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Abstract
While classic machine learning paradigms as-
sume training and test data are generated from
the same process, domain adaptation addresses
the more realistic setting in which the learner has
large quantities of labeled data from some source
task but limited or no labeled data from the tar-
get task it is attempting to learn. In this work,
we give the first formal analysis showing that us-
ing active learning for domain adaptation yields a
way to address the statistical challenges inherent
in this setting. We propose a novel nonparamet-
ric algorithm, ANDA, that combines an active
nearest neighbor querying strategy with nearest
neighbor prediction. We provide analyses of its
querying behavior and of finite sample conver-
gence rates of the resulting classifier under co-
variate shift. Our experiments show that ANDA
successfully corrects for dataset bias in multi-
class image categorization.

1. Introduction
Most machine learning paradigms operate under the as-
sumption that the data generating process remains stable.
Training and test data are assumed to be from the same task.
However, this is often not an adequate model of reality. For
example, image classifiers are often trained on previously
collected data before deployment in the real world, where
the instances encountered can be systematically different.
An e-commerce company may want to predict the success
of a product in one country when they only have preference
data on that product from consumers in a different country.
These and numerous other examples signify the importance
of developing learning algorithms that adapt to and perform
well in changing environments. This is usually referred to
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as transfer learning or domain adaptation.

In a common model for domain adaptation, the learner re-
ceives large amounts of labeled data from a source distri-
bution and unlabeled data from the actual target distribu-
tion (and possibly a small amount of labeled data from the
target task as well). The goal of the learner is to output
a good model for the target task. Designing methods for
this scenario that are statistically consistent with respect to
the target task is important, yet challenging. This difficulty
occurs even in the so-called covariate shift setting, where
the change in the environments is restricted to the marginal
over the covariates, while the regression functions (the la-
beling rules) of the involved distributions are identical.

In this work, we give the first formal analysis showing that
using active learning for domain adaptation yields a way
to address these challenges. In our model, the learner can
make a small number of queries for labels of target exam-
ples. Now the goal is to accurately learn a classifier for the
target task while making as few label requests as possible.
We design and analyze an algorithm showing that being ac-
tive adaptive can yield a consistent learner that uses target
labels only where needed.

We propose a simple nonparametric algorithm, ANDA,
that combines an active nearest neighbor querying strategy
with nearest neighbor prediction. ANDA receives a labeled
sample from the source distribution and an unlabeled sam-
ple from the target task. It first actively selects a subset of
the target data to be labeled based on the amount of source
data among the k′ nearest neighbors of each target exam-
ple. Then it outputs a k-nearest neighbor classifier on the
combined source and target labeled data.

We prove that ANDA enjoys strong performance guaran-
tees. We first provide a finite sample bound on the expected
loss of the resulting classifier in the covariate shift setting.
Remarkably, the bound does not depend on source-target
relatedness; it only depends on the size of the given unla-
beled target sample and properties of the target distribution.
This is in stark contrast to most theoretical results for do-
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main adaptation, where additive error terms describing the
difference between the source and target frequently appear.

On the other hand, the number of target label queries
ANDA makes does depend on the closeness of the in-
volved tasks. ANDA will automatically adjust the number
of queries it makes based on local differences between the
source and target. We quantify this by giving sample sizes
sufficient to guarantee that ANDA makes no queries at all
in regions with large enough relative source support. Sim-
ply put, ANDA is guaranteed to make enough queries to be
consistent but will not make unnecessary ones.

ANDA’s intelligent querying behavior and its advantages
are further demonstrated by our visualizations and exper-
iments. We visually illustrate ANDA’s query strategy
and show empirically that ANDA successfully corrects for
dataset bias in a challenging image classification task.

1.1. Summary of Main Contributions

The active nearest neighbor algorithm. ANDA operates
on a labeled sample from the source distribution and an un-
labeled sample from the target task and is parametrized by
two integers k and k′. The query rule is to ensure that every
target example has at least k labeled examples among its k′

nearest neighbors. We describe this formally by defining
the concept of a (k, k′)-NN-cover, which may be of inde-
pendent interest for nearest neighbor methods.

Bounding the loss. Theorem 1 provides a finite sample
bound on the expected 0-1 loss of the classifier output by
ANDA. This bound depends on the size of the unlabeled
target sample, the Lipschitz constant of the regression func-
tion, and the covering number of the support of the target
distribution. It does not depend on the size or the generat-
ing process of the labeled source sample. In particular, it
does not depend on any relatedness measure between the
source and target data generating distributions. We also
show that, even dropping the Lipschitz condition, ANDA
is still consistent (Corollary 1).

