an algorithm that achieves high leaderboard accuracy
there are two simple ways to extend it to provide a full
leaderboard:

1. Use one instance of the algorithm for each team to
maintain the best score achieved by each team.

2. Use one instance of the algorithm for each rank on
the leaderboard. When a new submission comes in,
evaluate it against each instance in descending order to
determine its place on the leaderboard.

The first variant is straightforward to implement, but re-
quires the assumption that competitors don’t use several
accounts (a practice that is typically against the terms of use
of a competition). The second variant is more conservative
and does not need this assumption.

3. The Ladder mechanism
We introduce an algorithm called the Ladder Mechanism
that achieves small leaderboard accuracy. The algorithm
is very simple. For each given function, it compares the
empirical loss estimate of the function to the previously
smallest loss. If the estimate is below the previous best by
some margin, it releases the estimate and updates the best
estimate. Importantly, if the estimate is not smaller by a
margin, the algorithm releases the previous best loss (rather
than the new estimate). A formal description follows in
Figure 1.

Algorithm 1 Ladder mechanism
Input: Data set S, step size η > 0
Assign initial estimate R0 ←∞.
for round t = 1, 2, . . . do

Receive function ft : X → Y
if RS(ft) < Rt−1 − η then

Assign Rt ← [RS(ft)]η.
else

Assign Rt ← Rt−1.
end if

end for

Theorem 3.1. For any sequence of adaptively chosen clas-
sifiers f1, . . . , fk, the Ladder Mechanism satisfies for all
t 6 k and ε > 0,

Pr

{∣∣∣∣ min
16i6t

RD(fi)−Rt
∣∣∣∣ > ε+ η

}
6 exp

(
−2ε2n+ (1/η + 2) log(4t/η) + 1

)
.

In particular, for some η = O(n−1/3 log1/3(kn)), the Lad-
der Mechanism achieves with high probability,

lberr(R1, . . . , Rk) 6 O

(
log1/3(kn)

n1/3

)
.

Proof. LetA be the adaptive analyst generating the function
sequence. Fix t 6 k. The algorithm A naturally defines a
rooted tree T of depth t recursively defined as follows:

The Ladder: A Reliable Leaderboard for Machine Learning Competitions

1. The root is labeled by f1 = A(∅).

2. Each node at depth 1 < i < t corresponds to one
realization (h1, r1, . . . , hi−1, ri−1) of the random vari-
able (f1, R1, . . . , fi−1, Ri−1) and is labeled by hi =
A(h1, r1, . . . , hi−1, ri−1). Its children are defined by
each possible value of the output Ri of Ladder Mecha-
nism on the sequence h1, r1, . . . , ri−1, hi.

Claim 3.2. Let B = (1/η+2) log(4t/η). Then, |T | 6 2B .

Proof. To prove the claim, we will uniquely encode each
node in the tree using B bits of information. The claim then
follows directly. The compression argument is as follows.
We use blog(t)c 6 log(2t) bits to specify the depth of the
node in the tree. We then specify the index of each 1 6 i 6 t
for which Ri 6 Ri−1 − η together with the value Ri. Note
that sinceRi ∈ [0, 1] there can be at most d1/ηe 6 (1/η)+1
many such steps. Moreover, there are at most d1/ηe many
possible values for Ri = [RS(fi)]η. Hence, specifying all
such indices requires at most (1/η+1)(log(2/η)+log(2t))
bits. It is easy that this uniquely identifies each node in
the graph, since for every index i not explicitly listed we
know that Ri = Ri−1. The total number of bits we used
is: (1/η + 1)(log(2/η) + log(2t)) + log(2t) 6 (1/η +
2) log(4t/η) = B . �

The theorem now follows by applying a union bound over
all nodes in T and using Hoeffding’s inequality for each
fixed node. Let F be the set of all functions appearing in T .

Pr {∃f ∈ F : |RD(f)−RS(f)| > ε} 6 2|F | exp(−2ε2n)

6 2B+1 exp(−2ε2n)

6 2 exp(−2ε2n+B) .

In particular,

Pr

{∣∣∣∣ min
16i6t

RD(fi)− min
16i6t

RS(fi)

∣∣∣∣ > ε

}
6 2e−2ε

2n+B .

