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1. Proof of Theorem 1
We adapt the proof (guided exercise) of Theorem 19.5 in
(Shalev-Shwartz & Ben-David, 2014) to our setting. As is
done there, we use the notation y ∼ p to denote drawing
from a Bernoulli random variable with mean p. We will
employ the following lemmas:
Lemma 1 (Lemma 19.6 in (Shalev-Shwartz & Ben-David,
2014)). Let C1, . . . , Cr be a collection of subsets of some
domain set, X . Let S be a sequence of m points sampled
i.i.d. according to some probability distribution,D overX .
Then, for every k ≥ 2,

E
S∼Dm

 ∑
i:|Ci∩S|<k

P[Ci]

 ≤ 2rk

m
.

Lemma 2 (Lemma 19.7 in (Shalev-Shwartz & Ben-David,
2014)). Let k ≥ 10 and let Z1, . . . , Zk be independent
Bernoulli random variables with P[Zi = 1] = pi. Denote
p = 1

k

∑
i pi and p′ = 1

k

∑k
i=1 Zi. Then

E
Z1,...,Zk

P
y∼p

[y 6= 1[p′ > 1/2]]

≤

(
1 +

√
8

k

)
P
y∼p

[y 6= 1[p > 1/2]] .

Before we prove the theorem, we show the following:
Claim 1 (Ex. 3 of Chapter 19 in (Shalev-Shwartz & Ben–
David, 2014)). Fix some p, p′ ∈ [0, 1] and y′ ∈ {0, 1}.
Then

P
y∼p

[y 6= y′] ≤ P
y∼p′

[y 6= y′] + |p− p′| .

Proof. If y′ = 0, we have

P
y∼p

[y 6= y′] = p = p− p′ + p′

= P
y∼p′

[y 6= y′] + p− p′

≤ P
y∼p′

[y 6= y′] + |p− p′|.

If y′ = 1, we have

P
y∼p

[y 6= y′] = 1− p = 1− p− p′ + p′

= P
y∼p′

[y 6= y′]− p+ p′

≤ P
y∼p′

[y 6= y′] + |p− p′|.

Proof of Theorem 1. Let hST denote the output classifier
of Algorithm 1. Let C = {C1, . . . , Cr} denote an ε-cover
of the target support (XT , ρ), that is,

⋃
i Ci = XT and each

Ci has diameter at most ε. Without loss of generality, we
assume that the Ci are disjoint and for a domain point x ∈
X we let C(x) denote the element of C that contains x. Let
L = T l ∪ S denote the (k, k′)-NN-cover of T that ANDA
uses (that is, the set of labeled points that hST uses for
prediction). We bound its expected loss as follows:

E
T∼DTmT

[LPT (hST )]

= E
T∼DTmT

[
P

(x,y)∼PT
[hST (x) 6= y]

]
≤ E

T∼DTmT

[
P

(x,y)∼PT
[hST (x) 6= y ∧ ρ(x, xk′(x, T )) > ε]

+ P
(x,y)∼PT

[hST (x) 6= y ∧ ρ(x, xk′(x, T )) ≤ ε]
]

= E
T∼DTmT

[
P

(x,y)∼PT
[ρ(x, xk′(x, T )) > ε]

]
+ E
T∼DTmT

[
P

(x,y)∼PT
[hST (x) 6= y ∧ ρ(x, xk′(x, T )) ≤ ε]

]
= E

T∼DTmT

[
P

(x,y)∼PT
[ρ(x, xk′(x, T )) > ε]

]

+ E
x∼DT

 P
y∼η(x)

T∼DTmT

[hST (x) 6= y ∧ ρ(x, xk′(x, T )) ≤ ε]

 ,
where the last equality holds by Fubini’s theorem. Then we
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have

E
T∼DTmT

[LPT (hST )]

≤ E
T∼DTmT

[
P

(x,y)∼PT
[ρ(x, xk′(x, T )) > ε]

]

+ E
x∼DT

 P
y∼η(x)

T∼DTmT

[hST (x) 6= y | ρ(x, xk′(x, T )) ≤ ε]


≤ E

T∼DTmT

[
P

(x,y)∼PT
[|T ∩ C(x)| < k′]

]

+ E
x∼DT

 P
y∼η(x)

T∼DTmT

[hST (x) 6= y | ρ(x, xk′(x, T )) ≤ ε]

 ,

where for the first summand of the last inequality, we used
that a point x can only have distance more than ε to its k′-
th nearest neighbor in T if C(x) is hit less than k′ times by
T . Lemma 1 implies that this first summand is bounded in
expectation by 2Nε(XT ,ρ) k′

mT
.