Bounding the number of queries. In Theorem 2 we
show that, with high probability, ANDA will not make any
queries on points that are sufficiently represented by the
source data. This implies in particular that, if the source
and target happen to be very similar, ANDA will not make
any queries at all. We also prove a “query consistency” re-
sult. Together with the error consistency, this implies we
get the desired behavior of our active adaptive scheme: its
loss converges to the Bayes optimal while queries are made
only in regions where the source is uninformative.

Finding a small (k, k′)-NN-cover. In general, there are
many possible (k, k′)-NN-covers to which our theory ap-
plies, so finding a small cover will use fewer labels for the
same error guarantee. We show that finding a minimum-

size cover is a special case of the MINIMUM MULTISET
MULTICOVER problem (Rajagopalan & Vazirani, 1993).
We employ a greedy strategy to find a small cover and ar-
gue that it enjoys anO(logm)-approximation guarantee on
a combined source/target sample of m points.

Image classification experiments. We demonstrate
ANDA’s effectiveness in practice by applying it to the
problem of dataset bias in image classification. On a col-
lection of 40-class, 1000-dimension datasets (Tommasi &
Tuytelaars, 2014), ANDA consistently outperforms base-
line nearest neighbor methods, despite the data’s high di-
mensionality and lack of strict adherence to covariate shift.
This also shows that ANDA performs well even when our
theory’s assumptions are not exactly satisfied.

The idea of incorporating active learning (selective query-
ing strategies) into the design of algorithms for domain
adaptation has recently received some attention (Chat-
topadhyay et al., 2013a;b; Saha et al., 2011). However,
to the best of our knowledge, there has not been any for-
mal analysis of using active learning to adapt to distribu-
tion changes. We believe active learning is a powerful and
promising tool for obtaining domain adaptive learners and
that this area deserves a sound theoretical foundation. We
view our work as a first step in this direction.

1.2. Related Work

There is a rich body of applied studies for transfer or do-
main adaptation learning (Pan & Yang, 2010), and on se-
lective sampling or active learning (Settles, 2010). We here
focus on studies that provide performance guarantees.

For domain adaptation, even under covariate shift, perfor-
mance guarantees usually involve an extra additive term
that measures the difference between source and target
tasks (Ben-David et al., 2006; Mansour et al., 2009), or
they rely on strong assumptions, such as the target sup-
port being a subset of the source support and the density
ratio between source and target being bounded from below
(Sugiyama et al., 2008; Ben-David & Urner, 2014; Shi &
Sha, 2012). Generally, the case where the target is partly
supported in regions that are not covered by the source is
considered to be particularly challenging yet more realistic
(Cortes et al., 2010). We show that our method guarantees
small loss independent of source-target relatedness.

The theory of active learning has also received a lot of at-
tention in recent years (Dasgupta, 2004; Balcan et al., 2007;
2009; Hanneke, 2011). See (Dasgupta, 2011) for a survey
on the main directions. However, the main goal of incor-
porating active queries in all these works is to learn a clas-
sifier with low error while using fewer labels. In contrast,
we focus on a different benefit of active queries and for-
mally establish that being active is also useful to adapt to
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changing environments.

Nearest neighbor methods have been studied for decades
(Cover & Hart, 1967; Stone, 1977; Kulkarni & Posner,
1995). While the locality of the prediction rule makes them
highly flexible predictors, nearest neighbor methods suffer
from a lack scalability to high dimensional data. However,
there has recently been renewed interest in these methods
and ways to overcome the curse of dimensionality both sta-
tistically (Kpotufe, 2011; Chaudhuri & Dasgupta, 2014)
and computationally (Dasgupta & Sinha, 2013; Ram et al.,
2012; Ram & Gray, 2013). Selective sampling for near-
est neighbor classification has been shown to be consis-
tent under certain conditions on the querying rule (Das-
gupta, 2012); however, this work considers a data stream
that comes from a fixed distribution. A 1-nearest neighbor
algorithm has been analyzed under covariate shift (Ben-
David & Urner, 2014); however, in contrast to our work,
that study assumes a lower bound on a weight ratio between
source and target. In our work, we argue that the flexibility
of nearest neighbor methods can be exploited for adapt-
ing to changing environments; particularly so for choosing
where to query for labels by detecting areas of the target
task that are not well covered by the source.