Moreover, it is clear that conditioned on the event that∣∣∣∣ min
16i6t

RD(fi)− min
16i6t

RS(fi)

∣∣∣∣ 6 ε,
at step i∗ where the minimum of RD(fi) is attained, the
Ladder Mechanism must output an estimate Ri∗ which is
within ε+ η of RD(fi∗). This concludes the proof. �

3.1. A lower bound on leaderboard accuracy

We next show that Ω(
√

log(k)/n) is a lower bound on the
best possible leaderboard accuracy that we might hope to
achieve. This is true even if the functions are not adaptively
chosen but fixed ahead of time.

Theorem 3.3. There are classifiers f1, . . . fk and a
bounded loss function for which we have the minimax lower
bound

inf
R

sup
D

E [lberr(R(x1, . . . , xn))] > Ω

(√
log k

n

)
.

Here the infimum is taken over all estimators R : Xn →
[0, 1]k that take n samples from a distribution D and pro-
duce k estimates R1, . . . , Rk = θ̂(x1, . . . , xn). The expec-
tation is taken over n samples from D.

The proof follows by reduction from a high-dimensional
mean estimation problem and an application of Fano’s
inequality. Please see the full version of this paper
(arXiv:1502.04585) for details.

4. Parameter-free Ladder mechanism
When applying the Ladder Mechanism in practice it can
be difficult to choose a fixed step size η ahead of time that
will work throughout an entire competition. We therefore
now give a completely parameter-free version of our algo-
rithm that we will use in our experiments. The algorithm
adaptively finds a suitable step size based on previous sub-
missions to the algorithm. The idea is to perform a statisti-
cal significance test to judge whether the given submission
improves upon the previous one. The test is such that as
the best classifier gets increasingly accurate, the step size
shrinks accordingly.

The empirical loss of a classifier is the average of n bounded
numbers and follows a very accurate normal approximation
for sufficiently large n so long as the loss is not biased too
much towards 0. In our setting, the typical loss if bounded
away form 0 so that the normal approximation is reasonable.
In order to test whether the empirical loss of one classifier
is significantly below the empirical loss of another classifier,
it is appropriate to perform a one-sided paired t-test. A
paired test has substantially more statistical power in set-
tings where the loss vectors that are being compared are
highly correlated as is common in a competition.

To recall the definition of the test, we denote the sample
standard deviation of an n-dimensional vector vector u as

std(u) =
√

1
n−1

∑n
i=1(ui −mean(u))2 , (4)

where mean(u) denotes the average of the entries in u.With
this notation, the paired t-test statistic given two vectors u
and v is defined as

t =
√
n · mean(u− v)

std(u− v)
. (5)

Keeping this definition in mind, Algorithm 2 is now very
natural. On top of the loss estimate, it also maintains the

The Ladder: A Reliable Leaderboard for Machine Learning Competitions

loss vector of the previously best classifier (starting with the
trivial all zeros loss vector).

Algorithm 2 Parameter-free Ladder Mechanism
Input: Data S = {(x1, y1), . . . (xn . . . , yn)}
Assign initial estimate R0 ←∞
Assign initial loss vector `0 = (0)ni=1.
for round t = 1, 2 . . . do

Receive function ft : X → Y.
Compute loss vector lt ← (`(ft(xi), yi))

n
i=1

if RS(ft) < Rt−1 − std(lt − lt−1)/
√
n then

Rt ← [RS(ft)]1/n.
else

Assign Rt ← Rt−1 and lt ← lt−1.
end if

end for

Algorithm 2 releases the estimate of RS(ft) up to an error
of 1/n which is significantly below the typical step size
of Ω(1/

√
n). Looking back at our analysis, this is not a

problem since such an estimate only reveals log(n) bits
of information which is the same up to constant factors
as an estimate that is accurate to within 1/

√
n. The more

critical quantity is the step size as it controls how often the
algorithm releases a new estimate.

In the following sections we will show that the parameter-
free Ladder mechanism achieves high accuracy both under
a strong attack as well as on a real Kaggle competition.

4.1. Interpretation of the significance test

For sufficiently large n, the test statistic on the left hand
side of (5) is well approximated by a Student’s t-distribution
with n − 1 degrees of freedom. The test performed in
our algorithm at each step corresponds to refuting the null
hypothesis roughly at the 0.15 significance level.

