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Abstract

Leveraging the coherent exploration of Hamil-
tonian flow, Hamiltonian Monte Carlo produces
computationally efficient Monte Carlo estima-
tors, even with respect to complex and high-
dimensional target distributions. When con-
fronted with data-intensive applications, how-
ever, the algorithm may be too expensive to im-
plement, leaving us to consider the utility of
approximations such as data subsampling. In
this paper I demonstrate how data subsampling
fundamentally compromises the scalability of
Hamiltonian Monte Carlo.

With the preponderance of applications featuring enormous
data sets, methods of inference requiring only subsamples
of data are becoming more and more appealing. Subsam-
pled Markov Chain Monte Carlo algorithms, (Neiswanger
et al., 2013; Welling & Teh, 2011), are particularly desired
for their potential applicability to most statistical models.
Unfortunately, careful analysis of these algorithms reveals
unavoidable biases unless the data are tall, or highly re-
dundant (Bardenet et al., 2014; Teh et al., 2014; Vollmer
et al., 2015). Because redundancy can be defined only rela-
tive to a given model, the utility of these subsampled algo-
rithms is then a consequence of not only the desired accu-
racy and also the particular model and data under consider-
ation, severely restricting practicality.

Recently (Chen et al., 2014) considered subsampling
within Hamiltonian Monte Carlo (Duane et al., 1987; Neal,
2011; Betancourt et al., 2014b) and demonstrated that the
biases induced by naive subsampling lead to unacceptably
large biases. Ultimately the authors rectified this bias by
sacrificing the coherent exploration of Hamiltonian flow
for a diffusive correction, fundamentally compromising the
scalability of the algorithm with respect to the complexity
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of the target distribution. An algorithm scalable with re-
spect to both the size of the data and the complexity of the
target distribution would have to maintain the coherent ex-
ploration of Hamiltonian flow while subsampling and, un-
fortunately, these objectives are mutually exclusive in gen-
eral.

In this paper I review the elements of Hamiltonian Monte
Carlo critical to its robust and scalable performance in prac-
tice and demonstrate how different subsampling strategies
all compromise those properties and consequently induce
poor performance.

1. Hamiltonian Monte Carlo in Theory
Hamiltonian Monte Carlo utilizes deterministic, measure-
preserving maps to generate efficient Markov transitions
(Betancourt et al., 2014b). Formally, we begin by com-
plementing a target distribution,

π ∝ exp[−V (q)] dnq,

with a conditional distribution over auxiliary momenta pa-
rameters,

πq ∝ exp[−T (p, q)] dnp.

Together these define a joint distribution,

$H ∝ exp[− (T (q, p) + V (q))] dnq dnp

∝ exp[−H(q, p)] dnq dnp,

and a Hamiltonian system corresponding to the Hamilto-
nian, H(q, p). We refer to T (q, p) and V (q) as the kinetic
energy and potential energy, respectively.

The Hamiltonian immediately defines a Hamiltonian vec-
tor field,

~H =
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p
,

and an application of the exponential map yields a Hamilto-
nian flow on the joint space, φHτ = eτ

~H (Lee, 2013), which
exactly preserves the joint distribution under a pullback,(

φHt
)
∗ πH = πH .
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Consequently, we can compose a Markov chain by sam-
pling the auxiliary momenta,

q → (q, p), p ∼ πq,

applying the Hamiltonian flow,

(q, p)→ φHt (q, p)

and then projecting back down to the target space,

(q, p)→ q.

By construction, the trajectories generated by the Hamilto-
nian flow explore the level sets of the Hamiltonian function.
Because these level sets can also span large volumes of the
joint space, sufficiently-long trajectories can yield transi-
tions far away from the initial state of the Markov chain,
drastically reducing autocorrelations and producing com-
putationally efficient Monte Carlo estimators.