1.3. Notation

Let (X , ρ) be a separable metric space. We let Br(x) de-
note the closed ball of radius r around x. We let Nε(X , ρ)
denote the ε-covering-number of the metric space, that is,
the minimum number of subsets C ⊆ X of diameter at
most ε that cover the space X . We consider binary classi-
fication tasks, where PS and PT denote source and target
distributions over X × {0, 1} and DS and DT denote their
respective marginal distributions over X . Further, XS and
XT denote the support ofDS andDT respectively. That is,
for I ∈ {S, T}, we have XI := {x ∈ X : DI(Br(x)) > 0
for all r > 0}. We use the notation S and T for i.i.d. sam-
ples from PS and DT , respectively, and let |S| = mS ,
|T | = mT , and m = mS + mT . We let Ŝ, T̂ denote the
empirical distributions according to S and T .

We work in the covariate shift setting, in which the regres-
sion function η(x) = P[y = 1|x] is the same for both
source and target distributions.

For any finite A ⊆ X and x ∈ X , the notation
x1(x,A), . . . , x|A|(x,A) gives an ordering of the elements
of A such that ρ(x1(x,A), x) ≤ ρ(x2(x,A), x) ≤ · · · ≤
ρ(x|A|(x,A), x). If A is a labeled sequence of domain
points, A = ((x1, y1), (x2, y2), . . . , (xm, ym)), then we
use the same notation for the labels (that is yi(x,A) denotes
the label of the i-th nearest point to x in A). We use the no-
tation k(x,A) = {x1(x,A), . . . , xk(x,A)} to denote the
set of the k nearest neighbors of x in A.

Algorithm 1 ANDA: Active NN Domain Adaptation
input Labeled set S, unlabeled set T , parameters k, k′

Find T l ⊆ T s.t. S ∪ T l is a (k, k′)-NN-cover of T
Query the labels of points in T l

return hkS∪T l , the k-NN classifier on S ∪ T l

We are interested in bounding the target loss of a k-
nearest neighbor classifier. For a labeled sequence A =
((x1, y1), (x2, y2), . . . , (xm, ym)) we let hkA denote the k-
NN classifier on A: hkA(x) := 1

[
1
kΣki=1yi(x,A) ≥ 1

2

]
,

where 1[·] is the indicator function. We denote the Bayes
classifier by h∗(x) = 1[η(x) ≥ 1/2] and the target loss of
a classifier h : X → {0, 1} by LT (h) = P(x,y)∼PT

[y 6=
h(x)]. For a subset A ⊆ X that is measurable both with
respect to DS and DT and satisfies DT (A) > 0, we de-
fine the weight ratio of A as β(A) := DS(A)/DT (A). For
a collection of subsets B ⊆ 2X (for example all balls in
(X , ρ)), we let dVC(B) denote its VC-dimension.

2. The Algorithm
In brief, our algorithm receives a labeled sample S (from
the source distribution), an unlabeled sample T (from the
target distribution), and two parameters k and k′. It then
chooses a subset T l ⊂ T to be labeled, queries the labels
of points in T l, and outputs a k-NN predictor on S∪T l (see
Algorithm 1). The subset T l is chosen so that the resulting
labeled set S ∪ T l is a (k, k′)-NN-cover for the target (un-
labeled) sample T .

Definition ((k, k′)-NN-cover). Let T ⊆ X be a set of el-
ements in a metric space (X , ρ) and let k, k′ ∈ N with
k ≤ k′. A set R ⊆ X is a (k, k′)-NN-cover for T if, for
every x ∈ T , either x ∈ R or there are k elements from
R among the k′ nearest neighbors of x in T ∪ R, that is
|k′(x, T ∪R) ∩R| ≥ k (or both).

Our loss bound in Section 3 (Theorem 1) holds whenever
T l ∪ S is some (k, k′)-NN-cover of T . Algorithm 2 pro-
vides a simple strategy to find such a cover: add to T l all
points whose k′ nearest neighbors among S ∪ T include
fewer than k source examples. It is easy to see that this
will always result in a (k, k′)-NN-cover of T . Further-
more, this approach has a query safety property: the set
T l produced by Algorithm 2 satisfies T l ∩ Q = ∅ where
Q = {x ∈ T : |k′(x, S ∪ T ) ∩ S| ≥ k} is the set of tar-
get examples that have k source neighbors among their k′

nearest neighbors in S ∪ T . In other words, Algorithm 2
will not query the label of any target example in regions
with sufficiently many labeled source examples nearby, a
property used in the query bound of Theorem 2.

