
A Linear Dynamical System Model for Text

Supplementary Material

A. Scaling UP LDS Learning to Text
As discussed in Section 4.3, we whiten our data using

W =  

� 1
2

0 = diag(µ� 1
2

1 , . . . , µ
� 1

2
V ). (20)

Besides improving the empirical performance of SSID, working in the whitened coordinate system also simplifies various
details used in Section 4 when scaling up LDS learning for text. Under this transformation, we have 0 = diag(µ)�µµ>.
This simplifies various steps because our estimators (12) and (9) are of the form I � [low rank matrix], rather than
diag(µ)� [low rank matrix]. In the whitened coordinates, the data are orthogonal to µ

1
2 , rather than 1.

A.1. Recovering PSD D in SSID

While SSID is consistent, for finite data the procedure is not guaranteed to yield a positive semidefinite (PSD) estimate for
D, which is required because it is a covariance matrix. In our particular case, the D we seek will be singular on the span
of µ 1

2 , but Subspace ID will still not guarantee that D will be PSD on µ
1
2
?

.

This is critical because if D is not PSD on this subspace, then we can not define a valid Kalman filtering procedure for the
model (see Sec. A.2). However, due to the structure of our data distribution, D can easily be fixed post-hoc.

From (12) we have the estimator

D = I � µ
1
2µ

1
2
>
� C⌃1C

> (21)

Next, define D↵ = I�µ
1
2µ

1
2
>
� (1�↵)C⌃1C> and define the PSD estimator D0

= D↵0 , where ↵0 is the minimal value
such that D↵ is PSD on µ

1
2
?

. We next show how to find ↵0.

We have that D↵ is PSD on µ
1
2
?

iff the maximum eigenvalue of (1 � ↵)C⌃1C> is less than 1. This is because µ
1
2 is a

unit vector and we can ignore any cross terms between µ
1
2µ

1
2
>

and (1�↵)C⌃1C> because col(C) = µ
1
2
?

, which is true
because the data lies in this subspace. Therefore we can find ↵0 using the following procedure:

1. Find s0, the maximal eigenvalue of C⌃1C>, using power iteration. This can be done efficiently by keep C⌃1C> in
its factorized form and not instantiating a V ⇥ V matrix.

2. If s0 < 1, set ↵0 = 0. Otherwise, set ↵0 =

s0�1
s0

.

A.2. Efficiently Computing the Kalman Gain Matrix

Next, recall our expression (6) for the steady state Kalman gain K = ⌃1C>S�1
ss , which comes from solving the system

KSss = ⌃1C
>, (22)

where

Sss = C⌃1C
>
+D (23)

Furthermore, note that both of our estimators for D, (12) and (9), maintain the property that µ 1
2 is an eigenvector of

eigenvalue 0 for D.

Since µ
1
2 is also orthogonal to col(C), we have that µ 1

2 /2 Col(Sss). Therefore, we cannot use (6) directly because Sss

is not invertible along this direction. However, we can still solve (22) as K = ⌃1C>S+
ss. This pseudoinverse can be

characterized as:

S+
ss = [inversion of Sss within col(Sss)] [projection onto col(Sss)] (24)



A Linear Dynamical System Model for Text

Furthermore, note that both estimators for D have the form that

D =  0 � (PSD, low rank, and ? µ
1
2
) (25)

= I � µ
1
2µ

1
2
>
� (PSD, low rank and ? µ

1
2
) (26)

:

= I � µ
1
2µ

1
2
>
� L (27)

Therefore, it remains to define the pseudoinverse of

Sss = I � µ
1
2µ

1
2
>
+ C(⌃1 �M)C>

). (28)

Furthermore, since col(L) = col(C) = µ
1
2
?

, we can define L = CMC> for some positive definite M , so we consider

Sss = I � µ
1
2µ

1
2
>
+ C(⌃1 �M)C>

). (29)

Observe that

(I + C(⌃1 �M)C>
)

�1 (30)

is a valid inverse for Sss on µ
1
2
?

. This follows from the orthogonality of µ 1
2 and col(C), so we can effectively ignore the

µ
1
2 term in (29) when inverting it on µ

1
2
?

.

Therefore, we employ

(Sss)
+
= (I + C(⌃1 �M)C>

)

�1
(I � µ

1
2µ

1
2
), (31)

where the right term is an orthogonal projection onto µ
1
2
?

.

The term in the inverse (31) is diagonal-plus-low-rank and can be manipulated efficiently using the matrix inversion lemma
formula (53):

(I + C(⌃1 �M)C>
)

�1
= I � C((⌃1 �M)

�1
+ C 0C)

�1C>. (32)

Therefore we can obtain K without instantiating an intermediate matrix of size V ⇥ V .

Recall the filtering equation (4):

x̂t
t = (A�KCA)x̂t�1

t�1 +Kwt.

