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A. Proof of Lemma 1
Proof. Fix a weak learner, say WLi. Let

U = {t : (xt, yt) passed to WLi}.

Since inequality (1) holds even for adaptive adversaries,
with high probability we have

T∑
t=1

1{WLi(xt) 6= yt}1{t ∈ U} ≤ ( 1
2 − γ)|U |+ S. (1)

Now fix the internal randomness of WLi. Note that
Et[1{t ∈ U}] = pit =

wi
t

‖wi‖∞ , where Et[·] is the expecta-
tion conditioned on all the randomness of the booster until
(and not including) round t. Define σ =

∑T
t=1 p

i
t.

We now show using martingale concentration bounds that
with high probability,

T∑
t=1

1{WLi(xt) 6= yt}pit

≤
T∑
t=1

1{WLi(xt) 6= yt}1{t ∈ U}+ Õ
(√
σ
)

(2)

and
|U | ≤ σ + Õ

(√
σ
)
. (3)

Here, the Õ(·) notation suppresses dependence on
log log(T ).

To prove inequality (2), consider the martingale difference
sequence

Xt = 1{WLi(xt) 6= yt}1{t ∈ U}− 1{WLi(xt) 6= yt}pit.

Note that |Xt| ≤ 1, and the conditional variance satisfies

Vart[Xt|X1, X2, . . . , Xt−1] ≤ pit.

Then, by Lemma 2 of Bartlett et al. (2008), for any δ < 1/e
and assuming T ≥ 4, with probability at least 1−log2(T )δ,
we have

T∑
t=1

Xt ≤ 2 max

{
2
√
σ,
√

ln( 1
δ )

}√
ln( 1

δ ) = Õ(
√
σ),

by choosing δ � 1
log2(T ) . This implies inequality (2). In-

equality (3) is proved similarly. Note that these high prob-
ability bounds are conditioned on the internal randomness
of WLi. By taking an expectation of this conditional prob-
ability over the internal randomness of WLi, we conclude
that inequalities (2) and (3) hold with high probability un-
conditionally.

Via a union bound, inequalities (1), (2) and (3) all hold
simultaneously with high probability, which implies that

T∑
t=1

1{WLi(xt) 6= yt}pit ≤ ( 1
2 −γ)σ+S+ Õ

(√
σ
)
. (4)

Using the facts that pit =
wi

t

‖wi‖∞ and 1{WLi(xt) 6= yt} =

1−zit
2 and simplifying, we get

wi · zi ≥ 2γ‖wi‖1 − 2S‖wi‖∞ − Õ(
√
‖wi‖1‖wi‖∞)

≥ 2γ‖wi‖1 − 2S‖wi‖∞ − γ‖wi‖1 − Õ(‖w
i‖∞
γ )

= γ‖wi‖1 − 2S‖wi‖∞ − Õ(‖w
i‖∞
γ ).

The second inequality above follows from the arithmetic
mean-geometric mean inequality. This gives us the desired
bound. The high probability bound for all weak learners
follows by taking a union bound.

B. Proof of Lemma 4
Proof. Let X ∼ B(m, p) be a binomial random variable
where m = N − i and p = 1/2 + γ/2. Also let q = 1− p
and FX be the CDF of X. By the definition of wit, we have
wit ≤ 1

2 maxk Pr{X = k}. We will approximate X by a
Gaussian random variable G ∼ N(mp,mpq) with density
function f and CDF FG. Note that

|Pr{X = k} −
∫ k

k−1
f(G)dG|

= | (FX(k)− FX(k − 1))− (FG(k)− FG(k − 1)) |
≤ |FX(k)− FG(k)|+ |FX(k − 1)− FG(k − 1)|.

So by applying the Berry-Esseen theorem to the above two
CDF differences between X and G, we arrive at∣∣∣∣∣Pr{X = k} −

∫ k

k−1
f(G)dG

∣∣∣∣∣ ≤ 2C(p2 + q2)
√
mpq

,
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where C is the universal constant stated in the Berry-
Esseen theorem. It remains to point out that

Pr{X = k} ≤
∫ k

k−1
f(G)dG+

2C(p2 + q2)
√
mpq

≤ max
G∈R

f(G) +
2C(p2 + q2)
√
mpq

=
1√

2πmpq
+

2C(p2 + q2)
√
mpq

= O

(
1√
m

)
,

since pq = 1/4− γ2/4 ≥ 3/16.