2.1. Finding a Small (k, k′)-NN-cover
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Algorithm 2 Safe: Find a (k, k′)-NN-cover
input Labeled set S, unlabeled set T , parameters k, k′

return {x ∈ T : |k′(x, S ∪ T ) ∩ S| < k}

Algorithm 3 EMMA: Efficient multiset multicover ap-
proximation for finding a small (k, k′)-NN-cover

input Labeled set S, unlabeled set T , parameters k, k′

T l ← ∅
for all x ∈ T do
rx ← max(0, k − k′(x, T ∪ S) ∩ S)
nx ← |{x′ ∈ T : rx′ > 0 ∧ x ∈ k′(x′, S ∪ T )}|

while {x ∈ T : rx > 0} 6= ∅ do
T l ← T l ∪ {argmaxx∈T\T l rx + nx}
for all x ∈ T do
rx ← max(0, k − k′(x, T ∪ S) ∩ (S ∪ T l))

nx ← |{x′ ∈ T \ T l : rx′ > 0 ∧ x ∈ k′(x′, S ∪ T )}|
return T l

In order to make as few label queries as possible, we would
like to find the smallest subset T l of T to be labeled such
that T l ∪ S is a (k, k′)-NN-cover of T . This problem is
a special case of MINIMUM MULTISET MULTICOVER, a
generalization of the well-known NP-hard MINIMUM SET
COVER problem (see (Rajagopalan & Vazirani, 1993) and
Chapter 13.2 in (Vazirani, 2001)).

Definition (MINIMUM MULTISET MULTICOVER). Given
a universe U of n elements, a collection of multisets S,
and a coverage requirement re for each element e ∈ U , we
say that a multiset S ∈ S covers element e once for each
copy of e appearing in S. The goal is to find the minimum
cardinality set C ⊆ S such that every element e ∈ U is
covered at least re times by the multisets in C.

We can phrase the problem of finding the smallest T l such
that T l ∪ S is a (k, k′)-NN-cover of T as a MINIMUM
MULTISET MULTICOVER problem as follows. Let U = T
and set the coverage requirements as rx = max(0, k −
|k′(x, S ∪ T ) ∩ S|) for each x ∈ T . The collection S con-
tains a multiset Sx for each x ∈ T , where Sx contains k
copies of x and one copy of each element in {x′ ∈ T : x ∈
k′(x′, S ∪ T )}. A minimum multiset multicover of this is
also a minimum (k, k′)-NN-cover and vice versa.

While MINIMUM MULTISET MULTICOVER is NP-hard
to solve exactly, a greedy algorithm efficiently provides
an approximate solution (see Section 2.1.1). Algorithm 3
formalizes this as an ANDA subroutine called EMMA
for finding a small (k, k′)-NN-cover. In the language of
(k, k′)-NN-covers, in each round EMMA computes the
helpfulness of each x ∈ T in two parts. The remaining cov-
erage requirement rx is the number of times x would cover
itself if added to T l (that is, the savings from not having
to use rx additional neighbors of x), and the total neigh-

bor coverage nx is the number of times x would cover its
neighbors if added to T l. EMMA then selects the point x
with the largest sum rx + nx among all points in T that
have not yet been added to T l.

In its most basic form, EMMA does not have the same
query safety property enjoyed by Safe because the greedy
strategy may elect to query labels of target examples that
were already fully covered by source examples. We can
ensure that an intelligent query strategy like EMMA still
has the desired query safety property by first running Safe
and then passing the resulting set Tsafe to EMMA as its
unlabeled sample. We call the resulting strategy for finding
a (k, k′)-NN-cover Safe-EMMA.

2.1.1. APPROXIMATION GUARANTEES

MINIMUM MULTISET MULTICOVER is known to remain
NP-hard even when the multisets in S are small. However,
a small upper bound b on the maximum size of any mul-
tiset in S can make the problem much easier to approxi-
mate. Specifically, the greedy algorithm has an approxima-
tion factor of Hb, the b-th harmonic number (Rajagopalan
& Vazirani, 1993). This is known to be essentially optimal
under standard hardness assumptions.