To bound the second summand, we now first fix a sample T
and a point x such that ρ(x, xk′(x, T )) ≤ ε (and condition
on these). Since the set of labeled points L = T l ∪ S
used for prediction is an (k, k′)-NN-cover of T , Lemma
1 implies that there are at least k labeled points in L at
distance at most 3ε from x. Let k(x, L) = {x1, . . . , xk} be
the k nearest neighbors of x in L, let pi = η(xi) and set
p = 1

k

∑
i pi. Now we get

P
y1∼p1,...yk∼pk,y∼η(x)

[hST (x) 6= y]

= E
y1∼p1,...yk∼pk

[
P

y∼η(x)
[hST (x) 6= y]

]
≤ E

y1∼p1,...yk∼pk

[
P
y∼p

[hST (x) 6= y]

]
+ |p− η(x)|

≤

(
1 +

√
8

k

)
P
y∼p

[y 6= 1[p > 1/2]] + |p− η(x)|,

where the first inequality follows from Claim 1 and the sec-
ond from Lemma 2. We have

P
y∼p

[1[p > 1/2] 6= y] = p

= min{p, 1− p}
≤ min{η(x), 1− η(x)}+ |p− η(x)| .

Further, since the regression function η is λ-Lipschitz and

ρ(xi, x) ≤ 3ε for all i, we have

|p− η(x)| =

∣∣∣∣∣
(
1

k

∑
i

pi

)
− η(x)

∣∣∣∣∣
=

∣∣∣∣∣
(
1

k

∑
i

η(xi)

)
− η(x)

∣∣∣∣∣
=

∣∣∣∣∣
(
1

k

∑
i

η(xi)− η(x) + η(x)

)
− η(x)

∣∣∣∣∣
≤

∣∣∣∣∣
(
1

k

∑
i

3λε+ η(x)

)
− η(x)

∣∣∣∣∣
=

∣∣∣∣∣3λε+
(
1

k

∑
i

η(x)

)
− η(x)

∣∣∣∣∣ = 3λε.

Thus, we get

P
y1∼p1,...yk∼pk,y∼η(x)

[hST (x) 6= y]

= E
y1∼p1,...yk∼pk

[
P

y∼η(x)
[hST (x) 6= y]

]
≤
(
1 +

√
8
k

)
P
y∼p

[y 6= 1[p > 1/2]] + |p− η(x)|

≤
(
1 +

√
8
k

)
(min{η(x), 1− η(x)}+ |p− η(x)|) + |p− η(x)|

≤
(
1 +

√
8
k

)
(min{η(x), 1− η(x)}) + 3|p− η(x)|

≤
(
1 +

√
8
k

)
(min{η(x), 1− η(x)}) + 9λε.

Since this holds for all samples T and points x with
ρ(x, xk′(x, T )) ≤ ε, we get,

E
x∼DT

 P
y∼η(x)
T∼DTmT

[hST (x) 6= y | ρ(x, xk′(x, T )) ≤ ε]


≤ E

x∼DT

[(
1 +

√
8
k

)
(min{η(x), 1− η(x)}) + 9λε

]
=

(
1 +

√
8
k

)
E

x∼DT
[(min{η(x), 1− η(x)})] + 9λε

=

(
1 +

√
8

k

)
LT (h∗T ) + 9λε.
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This yields

E
T∼DTmT

[LPT (hST )]

≤ E
T∼DTmT

[
P

(x,y)∼PT
[|T ∩ C(x)| < k′]

]
+ E
T∼DTmT

[
P

(x,y)∼PT
[hST (x) 6= y | ρ(x, xk′(x, T )) ≤ ε]

]
≤ 2Nε(XT , ρ) k′

mT
+

(
1 +

√
8

k

)
LT (h∗T ) + 9λε,

which completes the proof.

2. Proof of Corollary 1
Proof. We need to show that for every
α > 0, there exists an index i0, such that
ET∼PmiT

[LT (ANDA(Si, T, ki, k
′
i))] = LT (h∗) + α for

all i ≥ i0. Let PT ∈ P(X , ρ) and α be given.