C. Proof of Theorem 3
Proof. The proof of both lower bounds use a similar con-
struction. In either case, all examples’ labels are gener-
ated uniformly at random from {−1, 1}, and in time period
t, each weak learner outputs the correct label yt indepen-
dently of all other weak learners and other examples with
a certain probability pt to be specified later. Thus, for any
T , by the Azuma-Hoeffding inequality, with probability at
least 1 − δ, the predictions ŷt made by the weak learner
satisfy

T∑
t=1

1{yt 6= ŷt} ≤
T∑
t=1

(1− pt) +
√

2T ln( 1
δ )

≤
T∑
t=1

(1− pt) + γT +
ln( 1

δ )

2γ
(5)

where the last inequality follows by the arithmetic mean-
geometric mean inequality. We will now carefully choose
pt so that inequality (5) implies inequality (1).

For the lower bound on the number of weak learners, we
set pt = 1

2 + 2γ, so that inequality (5) implies that with
probability at least 1 − δ, the predictions ŷt made by the
weak learner satisfy

T∑
t=1

1{yt 6= ŷt} ≤ ( 1
2 − γ)T +

ln( 1
δ )

2γ
≤ ( 1

2 − γ)T + S.

Thus, the weak online learner has edge γ with excess loss
S. In this case, the Bayes optimal output of a booster using
N weak learners is to simply take a majority vote of all the
weak learners (see for instance Schapire & Freund, 2012,
Chap. 13.2.6), and the probability that the majority vote is
incorrect is Θ(exp(−8Nγ2)). Setting this error to ε and
solving for N gives the desired lower bound.

Now we turn to the lower bound on the sample complexity.
We divide the whole process into two phases: for t ≤ T0 =
S
4γ , we set pt = 1

2 , and for t > T0, we set pt = 1
2 + 2γ.

Now, if T ≤ T0, inequality (5) implies that with probability

at least 1 − δ, the predictions ŷt made by the weak learner
satisfy

T∑
t=1

1{yt 6= ŷt} ≤ ( 1
2 +γ)T +

ln( 1
δ )

2γ
≤ ( 1

2−γ)T +S (6)

using the fact that T ≤ T0 = S
4γ and S ≥ ln(

1
δ )

γ . Next, if
T > T0, let T ′ = T − T0, and again inequality (5) implies
that with probability at least 1− δ, the predictions ŷt made
by the weak learner satisfy

T∑
t=1

1{yt 6= ŷt} ≤ 1
2T0 + ( 1

2 − 2γ)T ′ + γT +
ln( 1

δ )

2γ

= ( 1
2 − γ)T + 2γT0 +

ln( 1
δ )

2γ
≤ ( 1

2 − γ)T + S, (7)

since S ≥ ln(
1
δ )

γ . Inequalities (6) and (7) imply that the
weak online learner has edge γ with excess loss S.

However, in the first phase (i.e. t ≤ T0), since the pre-
dictions of the weak learners are uncorrelated with the true
labels, it is clear that no matter what the booster does, it
makes a mistake with probability 1

2 . Thus, it will make
Ω(T0) mistakes with high probability in the first phase, and
thus to achieve ε error rate, it needs at least Ω(T0/ε) =
Ω( Sεγ ) examples.

D. Proof of Lemma 5
Proof. It suffice to prove the bound for σ ≥ 1

2 ; the bound
for σ < 1

2 follows by symmetry simply changing the sign
of α. For σ ∈ [0.5, 0.95], setting α = 1

2 ln( σ
1−σ ) ∈ [−2, 2]

gives

σe−α + (1− σ)eα =
√

4σ(1− σ) ≤ 1− 1
2 (2σ − 1)2,

since
√

1− x ≤ 1 − 1
2x for x ∈ [0, 1]. For σ ∈ (0.95, 1],

setting α = 1
2 ln( 0.95

0.05 ) ∈ [−2, 2] we have

σe−α + (1− σ)eα ≤ 0.95e−α + 0.05eα =
√

0.19

≤ 1
2 ≤ 1− 1

2 (2σ − 1)2.

E. Description of Data Sets
The datasets come from the UCI repository, KDD Cup
challenges, and the HCRC Map Task Corpus. Below, d
is the number of unique features in the dataset, and s is the
average number of features per example.
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Dataset instances s d

20news 18,845 93.9 101,631
a9a 48,841 13.9 123

activity 165,632 18.5 20
adult 48,842 12.0 105
bio 145,750 73.4 74

census 299,284 32.0 401
covtype 581,011 11.9 54

letter 20,000 15.6 16
maptaskcoref 158,546 40.4 5,944

nomao 34,465 82.3 174
poker 946,799 10.0 10
rcv1 781,265 75.7 43,001

vehv2binary 299,254 48.6 105
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