In our setting, the size of the largest multiset is determined
by the point x ∈ T with the largest number of points in
S∪T having x as one of their k′ nearest neighbors. In gen-
eral metric spaces this can be up to m = mS +mT , result-
ing in a multiset of size m+k and an approximation factor
of Hm+k = O(logm). However, in spaces with doubling-
dimension γ, it is known that b ≤ k′4γ log3/2(2L/S)
where L and S are respectively the longest and shortest dis-
tances between any two points in T (Zhao & Teng, 2007).

3. Performance Guarantees
In this section, we analyze the expected loss of the out-
put classifier of ANDA as well as its querying behavior.
The bound in Section 3.1 on the loss holds for ANDA
with any of the sub-procedures presented in Section 2. To
simplify the presentation we use ANDA as a placeholder
for any of ANDA-Safe, ANDA-EMMA and ANDA-Safe-
EMMA. The bounds on the number of queries in Sec-
tion 3.3 hold for ANDA-Safe and ANDA-Safe-EMMA,
which we group under the placeholder ANDA-S.

3.1. Bounding the Loss

We start with a finite sample bound under the assumption
that the regression function η satisfies a λ-Lipschitz condi-
tion. That is, we have |η(x) − η(x′)| ≤ λρ(x, x′) for all
x, x′ ∈ XS ∪ XT .

Our bound on the expected loss in Theorem 1 is proven
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using standard techniques for nearest neighbor analysis.
However, since our algorithm does not predict with a fully
labeled sample from the target distribution (possibly very
few or even none of the target generated examples get ac-
tually labeled and the prediction is mainly based on source
generated examples), we need to ensure that the set of la-
beled examples still sufficiently covers the target task. The
following lemma serves this purpose. It bounds the dis-
tance of an arbitrary domain point x to its k-th nearest la-
beled point in terms of its distance to its k′-th nearest target
sample point. Note that the bound in the lemma is easy to
see for points in T . However, we need it for arbitrary (test-)
points in the domain.
Lemma 1. Let T be a finite set of points in a metric space
(X , ρ) and let R be a (k, k′)-NN-cover for T . Then, for all
x ∈ X we have ρ(x, xk(x,R)) ≤ 3ρ(x, xk′(x, T ))

Proof. Let x ∈ X . If the set k′(x, T ) of the k′ near-
est neighbors of x in T contains k points from R, we
are done (in this case we actually have ρ(x, xk(x,R)) ≤
ρ(x, xk′(x, T ))). Otherwise, let x′ ∈ k′(x, T ) \ R be one
of these points that is not in R. Since R is a (k, k′)-NN-
cover for T , and x′ ∈ T , the set of the k′ nearest neighbors
of x′ in R ∪ T contains k elements from R.

Let x′′ be any of these k elements, that is x′′ ∈ R ∩
k′(x′, R∪T ). Note that ρ(x′, x′′) ≤ 2ρ(x, xk′(x, T )) since
x′ is among the k′ nearest neighbors of x and x′′ is among
the k′ nearest neighbors of x′ in R ∪ T . Thus, we have

ρ(x, x′′) ≤ ρ(x, x′) + ρ(x′, x′′)

≤ ρ(x, xk′(x, T )) + 2ρ(x, xk′(x, T ))

= 3ρ(x, xk′(x, T )).

This lemma allows us to establish the finite sample guaran-
tee on the expected loss of the classifier output by ANDA.
Note that the guarantee in the theorem below is indepen-
dent of the size and the generating process of S (except for
the labels being generated according to η), while possibly
(if S covers the target sufficiently) only few target points
are queried for labels. Recall that Nε(XT , ρ) denotes the
ε-covering number of the target support.
Theorem 1. Let (X , ρ) be a metric space and let PT be a
(target) distribution over X × {0, 1} with λ-Lipschitz re-
gression function η. Then for all k′ ≥ k ≥ 10, all ε > 0,
and any unlabeled sample size mT and labeled sequence
S = ((x1, y1), . . . , (xmS

, ymS
)) with labels yi generated

by η,

E
T∼PmT

T

[LT (ANDA(S, T, k, k′))]

≤
(

1 +

√
8

k

)
LT (h∗) + 9λε+

2 Nε(XT , ρ) k′

mT
.

The proof (see supplementary material, Section 1) incor-
porates our bound on the distance to the k nearest la-
beled points of Lemma 1 into a standard technique for
nearest neighbor analysis (as in (Shalev-Shwartz & Ben-
David, 2014)). The key to the guarantee being the bound
in Lemma 1, one could obtain analogous generaliza-
tion bounds under relaxed assumptions for which nearest
neighbor classification can be shown to succeed (see, e.g.
(Chaudhuri & Dasgupta, 2014) for a discussion on such).
Similarly, one could obtain bounds for other settings, such
as multi-class classification and regression.