It is important to note, however, that our use of this signifi-
cance test is primarily heuristic. This is because for t > 1,
due to the adaptive choices of the analyst, the function ft
may in general not be independent of the sample S. In such
a case, the Student approximation is no longer valid. Be-
sides we apply the test many times, but do not control for
multiple comparisons. Nevertheless, the significance test
is an intuitive guide for deciding which improvements are
statistically significant.

5. The boosting attack
In this section we describe a new canonical attack that an
adversarial analyst might perform in order to boost their
ranking on the public leaderboard. Besides being practical
in some cases, the attack also serves as an analytical tool to
assess the accuracy of concrete mechanisms.

For simplicity we describe the attack only for the 0/1-loss
although it generalizes to other reasonable functions such
as the clipped logarithmic loss often used by Kaggle. We
assume that the hidden solution is a vector y ∈ {0, 1}n. The
analyst may submit a vector u ∈ {0, 1}n and observe (up to
small enough error) the loss

`01(y, u)
def
=

1

n

n∑
i=1

`01(ui, yi)

The attack proceeds as follows:

1. Pick u1, . . . , uk ∈ {0, 1}n uniformly at random.

2. Observe loss estimates l1, . . . , lk ∈ [0, 1].

3. Let I = {i : li 6 1/2} .

4. Output u∗ = maj ({ui : i ∈ I}) , where the majority
function is applied coordinate-wise.

The vector y corresponds to the target set of labels used for
the public leaderboard which the analyst does not know. The
vectors u1, . . . , uk represent the labels given by a sequence
of k classifiers.

The next theorem follows from a standard “boosting argu-
ment” using properties of the majority function and the fact
that each ui for i ∈ I has a somewhat larger than expected
correlation with y.

Theorem 5.1. Assume that |li − `01(y, ui)| 6 n−1/2 for
all i ∈ [k]. Then, the boosting attack finds a vector u∗ ∈
{0, 1}n so that with probability 2/3,

1

n

n∑
i=1

`01(u∗i , yi) 6
1

2
− Ω

(√
k

n

)
.

The previous theorem in particular demonstrates that the
Kaggle mechanism has poor leaderboard accuracy if it is
invoked with rounding parameter α 6 1/

√
n. The currently

used rounding parameter is 10−5 which satisfies this as-
sumption for all n 6 1010. To make the discussion more
precise, we briefly state a reference mechanism similar to
the one Kaggle uses. We will refer to this algorithm as the
“Kaggle mechanism” in our discussion below. As we did for
the Ladder Mechanism we describe the algorithm as if the
analyst was submitting classifiers f : X → Y. In reality the
analyst only submits a list of labels. It is easy to see that
such a list of labels is sufficient to compute the empirical
loss which is all the algorithm needs to do. The input set S
in the description of our algorithm corresponds to the set of
data points (and corresponding labels) that Kaggle uses for
the public leaderboard.

The Ladder: A Reliable Leaderboard for Machine Learning Competitions

Algorithm 3 Kaggle reference mechanism
Input: Data set S, rounding parameter α > 0 (typically
0.00001)
for round t← 1, 2, . . . : do

Receive function ft : X → Y
Assign Rt ← [RS(ft)]α.

end for

Corollary 5.2. There is a sequence of adaptively chosen
classifiers f1, . . . , fk such that ifRi denotes the minimum of
the first i loss estimates returned by the Kaggle mechanism
with accuracy α 6 1/

√
n where n is the size of the data set,

then with probability 2/3 the estimates R1, . . . , Rk have
leaderboard error

lberr(R1, . . . , Rk) > Ω

(√
k

n

)
.

5.1. Experiments with the boosting attack

Figure 1 compares the performance of the Ladder mecha-
nism with that of the standard Kaggle mechanism under the
boosting attack. We chose N = 12000 as the total number
of labels of which n = 4000 labels are used for determining
the public leaderboard under either mechanism. Other pa-
rameter settings lead to a similar picture, but these settings
correspond roughly to the properties of the real data set that
we will analyze later. The Kaggle mechanism gives answers
that are accurate up to a rounding error of 10−5. Note that
1/
√

4000 ≈ 0.0158 so that the rounding error is well below
the critical level of 1/

√
n. The vector y in the description

of our attack corresponds to the 4000 labels used for the
public leaderboard. Since the answers given by Kaggle only
depend on these labels, the remaining labels play no role in
the attack. Importantly, the attack does not need to know the
indices of the labels used for the public leaderboard within
the entire vector of labels.