When the kinetic energy does not depend on position we
say that the Hamiltonian is separable, H(q, p) = T (p) +
V (q), and the Hamiltonian vector field decouples into a ki-
netic vector field, ~T and potential vector field, ~V ,

~H =
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p

=
∂T

∂p

∂

∂q
− ∂V

∂q

∂

∂p

≡ ~T + ~V .

In this paper I consider only separable Hamiltonians, al-
though the conclusions also carry over to the non-seperable
Hamiltonians, for example those arising in Riemannian
Hamiltonian Monte Carlo (Girolami & Calderhead, 2011).

2. Hamiltonian Monte Carlo in Practice
The biggest challenge of implementing Hamiltonian Monte
Carlo is that the exact Hamiltonian flow is rarely calcula-
ble in practice and we must instead resort to approximate
integration. Symplectic integrators, which yield numerical
trajectories that closely track the true trajectories, are of
particular importance to any high-performance implemen-
tation.

An especially transparent strategy for constructing sym-
plectic integrators is to split the Hamiltonian into terms
with soluble flows which can then be composed together
(Leimkuhler & Reich, 2004; Hairer et al., 2006). For ex-
ample, consider the symmetric Strang splitting,

φVε
2
◦ φTε ◦ φVε2 = e

ε
2
~V ◦ eε~T ◦ e ε2 ~V ,

where ε is a small interval of time known as the step size.
Appealing to the Baker-Campbell-Hausdorff formula, this

symmetric composition yields

φVε
2
◦ φTε ◦ φVε2

= e
ε
2
~V ◦ eε~T ◦ e ε2 ~V

= e
ε
2
~V ◦ exp

(
ε~T +

ε

2
~V +

ε2

4

[
~T , ~V

])
+O

(
ε3
)

= exp

(
ε

2
~V + ε~T +

ε

2
~V +

ε2

4

[
~T , ~V

]
+

1

2

[
ε

2
~V , ε~T +

ε

2
~V +

ε2

4

[
~T , ~V

]])
+O

(
ε3
)

= exp

(
ε ~H +

ε2

4

[
~T , ~V

]
+
ε2

4

[
~V , ~T

]
+
ε2

8

[
~V , ~V

])
+O

(
ε3
)

= eε
~H +O

(
ε3
)
.

Composing this symmetric composition with itself L =
τ/ε times results in a symplectic integrator accurate to
second-order in the step size for any finite integration time,
τ ,

φH̃ε,τ ≡
(
φVε

2
◦ φTε ◦ φVε2

)L
=
(
eε
~H +O

(
ε3
))L

= e(Lε) ~H + (Lε)O
(
ε2
)

= eτ
~H + τO

(
ε2
)

= eτ
~H +O

(
ε2
)
.

Remarkably, the resulting numerical trajectories are con-
fined to the level sets of a modified Hamiltonian given by an
O
(
ε2
)

perturbation of the exact Hamiltonian (Hairer et al.,
2006; Betancourt et al., 2014a).

Although such symplectic integrators are highly accurate,
they still introduce an error into the trajectories that can
bias the Markov chain and any resulting Monte Carlo es-
timators. In practice this error is typically compensated
with the application of a Metropolis correction, accepting a
point along the numerical trajectory only with probability

a(p, q) = min
(

1, exp
(
H(q, p)−H ◦ φH̃ε,τ (q, p)

))
.

A critical reason for the scalable performance of such an
implementation of Hamiltonian Monte Carlo is that the er-
ror in a symplectic integrator scales with the step size, ε.
Consequently a small bias or a large acceptance probabil-
ity can be maintained by reducing the step size, regardless
of the complexity or dimension of the target distribution
(Betancourt et al., 2014a). If the symplectic integrator is
compromised, however, then this scalability and generality
is lost.
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3. Hamiltonian Monte Carlo With
Subsampling

A common criticism of Hamiltonian Monte Carlo is that in
data-intensive applications the evaluation of potential vec-
tor field,

~V = −∂V
∂q

∂

∂p
,

and hence the simulation of numerical trajectories, can be-
come infeasible given the expense of the gradient calcula-
tions. This expense has fueled a variety of modifications
of the algorithm aimed at reducing the cost of the potential
energy, often by any means necessary.

