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1. Proof of Theorem 1

We adapt the proof (guided exercise) of Theorem 19.5 in
(Shalev-Shwartz & Ben-David, 2014) to our setting. As is
done there, we use the notation y ~ p to denote drawing
from a Bernoulli random variable with mean p. We will
employ the following lemmas:

Lemma 1 (Lemma 19.6 in (Shalev-Shwartz & Ben-David,
2014)). Let C4,...,C, be a collection of subsets of some
domain set, X. Let S be a sequence of m points sampled
i.i.d. according to some probability distribution, D over X.
Then, for every k > 2,

2rk
Z PCi]| < —.

m
i:|C;NS|<k
Lemma 2 (Lemma 19.7 in (Shalev-Shwartz & Ben-David,
2014)). Let k > 10 and let Zy, ..., Z} be independent
Bernoulli random variables with P[Z; = 1] = p;. Denote
p=1>piandp =+ Zle Z;. Then

E_Ply#1)p >1/2]
Z1,.., 21 Y~p

< (1 + \@ Py >1/2).

Before we prove the theorem, we show the following:
Claim 1 (Ex. 3 of Chapter 19 in (Shalev-Shwartz & Ben—
David, 2014)). Fix some p,p’ € [0,1] and y' € {0,1}.
Then

E
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Proof. If y' = 0, we have
Ply#y]l =p=p—p+p

y~p
= Py#yl+p-71
y~p
< P #FY]+Ip-pl
y~p

If 4/ = 1, we have

Bly#Fyl =1-p=1-p—p+p
= Py#y]-p+p
y~p
< Ply#Fyl+ip—pl
y~p
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Proof of Theorem 1. Let hgr denote the output classifier
of Algorithm 1. Let C = {C4,...,C.,} denote an e-cover
of the target support (X7, p), that is, | J, C; = X and each
C; has diameter at most e. Without loss of generality, we
assume that the C; are disjoint and for a domain point z €
X we let C'(z) denote the element of C that contains x. Let
L = T"U S denote the (k, k')-NN-cover of T that ANDA
uses (that is, the set of labeled points that hgr uses for
prediction). We bound its expected loss as follows:
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+ E P [hsr(z) #y A p(@, 2w (2,T)) < €|,
z~Dp [ y~n(x)
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where the last equality holds by Fubini’s theorem. Then we
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have
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where for the first summand of the last inequality, we used
that a point 2 can only have distance more than € to its &’-
th nearest neighbor in 7" if C'(x) is hit less than &’ times by

T. Lemma 1 implies that this first summand is bounded in
2N, (XT 7p) K’
mrT :

expectation by
To bound the second summand, we now first fix a sample 7'
and a point z such that p(x, 24 (2,T)) < e (and condition
on these). Since the set of labeled points L = 7' U S
used for prediction is an (k, k’)-NN-cover of T, Lemma
1 implies that there are at least k labeled points in L at
distance at most 3¢ from z. Let k(z, L) = {z1,..., 2} be
the k nearest neighbors of x in L, let p; = n(x;) and set

p= 1> ;i Now we get
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where the first inequality follows from Claim 1 and the sec-
ond from Lemma 2. We have

P Up> 172 #9) =
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< min{n(z), 1 —n(z)} + |p —n(z)| -

Further, since the regression function 7 is A-Lipschitz and

p(z;,x) < 3e for all i, we have
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Thus, we get
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Since this holds for all samples 7' and points = with
pla, zp (2, T)) < €, we get,
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This yields
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which completes the proof. O

+

2. Proof of Corollary 1

Proof. We need to show that for every
a > 0, there exists an index g, such that
ETNP;,”" [,CT(ANDA(S“ T, k,j, ]{3/7))] = LT(h*) + « for
all i > ig. Let Pr € P(X, p) and « be given.