Let γ be so that 9γ ≤ α/3. Since η is uniformly contin-
uous, there is a δ, such that for all x, x′ ∈ X , ρ(x, x′) ≤
δ ⇒ |η(x) − η(x′)| ≤ γ. Note that the only way we used
the λ-Lipschitzness in the proof of Theorem 1 is by using
that for any two points x, x′ that lie in a common element
C of an ε-cover of the space, we have |η(x)− η(x′)| ≤ λε.
Thus, we could now repeat the proof of Theorem 1, using
a δ-cover of the space and obtain that

E
T∼DmTT

[LT (ANDA(S, T, k, k′))]

≤ (1 +
√
8/k)LT (h∗) + 9γ +

2Nδ(XT , ρ) k′

mT
.

for all k ≥ 10 and k′ ≥ k. Now let i1 be so that
√

8
ki
≤ α

3

for all i ≥ i1. Note that this implies
√

8
ki
LT (h∗) ≤ α

3 for

all i ≥ i1. Since (k′i/mi) → 0 as i → ∞, we can choose
i2 be so that 2Nδ(XT ,ρ) k′i

mi
≤ α/3 for all i ≥ i2. Together

these imply that for all i ≥ i0 := max{i1, i2}, we have
ET∼PmiT

[LT (ANDA(Si, T, ki, k
′
i))] = LT (h∗) + α as

desired.

3. Proof of Theorem 3
Proof. Recall that, according to the requirements of The-
oren 2, we have mT > k′ = (C + 1)k for some k
that satisfies k ≥ 9 (dVC(B) ln(2mT ) + ln(6/δ)). Since
DT has a continuous density function, for every point x
in XT and 0 < ε ≤ 1, there is a ball Bε(x) of target
weight exactly ε around x (i.e. DT (B

ε(x)) = ε). For
some w > 0, let XT (ε, w) ⊆ XT denote the set of points
x whose ε-ball has weight ratio smaller than w, that is
XT (ε, w) = {x ∈ XT | β(Bε(x)) < w}.

Claim 2.
lim
w→0

DT (XT (ε, w) ∩ XS) = 0

Let ε = Ck/3mT . Given the claim (which we prove
below), we can choose w small enough such that (with
probability at least 1 − δ), a target sample of size mT

will not hit XT (ε, w) ∩ XS . Now we can choose a size
MS for the source sample S large enough such that (with
probability 1 − 2δ) ANDA-S will not query any points in
XS \XT (ε, w). This is shown similarly to the proof of The-
orem 2 as follows.

First, assume that the sample T is so that the implications
of Lemma 2 are satisfied (this also happens with probability
at least (1 − δ)). Then, by invoking the contrapositive of
the first implication in Lemma 2,

DT (B
ε(x)) = ε =

Ck

3mT

and

Ck

mT
≥ C 9 (dVC(B) ln(2mT ) + ln(6/δ))

mT

implies that

T̂ (Bε(x)) ≤ Ck

mT
.

Thus, for all x, the ball Bε(x) contains at most Ck points
from the target sample T .

Now we choose a sufficiently large size for the source sam-
ple S, namely

mS ≥MS =
72 ln(6/δ)mT

C w
ln

(
9mT

C w

)
for the value ofw chosen above. We assume that the sample
S is so that the implications of Lemma 2 are satisfied (this,
again, holds with probability at least (1− δ)).

Exactly as in the proof of Theorem 2, we can show that, for
all x with β(Bε(x)) ≥ w,

DT (B
ε(x)) =

Ck

3mT

implies

Ŝ(Bε(x)) ≥ k

mS
,

Thus, for all xwith β(Bε(x)) ≥ w, the ballBε(x) contains
at least k points from the source sample S.

In summary, we have shown that with probability (1− 3δ)
over the samples S and T , for all target sample points x,
that fall into the source support, we have β(Bε(x)) ≥ w,
and for those the ballBε(x) contains at most Ck target and
at least k source samples points. This implies that for all
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target sample points, that fall into the source support, the
k′ = (C + 1)k Nearest Neighbor ball (in S ∪ T ) around x
contains at least k points from the source sample and will
therefore not be queried.

Proof of Claim 2. Let (wi)i∈N be a decreasing sequence
that converges to 0. Then the sets XT (ε, wi) are linearly
ordered by inclusion (getting smaller as wi gets smaller).
Thus, the limit of the sequence of sets XT (ε, wi) exists and
we have

lim
i→∞

XT (ε, wi) =
∞⋂
i=1

XT (ε, wi) ⊆ XT \ XS

To see the last inclusion, recall that, by definition, a point
x is in the source support XS if and only if every ball B
around x has positive source mass DS(B) > 0. Hence,
in particular DS(B

ε(x)) > 0 , which implies that these
balls also have strictly positive weight ratio β(Bε(x)) > 0.
Thus, for every point x in the source support, there exists
an i such that x /∈ XT (ε, wi), since the wi converge to 0.

The above set convergence implies

lim
i→∞

DT (XT (ε, wi)) = DT (

∞⋂
i=1

XT (ε, wi)) ≤ DT (XT \XS).

This, in turn implies

lim
i→∞

DT (XT (ε, wi) ∩ XS) ≤ DT ((XT \ XS) ∩ XS) = 0

yielding the claim.
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