An increasingly popular strategy targets Bayesian applica-
tions where the data are independently and identically dis-
tributed. In this case the posterior can be manipulated into
a product of contributions from each subset of data,

π(θ|y) ∝ π(θ)

J∏
j=1

π(yj |θ) ,

and the potential energy likewise decomposes into a sum,

V (q) =

J∑
j=1

Vj(q)

= −
J∑
j=1

(
1

J
log π(θ) + log π(yj |θ)

)
,

where each Vj depends on only a single subset. This de-
composition suggests algorithms which consider not the
entirety of the data and the full potential energy, V , but
rather only a few subsets at a time.

Using only part of the data to generate a trajectory, how-
ever, compromises the structure-preserving properties of
the symplectic integrator and hence the scalability of its
accuracy. Consequently the performance of any such sub-
sampling method depends critically on the details of the im-
plementation and the structure of the data itself. Here I con-
sider the performance of two immediate implementations,
one based on subsampling the data in between Hamiltonian
trajectories and one based on subsampling the data within
a single trajectory. As expected, the performance of both
methods leaves much to be desired.

3.1. Subsampling Data In Between Trajectories

Given any subset of the data, we can approximate the po-
tential energy as V ≈ J Vj and then generate trajectories
corresponding to the flow of the approximate Hamiltonian,
Hj = T+J Vj . In order to avoid parsing the entirety of the
data, the Metropolis correction at the end of each trajectory
can be neglected and the corresponding samples left biased.

Unlike the numerical trajectories from the full Hamilto-
nian, these subsampled trajectories are biased away from
the exact trajectories regardless of the chosen step size. In
particular, the bias of each step,

e
ε
2 I
~Vj ◦ eε~T ◦ e ε2 I ~Vj = eε

~Hj +O
(
ε3
)

= eε
~H−ε
−−→
∆V j +O

(
ε3
)
,

where
−−→
∆Vj = −

(
∂V

∂q
− J ∂Vj

∂q

)
∂

∂p
, (1)

persists over the entire trajectory,(
e
ε
2J
~Vj ◦ eε~T ◦ e ε2J ~Vj

)L
= e

τ
(
~H−
−−→
∆V j

)
+O

(
ε2
)
.

As the dimension of the target distribution grows, the sub-
sampled gradient, J ∂Vj/∂q, drifts away from the true gra-
dient, ∂V/∂q, unless the data become increasingly redun-
dant. Consequently the resulting trajectory introduces an
irreducible bias into the algorithm, similar in nature to the
asymptotic bias seen in subsampled Langevin Monte Carlo
(Teh et al., 2014; Vollmer et al., 2015), which then in-
duces either a vanishing Metropolis acceptance probability
or highly-biased expectations if the Metropolis correction
is neglected (Figure 1).

Unfortunately, the only way to decrease the dependency on
redundant data is to increase the size of each subsample,
which immediately undermines any computational bene-
fits.

Consider, for example, a simple application where we tar-
get a one-dimensional posterior distribution,

π(µ|y) ∝ π(y|µ)π(µ) , (2)

with the likelihood

π(y|µ) =

N∏
n=1

N
(
yn|µ, σ2

)
and prior

π(µ) = N
(
µ|m, s2

)
.

Separating the data into J = N/B batches of size B and
decomposing the prior into J individual terms then gives

Vj = const +
B

N

σ2 +Ns2

σ2s2

×

µ−
(

1
B

∑jB
n=(j−1)B+1 xn

)
Ns2 +mσ2

σ2 +Ns2

2

.