Let « be so that 9y < «/3. Since 7 is uniformly contin-
uous, there is a d, such that for all x, 2’ € X, p(z,2') <
d = |n(z) —n(a’)] < . Note that the only way we used
the A-Lipschitzness in the proof of Theorem 1 is by using
that for any two points x, =’ that lie in a common element
C of an e-cover of the space, we have |n(x) —n(z’)] < Ae.
Thus, we could now repeat the proof of Theorem 1, using
a d-cover of the space and obtain that

E [Lr(ANDA(S, T,k k"))]
T~Dy7T
2N;(Xr, p) K

mr

< (L4 V/B/k)Lr(h*) + 97 +

for all k > 10 and K’ > k. Now let i; be so that , /% <g
for all 4 > 71. Note that this implies ,/%ET(h*) < ¢ for

all ¢ > 4. Since (k’;/m;) — 0 as i — oo, we can choose
io be so that W < a/3 for all ¢ > i5. Together

these imply that for all i > ip := max{iy, s}, we have
ETNP;’” [[,T(ANDA(SZ, T, k;, k'/z))] = ET(h*) + « as
desired. ]
3. Proof of Theorem 3

Proof. Recall that, according to the requirements of The-
oren 2, we have mp > kK = (C + 1)k for some k
that satisfies k& > 9 (dyc(B)In(2m7) + In(6/6)). Since
D7 has a continuous density function, for every point x
in Xr and 0 < ¢ < 1, there is a ball B¢(x) of target
weight exactly ¢ around z (i.e. Dr(B¢(xz)) = ¢€). For
some w > 0, let Xp(e,w) C X denote the set of points
x whose e-ball has weight ratio smaller than w, that is
Xr(e,w)={x € Xr | B(B(z)) < w}.

Claim 2.
IILIIO DT(XT(G, w) N Xs) =0

Let ¢ = Ck/3myp. Given the claim (which we prove
below), we can choose w small enough such that (with
probability at least 1 — §), a target sample of size mp
will not hit X7 (e,w) N Xs. Now we can choose a size
M for the source sample .S large enough such that (with
probability 1 — 2§) ANDA-S will not query any points in
Xs\ Xr(e,w). This is shown similarly to the proof of The-
orem 2 as follows.

First, assume that the sample 7' is so that the implications
of Lemma 2 are satisfied (this also happens with probability
at least (1 — 0)). Then, by invoking the contrapositive of
the first implication in Lemma 2,

Ck

3mT

Dr(B*(x)) = € =

and

% > C'9 (dvc(B) In(2mr) +In(6/4))

mr mr
implies that
~ Ck
T(B* < —.
(B*(x) < 2

Thus, for all z, the ball B¢(x) contains at most Ck points
from the target sample 7.

Now we choose a sufficiently large size for the source sam-
ple S, namely

mg > Mg =

72 In(6/5)my In 9myp
Cw Cw

for the value of w chosen above. We assume that the sample
S is so that the implications of Lemma 2 are satisfied (this,
again, holds with probability at least (1 — §)).

Exactly as in the proof of Theorem 2, we can show that, for
all z with 3(B¢(z)) > w,

. _ Ck
Dr(B(z)) = 3y
implies
~ k
€ > _
S @) = -

Thus, for all  with 5(B¢(z)) > w, the ball B¢(x) contains
at least k points from the source sample S.

In summary, we have shown that with probability (1 — 36)
over the samples S and 7', for all target sample points z,
that fall into the source support, we have 8(B¢(x)) > w,
and for those the ball B¢(x) contains at most C'k target and
at least k£ source samples points. This implies that for all
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target sample points, that fall into the source support, the
k" = (C + 1)k Nearest Neighbor ball (in S U T) around z
contains at least k points from the source sample and will
therefore not be queried.

Proof of Claim 2. Let (w;);en be a decreasing sequence
that converges to 0. Then the sets X (e, w;) are linearly
ordered by inclusion (getting smaller as w; gets smaller).
Thus, the limit of the sequence of sets X (e, w; ) exists and

we have
o)
hm XT(G, wi) = ﬂ XT(E, wi) g XT \ XS
1— 00

i=1

To see the last inclusion, recall that, by definition, a point
z is in the source support Xg if and only if every ball B
around x has positive source mass Dg(B) > 0. Hence,
in particular Dg(B€(x)) > 0, which implies that these
balls also have strictly positive weight ratio 5(B(x)) > 0.
Thus, for every point x in the source support, there exists
an 4 such that x ¢ Xr(e, w;), since the w; converge to 0.

The above set convergence implies

oo
lim Dr(Xr(e,w;)) = Dr([") Xr(e,w;)) < Dp(Xr\Xs).
11— 00 i—1

This, in turn implies

lim DT(XT(G,’UJZ‘) N Xs) < DT((XT \ Xs) N Xs) =0

1—>00

yielding the claim. O
O
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