3.2. Consistency

We show that ANDA is consistent in a slightly more gen-
eral setting, namely if the regression function is uniformly
continuous and the Nε(XT , ρ) are finite. Note that this is
the case, for example, if (X , ρ) is compact and η is con-
tinuous. Recall that a function η : X → R is uniformly
continuous if for every γ > 0 there exists a δ such that for
all x, x′ ∈ X , ρ(x, x′) ≤ δ ⇒ |η(x) − η(x′)| ≤ γ. The
proof is located in the supplementary material, Section 2.
Corollary 1. Let (X , ρ) be a metric space, and let P(X , ρ)
denote the class of distributions over X × {0, 1} with
uniformly continuous regression functions. Let (ki)i∈N,
(k′i)i∈N and (mi)i∈N be non-decreasing sequences of nat-
ural numbers with k′i ≥ ki for all i, and ki → ∞, k′i →
∞,mi → ∞ and (k′i/mi) → 0 as i → ∞. For each
i ∈ N, let Si ∈ (X × {0, 1})ni be a sequence of labeled
domain points. Then for any distribution PT ∈ P(X , ρ)
with finite covering numbers Nε(XT , ρ), we have

lim
i→∞

E
T∼Pmi

T

[LT (ANDA(Si, T, ki, k
′
i))] = LT (h∗).

3.3. Bounding the Number of Queries

In this section, we show that our algorithm automatically
adapts the number of label queries to the similarity of
source and target task. First, we now provide a finite sam-
ple bound that implies that with a sufficiently large source
sample, with high probability, ANDA-S does not query at
all in areas where the weight ratio of balls is bounded from
below; i.e. it only queries where it is “needed.” In our anal-
ysis, we employ a lemma by (Kpotufe, 2011), which fol-
lows from VC-theory (Vapnik & Chervonenkis, 1971).
Lemma 2 (Lemma 1 in (Kpotufe, 2011)). Let B denote
the class of balls in (X , ρ), and letD be a distribution over
X . Let 0 < δ < 1, and define αn = (dVC(B) ln(2n) +
ln(6/δ))/n. The following holds with probability at least
1 − δ (over a sample T of size n drawn i.i.d. from D) for
all balls B ∈ B: if a ≥ αn, then T̂ (B) ≥ 3a implies
D(B) ≥ a and D(B) ≥ 3a implies T̂ (B) ≥ a.

With this, we now prove our query bound. We let Bk,T (x)
denote the smallest ball around x that contains the k nearest
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neighbors of x in T , and B the class of all balls in (X , ρ).
Recall that β(B) = DS(B)/DT (B) is the weight ratio.

Theorem 2. Let δ > 0, w > 0 and C > 1. Let mT be
some target sample size with mT > k′ = (C + 1)k for
some k that satisfies k ≥ 9 (dVC(B) ln(2mT ) + ln(6/δ)).
Let the source sample size satisfy

mS ≥
72 ln(6/δ)mT

C w
ln

(
9mT

C w

)
Then, with probability at least 1 − 2δ over samples S of
size mS (i.i.d. from PS) and T of size mT (i.i.d. from DT ),
ANDA-S on input S, T, k, k′ will not query any points x ∈
T with β(BCk,T (x)) > w.

Proof. Since k ≥ 9 (dVC(B) ln(2mT ) + ln(6/δ)), we have
dVC(B)/k < 1. Thus, we get

mS ≥ max

{
8

(
9 dVC(B)mT

C kw

)
ln

(
9 dVC(B)mT

C kw

)
,

18 ln(6/δ)mT

C kw
,
9mT

C w

}
,

Note that mS ≥ 8
(

9 dVC(B)mT

C kw

)
ln
(

9 dVC(B)mT

C kw

)
implies

thatmS ≥ 2
(

9 dVC(B)mT

C kw

)
ln(2mS), and together with the

second lower bound (in the max) on mS , this yields

mS
C kw

3mT
≥ 3(dVC(B) ln(2mS) + ln(6/δ)). (1)

We now assume that S and T are so that the implications
in Lemma 2 are valid (this holds with probability at least
1− 2δ over the samples S and T ). Let x ∈ T be such that
β(BCk,T (x)) > w. By definition of the ball BCk,T (x), we
have T̂ (BCk,T (x)) = Ck

mT
, and by our choice of k, there-

fore

T̂ (BCk,T (x)) =
C k

mT
≥ C 9 (dVC(B) ln 2mT + ln 6/δ)

mT
.