Here I take σ = 2, m = 0, s = 1, and generate N = 500
data points assuming µ = 1.
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Figure 1. The bias induced by subsampling data in Hamiltonian Monte Carlo depends on how precisely the gradients of the subsampled
potential energies integrate to the gradient of the true potential energy. (a) When the subsampled gradient is close to the true gradient,
the stochastic trajectory will follow the true trajectory and the bias will be small. (b) Conversely, if the subsampled gradient is not close
to the true potential energy then the stochastic trajectory will drift away from the true trajectory and induce a bias. Subsampling between
trajectories requires that each subsampled gradient approximate the true gradient, while subsampling within a single trajectory requires
only that the average of the subsampled gradients approximates the true gradient. As the dimension of the target distribution grows,
however, an accurate approximation in either case becomes increasingly more difficult unless the data become correspondingly more
redundant relative to the complexity of the target distribution.

When the full data are used, numerical trajectories gener-
ated by the second-order symplectic integrator constructed
above closely follow the true trajectories (Figure 2a). Ap-
proximating the potential with a subsample of the data in-
troduces the aforementioned bias, which shifts the stochas-
tic trajectory away from the exact trajectory despite neg-
ligible error from the symplectic integrator itself (Figure
2b). Only when the size of each subsample approaches the
full data set, and the computational benefit of subsampling
fades, does the stochastic trajectory provide a reasonable
approximation to the exact trajectory (Figure 2c)

As noted above, geometric considerations suggest that this
bias should grow with the dimensionality of the target dis-
tribution. To see this, consider running subsampled Hamil-
tonian Monte Carlo on the multivariate generalization of
(2),

D∏
d=1

π(µd|yd) , (3)

where the true µd are sampled from µd ∼ N (0, 1) and tra-
jectories are generated using a subsampled integrator with
step size, ε, a random integration time τ ∼ U(0, 2π), and
no Metropolis correction. As a surrogate for the accuracy
of the resulting samples I will use the average Metropolis
acceptance probability of each new state using the full data.

When the full data are used in this model, the step size of
the symplectic integrator can be tuned to maintain constant
accuracy as the dimensionality of the target distribution,D,
increases. The bias induced by subsampling between tra-
jectories, however, is invariant to the step size of the inte-
grator and rapidly increases with the dimension of the tar-
get distribution. Here the data were partitioned into J = 25

batches of B = 20 data, the subsample used for each tra-
jectory is randomly selected from the first five batches, and
the step size of the subsampled trajectory is reduced by
N/(J · B) = 5 to equalize the computational cost with
full data trajectories (Figure 3).

3.2. Subsampling Data within a Single Trajectory

Given that using a single subsample for an entire trajec-
tory introduces an irreducible bias, we might next consider
subsampling at each step within a single trajectory, hop-
ing that the bias from each subsample cancels in expec-
tation. Ignoring any Metropolis correction, this is exactly
the naive stochastic gradient Hamiltonian Monte Carlo of
(Chen et al., 2014).

To understand the accuracy of this strategy consider build-
ing up such a stochastic trajectory one step at a time. Given
the first two randomly-selected subsamples, Vi and then Vj ,
the first two steps of the resulting integrator are given by

φHjε ◦ φHiε = eε
~H−ε
−−→
∆V j ◦ eε ~H−ε

−−→
∆V i +O

(
ε3
)

= exp
(

2ε ~H − ε
(−−→

∆V i +
−−→
∆V j

)
+
ε2

2

[
~H −
−−→
∆V j , ~H −

−−→
∆V i

])
+O

(
ε3
)

φHjε ◦ φHiε = exp
(

2ε ~H − ε
(−−→

∆V i +
−−→
∆V j

)
+
ε2

2

(
−
[
~H, ~V\i

]
−
[
~V\j , ~H

]))
+O

(
ε3
)
,
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Full Data (J = 1, B = 500)

q

p

Exact Level Set
Modified Level Set

(a)