The 8000 coordinates not used for the leaderboard remain
unbiased random bits throughout the attack as no informa-
tion is revealed. In particular, the final submission u∗ is
completely random on those 8000 coordinates and only bi-
ased on the other 4000 coordinates used for the leaderboard.
Therefore, once we evaluate the final submission u∗ on the
test set consisting of the remaining 8000 coordinates, the
resulting loss is close to its expected value of 1/2, i.e. the
expected loss of a random 0/1-vector. What we observe,
however, is that the Kaggle mechanism gives a strongly
biased estimate of the loss of u∗.

The blue line in Figure 1 displays the performance of the
parameter-free version of the Ladder mechanism. Instead of
selecting all the vectors with loss at most 1/2 we modified
the attack to be more effective against the Ladder Mecha-
nism. Specifically, we selected all those vectors that suc-

cessfully lowered the score compared to the previous best.
As we have no information about the correlation of the re-
maining vectors, there is no benefit in including them in
the boosting step. Even with this more effective attack, the
Ladder mechanism gives a result that is correct to within the
expected maximum deviation of the score on k random vec-
tors. The intuitive reason is that every time a vector lowers
the best score seen so far, the probability of a subsequent
vector crossing the new threshold drops off by a constant
factor. In particular there cannot be more than O(log(k))
such steps thus creating a bias of at most O(

√
log(k)/n) in

the boosting step.

�����������������

� ��� ��� ��� ���
����

����

����

����

����

�
�
�
�
��
�
�
���

�
�

�����������������������������������

Figure 1. Performance of the parameter free Ladder Mechanism
compared with the Kaggle Mechanism. Top green line: Indepen-
dent test set. Middle blue line: Ladder. Bottom red line: Kaggle.

6. Experiments on real Kaggle data
To demonstrate the utility of the Ladder mechanism we
turn to real submission data from Kaggle’s “Photo Quality
Prediction” challenge2. The holdout set contained 12000
samples of which Kaggle used 8400 for the private leader-
board and 3600 for the public leaderboard. Two hundred
teams entered the competition producing a total of 1830
submissions. We were able to parse 1785 submissions suc-
cessfully. The exact number of correctly parsed submis-
sions by Kaggle differs slightly. Our code is available at
https://github.com/mrtzh/Ladder.jl.

6.1. Using Ladder instead of Kaggle’s mechanism

In our first experiment we use the parameter-free Ladder
mechanism in place of the Kaggle mechanism across all
1785 submissions and recompute both the public and the
private leaderboard. Our primary finding is that the resulting

2https://www.kaggle.com/c/
PhotoQualityPrediction

https://github.com/mrtzh/Ladder.jl
https://www.kaggle.com/c/PhotoQualityPrediction
https://www.kaggle.com/c/PhotoQualityPrediction

The Ladder: A Reliable Leaderboard for Machine Learning Competitions

rankings turn out to be extremely close to those computed by
Kaggle. To illustrate this we consider the top 50 submissions
as determined by the private leaderboard. For each of these
submission we compare the “private score” (score on the
8400 private samples) with the “public score” (score on the
3600 remaining samples) computed by either the Ladder
mechanism or the Kaggle mechanism. The results are shown
in Figure 2.

����
� �� �� �� �� ��

�����

�����

�����

�����

�����

�����

�
��
��
��
��
��
��

Test

Ladder

Kaggle

Figure 2. X-axis: Rank according to private test set. Y-axis: Public
scores reported by Ladder mechanism and Kaggle mechanism.

As we can see in Figure 2, the scores computed by the
Ladder mechanism are almost identical to those computed
by Kaggle. We can also see a small amount of underfitting
between the public and private scores; the losses on the
public leaderboard generally tend to be slightly higher than
on the private leaderboard. This appears to be due random
fluctuations in the proportion of hard examples in the public
holdout set.