Now Lemma 2 implies that DT (BCk,T (x)) ≥ C k
3mT

, so
the condition on the weight ratio of this ball now yields

DS(BCk,T (x)) ≥ C kw

3mT
= mS

C kw

3mT mS

≥ 3

(
dVC(B) ln(2mS) + ln(6/δ)

mS

)
,

where the last inequality follows from Equation (1). Now,
Lemma 2, together with mS ≥ 9mT

C w (the third term in the
max), implies Ŝ(BCk,T (x)) ≥ C kw

9mT
≥ k

mS
. This means

that BCk,T (x) contains k examples from the source, which
implies that among the k′ = Ck + k nearest sample points
(in S∪T ) there are k source examples, and therefore x will
not be queried by ANDA-S.

Theorem 2 provides a desirable guarantee for the “lucky”
case: It implies that if the source and target distributions
happen to be identical or very similar, then, given that
ANDA-S is provided with a sufficiently large source sam-
ple, it will not make any label queries at all. More impor-
tantly, the theorem shows that, independent of an overall
source/target relatedness measure, the querying of ANDA-
S adapts automatically to a local relatedness measure in the
form of weight ratios of balls around target sample points.
ANDA-S queries only where it is necessary to compensate
for insufficient source coverage.

3.4. Query Consistency

Extending the proof technique of Theorem 2, we get a
“query-consistency” result under the assumption that DS

and DT have continuous density functions. In the limit of
large source samples, ANDA-S will, with high probability,
not make any queries in the source support. The proof is in
the supplementary material, Section 3.

Theorem 3. LetDS andDT have continuous density func-
tions. Let δ > 0, C > 1, and let mT , k and k′ satisfy the
conditions of Theorem 2. Then, there exists a (sufficiently
large) source sample size MS such that with probability at
least (1 − 3δ) over source samples of size mS ≥ MS and
target samples of size mT , ANDA-S will not make any la-
bel queries in the source support.

Together with Corollary 1 this shows that, for increas-
ing target sample sizes, the expected loss of the output of
ANDA-S converges to the Bayes optimal and, with high
probability over increasing source samples, ANDA-S will
not query target sample points in the source support.

4. Experiments
Our experiments on synthetic data illustrate ANDA’s adap-
tation ability and show that its classification performance
compares favorably with baseline passive nearest neigh-
bors. Experiments on challenging image classification
tasks show that ANDA is a good candidate for correcting
dataset bias. We discuss the results in relation to our theory.

4.1. Synthetic Data

The source marginal DS was taken to be the uniform dis-
tribution over [−1, 0.5]2 and the target marginal DT was
set to uniform over [−0.75, 1]2. This ensures enough
source/target overlap so the source data is helpful in learn-
ing the target task but not sufficient to learn well. The re-
gression function chosen for both tasks was η(x1, x2) =
(1/2)(1 − (sin(2πx1) sin(2πx2))1/6) for (x1, x2) ∈ R2.
This creates a 4× 4 checkerboard of mostly-positively and
mostly-negatively labeled regions with noise on the bound-
aries where η crosses 1/2. Training samples from this set-
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Figure 1. (a) Visualization of synthetic data and query strategies for ANDA-Safe (left) and ANDA-Safe-EMMA (right). Red and blue
circles represent labeled source examples, black circles represent unqueried target examples, and green stars represent queried target
examples. (b) Experimental results on synthetic data. Error bars represent two standard errors, or roughly a 95% confidence interval.

ting are pictured in Figure 1(a) along with query locations.
Notice that queries are almost never made inside the source
support, as our theory would suggest.

The baseline algorithms we compare against are the fol-
lowing. The “source only” algorithm predicts according to
a k-NN classifier built on a source sample alone. The “tar-
get only” algorithm creates a k-NN classifier on a random
sample from the target, and “source + target” does the same
but includes labeled data from a source sample as well.

We compare the generalization error of ANDA-Safe-
EMMA and ANDA-Safe against these baselines across a
range of unlabeled target sample sizes. Since the number of
queries made by both ANDA-Safe-EMMA and ANDA-
Safe increases with target sample size, this generates a
range of query counts for the active algorithms. The base-
line algorithms were given labeled target samples of sizes
in the same range as these query counts. For all algorithms
and target sample sizes we fixed mS = 3200, k = 7, and
k′ = 21. Figure 1(b) shows the resulting generalization
error (averaged over 100 independent trials) for each algo-
rithm as a function of the number of target labels used.