Small Subset (J = 50, B = 10)

q

p

Exact Level Set
Modified Level Set

Exact Stochastic Level Set
Modified Stochastic Level Set

(b)

Large Subset (J = 2, B = 250)

q

p

Exact Level Set
Modified Level Set

Exact Stochastic Level Set
Modified Stochastic Level Set

(c)

Figure 2. Even for the simple posterior (2), subsampling data in
between trajectories introduces significant pathologies. (a) When
the full data are used, numerical trajectories (dashed line) closely
track the exact trajectories (solid line). Subsampling of the data
introduces a bias in both the exact trajectories and corresponding
numerical trajectories. (b) If the size of each subsample is small
then this bias is large. (c) Only when the size of the subsamples
approaches the size of the full data, and any computational bene-
fits from subsampling wane, do the stochastic trajectories provide
a reasonable emulation of the true trajectories.
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Figure 3. When the full data are used, high accuracy of Hamil-
tonian Monte Carlo samples, here represented by the average
Metropolis acceptance probability using the full data, can be
maintained even as the dimensional of the target distribution
grows. The biases induced when the data are subsampled, how-
ever, cannot be controlled and quickly devastate the accuracy of
the algorithm. Here the step size of the subsampled algorithms
has been decreased relative to the full data algorithm in order to
equalize the computational cost – even in this simple example, a
proper implementation of Hamiltonian Monte Carlo can achieve
a given accuracy much more efficiently than subsampling.

where we have used the fact that the vector fields {
−−→
∆V j}

commute with each other. Similarly, the first three steps are
given by

φHkε ◦ φHjε ◦ φHiε
= exp

(
3ε ~H − ε

(−−→
∆V i +

−−→
∆V j +

−−→
∆V k

)
+
ε2

2

(
−
[
~H,
−−→
∆V i

]
−
[−−→
∆V j , ~H

])
+
ε2

2

([
~H −
−−→
∆V k, 2 ~H −

−−→
∆V i −

−−→
∆V j

]))
+O

(
ε3
)

= exp
(

3ε ~H − ε
(−−→

∆V i +
−−→
∆V j +

−−→
∆V k

)
−ε2

([
~H,
−−→
∆V i

]
−
[
~H,
−−→
∆V k

]))
+O

(
ε3
)
,

and, letting jl denote the subsample chosen at the l-th step,
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the composition over an entire trajectory becomes

◦Ll=1φ
Hjl
ε

= exp

(
(Lε) ~H − (Lε)

1

L

L∑
l=1

−−→
∆V jl

+ (Lε) ε
([
~H,
−−→
∆V j1

]
−
[
~H,
−−→
∆V jl

]))
+ (Lε)O

(
ε2
)

= exp

(
τ ~H − τ 1

L

L∑
l=1

−−→
∆V jl

+τε
([
~H,
−−→
∆V j1

]
−
[
~H,
−−→
∆V jL

]))
+O

(
ε2
)

= exp
(
τ ~H + τB1 + τB2

)
+O

(
ε2
)
,

where

B1 = − 1

L

L∑
l=1

−−→
∆V jl

and
B2 = ε

([
~H,
−−→
∆V j1

]
−
[
~H,
−−→
∆V jL

])
.

Once again, subsampling the data introduces bias into the
numerical trajectories.

Although the second source of bias, B2, is immediately
rectified by appending the stochastic trajectory with an up-
date from the initial subsample such that jL = j1, the first
source of bias, B1, is not so easily remedied. Expanding,

1

L

L∑
l=1

−−→
∆V jl =

1

L

L∑
l=1

(
~V − J ~Vjl

)
= ~V − J

L

L∑
n=1

~Vjl

= −

(
∂V

∂q
− J

L

L∑
l=1

∂Vj
∂q

)
∂

∂p
,

we see that B1 vanishes only when the average gradient
of the selected subsamples yields the gradient of the full
potential. Averaging over subsamples may reduce the bias
compared to using a single subsample over the entire tra-
jectory (1), but the bias still scales poorly with the dimen-
sionality of the target distribution (Figure 1).