To assess this possibility and gain further insight into the
magnitude of statistical deviations of the scores, we ran-
domly split the private holdout set into two equally sized
parts and recompute the Kaggle leaderboards on each split.
We repeat the process 20 times independently and look at the
standard deviations of the scores across these 20 repetitions.
Figure 3 shows the results demonstrating that the statisti-
cal deviations due to random splitting are large relative to
the difference in mean scores. In particular the amount of
underfitting observed on the original split is within one stan-
dard deviation of the mean scores which cluster close to the
diagonal line. We also observed (not reflected in the figure)
that the top 50 scores are highly correlated so that across
different splits the points are either mostly above or mostly
below the diagonal line. This must be due to the fact that the
best submissions in this competition used related classifiers
that fail to predict roughly the same label set.

������������

���� ���� ����

����

����

�
��
�
�
��
��
�
�
��

������������������������������������

Figure 3. Behavior of private and public scores under fresh splits.

7. Conclusion
In a first step, we hope that the Ladder mechanism will
be helpful in making machine learning competitions more
reliable. But we believe that the Ladder mechanism could
be useful well beyond the scope of machine learning compe-
titions. For example, a data scientist might use the Ladder
to keep track of her own progress in building a good model
from a data set while avoiding overfitting to her holdout
set. In such a situation the Ladder mechanism gives con-
crete guidance on how to safely reuse a holdout set. A
similar application arises in the problem of searching for
good hyperparameters of a learning algorithm. Whenever an
adaptive search strategy is used, there is an increased danger
of overfitting. It would be interesting to see how the Ladder
mechanism can be used in this context. Finally, in the con-
text of false discovery in the empirical sciences (Ioannidis,
2005; Gelman & Loken, 2014), one could imagine using
the the Ladder mechanism as a way of keeping track of
scientific progress on important public data sets.

Our algorithm can also be seen as an intuitive explanation
for why overfitting to the holdout is sometimes not a major
problem even in the adaptive setting. If indeed every analyst
only uses the holdout set to test if their latest submission is
well above the previous best, then they effectively simulate
our algorithm.

A beautiful theoretical problem is to resolve the gap between
our upper and lower bound. On the practical side, it would
be interesting to use the Ladder mechanism in a real compe-
tition. One interesting question is if the Ladder mechanism
actually encourages higher quality submissions by requiring
a certain level of statistically significant improvement over
previous submissions.

The Ladder: A Reliable Leaderboard for Machine Learning Competitions

Acknowledgments
We thank Ben Hamner at Kaggle Inc., for providing us with
the submission files from the Photo Quality competition, as
well as many helpful discussions. We are grateful to Aaron
Roth for pointing out an argument similar to that appearing
in the proof of Theorem 3.1 in a different context. We thank
John Duchi for many stimulating discussions.

References
Bassily, Raef, Smith, Adam, Steinke, Thomas, and Ullman,

Jonathan. More general queries and less generalization
error in adaptive data analysis. CoRR, abs/1503.04843,
2015.

Dwork, Cynthia, Feldman, Vitaly, Hardt, Moritz, Pitassi,
Toniann, Reingold, Omer, and Roth, Aaron. Preserving
statistical validity in adaptive data analysis. In Proc.
47th Symposium on Theory of Computing (STOC). ACM,
2015.

Gelman, Andrew and Loken, Eric. The statistical crisis in
science. American Scientist, 102(6):460, 2014.

Hardt, Moritz and Ullman, Jonathan. Preventing false dis-
covery in interactive data analysis is hard. In Proc. 55th
Foundations of Computer Science (FOCS), pp. 454–463.
IEEE, 2014.

Hastie, Trevor, Tibshirani, Robert, and Friedman, Jerome.
The Elements of Statistical Learning. Springer, 2001.

Ioannidis, John P. A. Why Most Published Research Find-
ings Are False. PLoS Medicine, 2(8):124, 2005. doi:
10.1371/journal.pmed.0020124.

Nissim, Kobbi and Stemmer, Uri. On the generalization
properties of differential privacy. CoRR, abs/1504.05800,
2015.

Steinke, Thomas and Ullman, Jonathan. Interactive fin-
gerprinting codes and the hardness of preventing false
discovery. CoRR, abs/1410.1228, 2014.