Both active algorithms perform significantly better than the
passive baselines in terms of the error they achieve per
target label query. ANDA-Safe-EMMA also outperforms
ANDA-Safe, since (as shown in Figure 1(a)) achieves full
coverage of the target region with many fewer queries.

4.2. Image Classification

A major problem in building robust image classifiers is
that the source of training images is often not the same as
the source of images on which the classifier is expected

to perform. This leads to dataset bias, which requires do-
main adaptation to correct. Tommasi & Tuytelaars (2014)
aligned and preprocessed several image datasets that pro-
vide a way of comparing domain adaptation methods on
this problem. Even though these datasets are unlikely to
satisfy covariate shift exactly, we compare ANDA with
baseline nearest neighbor classifiers to show that ANDA
provides a partial solution to the dataset bias problem.

The task is to classify images according to the object
in the image. We use the dense setup which contains
four datasets (representing different domains) and 40 ob-
ject classes. SIFT features for each image were precom-
puted and grouped into a bag-of-words representation with
a 1000-word vocabulary. Despite the high dimensionality,
we find that nearest neighbor methods work well on these
datasets without further dimensionality reduction. Of the
four datasets (Caltech256, Imagenet, Bing, and SUN) we
chose not to use SUN because the differences in how data
was labeled result in a clear violation of covariate shift.

Each of the other three datasets was used twice as source
data and twice as the target. For each of the six
source/target combinations, we compared the same algo-
rithms described in Section 4.1 and used the same method
for generating a range of query counts. For all algorithms
and target sample sizes we fixed mS = 2000, k = 25, and
k′ = 75. Figure 2 shows the resulting generalization error
(estimated from test sets of 1000 examples and averaged
over 50 independent trials) for each algorithm as a function
of the number of target labels used. The error values re-
ported here are on the same order as those in the results of
Tommasi & Tuytelaars (2014), but since different sample
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(a) Imagenet→ Caltech256
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(b) Caltech256→ Imagenet
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(c) Caltech256→ Bing
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(d) Bing→ Caltech256
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(e) Bing→ Imagenet
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(f) Imagenet→ Bing

Figure 2. Results on image classification task. Each plot caption is of the form source→ target. Error bars represent two standard errors.

sizes were used, they cannot be directly compared1.

Overall we find that our methods (especially ANDA-Safe-
EMMA) successfully correct for dataset bias in image clas-
sification, also showing that ANDA is robust to small vi-
olations of our theory’s assumptions. For all 6 pairs of
datasets, ANDA-Safe-EMMA performs better than using
source data alone (adding in target examples always helps).
Even more encouraging, on 5 of the 6 pairs, it performs
better than the target-only baseline (indicating that having
source examples allows us to make more efficient use of
target labels) and on 4 of the 6 it outperforms the passive
source + target baseline (and never performs worse).

When Bing is the target (Figures 2(c) and 2(f)), neither ac-
tive algorithm performs better (or worse) than the passive
baseline. Bing was previously known to be noisier than the
other two datasets (Tommasi & Tuytelaars, 2014), and fur-
ther evidence of this can be found in the observation that
the source-only baselines (for both Caltech256 and Ima-

1Note that since there are 40 classes, guessing labels uni-
formly at random results in a generalization error of 97.5%.

genet) perform better than Bing’s target-only baseline. This
means the target queries from Bing are generally less in-
formative than source examples, regardless of where the
queries are made, resulting in all the source/target combi-
nation methods performing equally well.

When Caltech256 is the target (Figures 2(a) and 2(d)), the
target-only baseline outperforms the other methods for high
enough query counts. This is likely because Caltech256 is
less noisy than the other datasets, so the noisy source data
is helpful in the absence of target data but harmful when
enough target data is available. Notice that for both of these
cases, ANDA-Safe-EMMA has the best accuracy at small
query counts, exemplifying its efficiency at making use of
labels when it only makes a few queries.

Finally, we ran experiments with source and target sets
sampled from the same dataset (using the same parameters
as above). ANDA does not make any label queries once
mS ≥ mT . This confirms a desirable property predicted
by our theory: ANDA will automatically detect when to
rely on source data alone and not waste label queries.
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