In order to ensure that the bias vanishes identically and in-
dependent of the redundancy of the data, we have to use
each subsample the same number of times within a single
trajectory. In particular, both biases vanish if we use each
subsample twice in a symmetric composition of the form(

◦Ll=1φ
Hl
ε

)
◦
(
◦Ll=1φ

HL+1−l
ε

)
.

Because this composition requires using all of the subsam-
ples it does not provide any computational savings and it

seems rather at odd with the original stochastic subsam-
pling motivation.

Indeed, this symmetric composition is not stochastic at all
and actually corresponds to a rather elaborate symplectic
integrator where the potential energy from each subsample
generates its own flow, equivalent to the integrator in Split
Hamiltonian Monte Carlo (Shahbaba et al., 2014) with the
larger step size Jε. Removing intermediate steps from
this symmetric, stochastic trajectory (Figure 4a) reveals the
level set of the corresponding modified Hamiltonian (Fig-
ure 4b). Because this symmetric composition integrates the
full Hamiltonian system, the error is once again control-
lable and vanishes as the step size is decreased (Figure 4c).

Limiting the number of subsamples, however, leaves the
irreducible bias in the trajectories that cannot be controlled
by the tuning the step size (Figures 3, 5). Once more we are
left dependent on the redundancy of the data for any hope
of improved performance with subsampling.

4. Conclusion
The efficacy of Markov Chain Monte Carlo for complex,
high-dimensional target distributions depends on the ability
of the sampler to explore the intricate and often meander-
ing neighborhoods on which the probability is distributed.
Symplectic integrators admit a structure-preserving imple-
mentation of Hamiltonian Monte Carlo that is amazingly
robust to this complexity and capable of efficiently explor-
ing the most complex target distributions. Subsampled
data, however, does not in general have enough informa-
tion to enable such efficient exploration. This lack of infor-
mation manifests as an irreducible bias that devastates the
scalable performance of Hamiltonian Monte Carlo.

Consequently, without having access to the full data there
is no immediate way of engineering a well-behaved im-
plementation of Hamiltonian Monte Carlo applicable to
most statistical models. As with so many other subsam-
pling algorithms, the adequacy of a subsampled Hamilto-
nian Monte Carlo implementation is at the mercy of the re-
dundancy of the data relative to the complexity of the target
model, and not in the control of the user.

Unfortunately many of the problems at the frontiers of ap-
plied statistics are in the wide data regime, where data are
sparse relative to model complexity. Here subsampling
methods have little hope of success; we must focus our ef-
forts not on modifying Hamiltonian Monte Carlo but rather
on improving its implementation with, for example, better
memory management and efficiently parallelized gradient
calculations.
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Figure 4. The symmetric composition of flows from each subsam-
ples of the data eliminates all bias in the stochastic trajectory be-
cause it implicitly reconstructs a symplectic integrator. Refining
(a) all intermediate steps in a stochastic trajectory (b) to only those
occurring after a symmetric sweep of the subsamples reveals the
level set of the modified Hamiltonian corresponding to the im-
plicit symplectic integrator. Because of the vanishing bias, (c) the
error in the stochastic trajectory can be controlled by taking the
step size to zero.

ε = 0.05

q

p

Exact Level Set
Subsampled Trajectory

(a)

ε = 0.0005

q

p

Exact Level Set
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(b)

Figure 5. (a) Utilizing only a few subsamples within a trajectory
yields numerical trajectories biased away from the exact trajecto-
ries. (b) Unlike the error introduced by a full symplectic integra-
tor, this bias is irreducible and cannot be controlled by tuning the
step size. The performance of such an algorithm is limited by the
size of the bias which itself depends on the redundancy of the data
relative to the target model.
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