Optimal and Adaptive Algorithms for Online Boosting
Supplementary Material

A. Proof of Lemma 1

Proof. Fix a weak learner, say WLE. Let
U = {t: (x¢,y;) passed to WL'}.

Since inequality (1) holds even for adaptive adversaries,
with high probability we have
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Now fix the internal randomness of WL!. Note that
E[1{t € U}] = pi = ”‘:’ﬁ, where E,[-] is the expecta-
tion conditioned on all the randomness of the booster until
(and not including) round ¢. Define o = Zthl pi.

We now show using martingale concentration bounds that
with high probability,
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and

Ul <o+0 (Vo). 3)

Here, the O() notation suppresses dependence on
loglog(T).

To prove inequality (2), consider the martingale difference
sequence

Xo = H{WL'(x;) # ye}1{t € U} — 1{WL'(x;) # % }p;.
Note that | X;| < 1, and the conditional variance satisfies
Vart[Xt|X17X27 sy thl} é p7tl

Then, by Lemma 2 of Bartlett et al. (2008), for any § < 1/e
and assuming 7' > 4, with probability at least 1—log,(7')d,
we have

T ~
> < 2 {20, ()} /m(3) = O(v2)

by choosing § < m. This implies inequality (2). In-
equality (3) is proved similarly. Note that these high prob-
ability bounds are conditioned on the internal randomness
of WL'. By taking an expectation of this conditional prob-
ability over the internal randomness of WLi, we conclude
that inequalities (2) and (3) hold with high probability un-
conditionally.

Via a union bound, inequalities (1), (2) and (3) all hold
simultaneously with high probability, which implies that
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Using the facts that p! = ”wliﬂ and 1{WL(x;) # y;} =

%Z: and simplifying, we get

w2 2 29wy - 25wl — O/ W1 [wiloc)
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The second inequality above follows from the arithmetic
mean-geometric mean inequality. This gives us the desired
bound. The high probability bound for all weak learners
follows by taking a union bound. O

B. Proof of Lemma 4

Proof. Let X ~ B(m,p) be a binomial random variable
wherem = N —iandp = 1/2+ /2. Alsoletg=1—1p
and F'x be the CDF of X. By the definition of wi, we have
wj < L max; Pr{X = k}. We will approximate X by a
Gaussian random variable G ~ N (mp, mpq) with density
function f and CDF Fg. Note that

k
PeX =k} - [ (G

= [ (Fx (k) = Fx(k = 1)) = (Fa(k) — Fo(k = 1)) |
< |Fx (k) — Fa(k)| + |[Fx(k — 1) = Fa(k—1)|.

So by applying the Berry-Esseen theorem to the above two
CDF differences between X and (G, we arrive at

Pr{X =k} — ' F(G)G| <
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mpq
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where C' is the universal constant stated in the Berry-
Esseen theorem. It remains to point out that
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since pg = 1/4 — 42 /4 > 3/16. 0O
C. Proof of Theorem 3

Proof. The proof of both lower bounds use a similar con-
struction. In either case, all examples’ labels are gener-
ated uniformly at random from {—1, 1}, and in time period
t, each weak learner outputs the correct label ¥, indepen-
dently of all other weak learners and other examples with
a certain probability p, to be specified later. Thus, for any
T, by the Azuma-Hoeffding inequality, with probability at
least 1 — 4, the predictions ¢; made by the weak learner
satisfy

T T
Z Wy # e} < Z(l —pi) +4/2TIn(5)
t=1 t=1

<> (1-p) +9T + h;(v‘;) 5)

t

Il
—

where the last inequality follows by the arithmetic mean-
geometric mean inequality. We will now carefully choose
Py so that inequality (5) implies inequality (1).

For the lower bound on the number of weak learners, we
set py = % + 27, so that inequality (5) implies that with
probability at least 1 — ¢, the predictions g; made by the
weak learner satisfy

1n(%)
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Thus, the weak online learner has edge v with excess loss
S. In this case, the Bayes optimal output of a booster using
N weak learners is to simply take a majority vote of all the
weak learners (see for instance Schapire & Freund, 2012,
Chap. 13.2.6), and the probability that the majority vote is
incorrect is ©(exp(—8N~?)). Setting this error to € and
solving for N gives the desired lower bound.

Now we turn to the lower bound on the sample complexity.
We divide the whole process into two phases: fort < Ty =
%, we set p; = %, and for t > Ty, we set p, = 3 + 2.
Now, if T' < T, inequality (5) implies that with probability

at least 1 — ¢, the predictions g; made by the weak learner
satisfy
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1
using the fact that 7' < Ty = % and S > @. Next, if

T > Ty, let T = T — Ty, and again inequality (5) implies
that with probability at least 1 — 4, the predictions g; made
by the weak learner satisfy

T )
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since S > . Inequalities (6) and (7) imply that the
weak online learner has edge v with excess loss S.

In(3)
Y

However, in the first phase (i.e. ¢ < Tj), since the pre-
dictions of the weak learners are uncorrelated with the true
labels, it is clear that no matter what the booster does, it
makes a mistake with probability % Thus, it will make
O(To) mistakes with high probability in the first phase, and
thus to achieve € error rate, it needs at least Q(7p/¢) =
Q(2) examples. O

€y

D. Proof of Lemma 5

Proof. 1t suffice to prove the bound for o > %; the bound
foro < % follows by symmetry simply changing the sign
of a. For o € [0.5,0.95], setting o« = 3 In(7%) € [-2,2]
gives

oe”“+ (1 —0)e* =

4o0(l—0) <1—1(20—1)2,

1
2

since /1 —2 <1— 1aforz € [0,1]. For o € (0.95,1],
setting a = 3 In(§92) € [—2,2] we have

- %(20 — 1)2.

E. Description of Data Sets

The datasets come from the UCI repository, KDD Cup
challenges, and the HCRC Map Task Corpus. Below, d
is the number of unique features in the dataset, and s is the
average number of features per example.
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Dataset H instances \ s \ d ‘
20news 18,845 | 93.9 | 101,631
a9a 48,841 | 13.9 123
activity 165,632 | 18.5 20
adult 48,842 | 12.0 105
bio 145,750 | 73.4 74
census 299,284 | 32.0 401
covtype 581,011 | 11.9 54
letter 20,000 | 15.6 16
maptaskcoref 158,546 | 40.4 5,944
nomao 34,465 | 82.3 174
poker 946,799 | 10.0 10
revl 781,265 | 75.7 | 43,001
vehv2binary 299,254 | 48.6 105
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