We seek to avoid any O(V ) (or worse) computation at test time when filtering. First of all, we can precompute (A�KCA).
For the second term, there are only V possible values for the unwhitened input wt = w̃t�µ, so we would like to precompute
KW (w̃t � µ) for every possible value that the indicator w̃t can take on. Let w̃t = ei, we have:

KW (w̃t � µ) = ⌃1C
>S+

ssW (ei � µ) (33)

= ⌃1C
>
(I + C(⌃1 �M)C>

)

�1
(I � µ

1
2µ

1
2
>
)(Wei � µ

1
2
) (34)

= ⌃1C
>
(I + C(⌃1 �M)C>

)

�1
(I � µ

1
2µ

1
2
>
)Wei (35)

= ⌃1C
>
(I + C(⌃1 �M)C>

)

�1Wei (36)

=

⇥
⌃1C

>
(I + C(⌃1 �M)C>

)

�1W
⇤
i
, (37)

(38)

In the final line, the subscript i denotes the ith column of a matrix.



A Linear Dynamical System Model for Text

A.3. Likelihood Computation

Sss is also used when computing the log-likelihood of input data (w1, . . . , wT ):

LL = �TV log(2⇡)� 1

2

log det(Sss) +

>X

t=1

(wpred
t � wt)

>S�1
ss (wpred

t � wt). (39)

Here, wpred
t = CAx̂t, where x̂t is the posterior mean for xt given observations w1:(t�1). Sss is only invertible along µ

1
2
?

,
but (wpred

t � wt) varies only on this subspace, so we can effectively ignore the zero-variance direction µ
1
2 . Therefore, we

just use (30) as S�1
ss in (39).

For the data-dependent term in our likelihood, we have:

� 1

2

>X

t=1

(wpred
t � wt)

>S�1
ss (wpred

t � wt) (40)

=

�1

2

tr
⇣
S�1
ss Et[(w

pred
t � wt)(w

pred
t � wt)

>
]

⌘
(41)

=

�1

2

tr
�
S�1
ss Et[(wt � CAx̂t)(wt � CAx̂t)

>
]

�
(42)

=

�1

2

�
tr

�
S�1
ss Et[wtw

>
t ]
�
� 2tr

�
S�1
ss Et[wtx̂

>
t ]A

>C>�
+ tr

�
S�1
ss CAEt[x̂tx̂

>
t ]A

>C>�� (43)

=

�1

2

�
tr

�
S�1
ss I

�
� 2tr

�
S�1
ss Et[wtx̂

>
t ]A

>C>�
+ tr

�
S�1
ss CAEt[x̂tx̂

>
t ]A

>C>�� (44)

Note that the Et[x̂tx̂>
t ] term above is different from ⌃1, since the former is from the posterior distribution given the input

data and ⌃1 is from the prior.

The first term can be computed using (57). The latter two terms are of the form tr
�
S�1
ss ZW>�, where Z and W are both

V ⇥ k, so we can invoke (58). For the log det(Sss) term, we consider Sss only on µ
1
2
?

, so we compute � log det(S�1
ss ),

where S�1
ss comes from (30) and we employ the formula (55).

B. Background
B.1. Non-Steady-State Kalman Filtering and Smoothing

We will use x̂⌧
t and S⌧

t for the mean and variance under the posterior for xt given w1:⌧ . We will use x̄t and ST
t when

considering the posterior for xt given all the data w1:T . The following are the forward ‘filtering’ steps (Kalman, 1960;
Ghahramani & Hinton, 1996):

x̂t�1
t = Ax̂t�1

t�1 (45)

St�1
t = ASt�1

t�1A
>
+Q (46)

Kt = St�1
t C 0

(CSt�1
t�1C

>
+D)

�1 (47)

x̂t
t = x̂t

t�1 +Kt(wt � Cx̂t�1
t ) (48)

St�1
t = St�1

t �KtCSt�1
t (49)

Next, we have the backwards ‘smoothing’ steps:

Jt�1 = St�1
t�1A

0
(St�1

t )

�1 (50)

x̄t�1 = x̂t�1
t�1 + Jt�1(x̄

T
t �Ax̂t�1

t�1) (51)

ST
t�1 = St�1

t�1 + Jt�1(S
>
t � St�1

t )JT
t�1 (52)

Note that the updates for the variances S are data-independent and just depend on the parameters of the model. They will
converge quickly to time-independent ‘steady state’ quantities.



A Linear Dynamical System Model for Text

B.2. Matrix Inversion Lemma

Following Press et al. (1987), we have

(A+ USV >
)

�1
= A�1 �A�1U(S�1

+ V >A�1U)

�1V >A�1 (53)

and the related expression for determinants:

det(A+ USV >
) = det(S) det(A) det(S�1

+ V >A�1U). (54)

i.e.
log det(A+ USV >

) = log det(S) + log det(A) + log det(S�1
+ V >A�1U). (55)

Expression (53) is useful if we already have an inverse for A and want to efficiently compute the inverse of a low-rank per-
turbation of A. It is also useful in order to be able to do linear algebra using (A+USV >

)

�1 without actually instantiating
a V ⇥V matrix, which can be unmanageable in terms of both time and space for large V . For example, let M be an V ⇥m
matrix with m << V , then we can compute M(A+ USV >

)

�1 using (53) by carefully placing our parentheses such that
no V ⇥ V matrix is required. In our application, A is diagonal, so computing its inverse is trivial. Also, note that (53) can
be used recursively, if A is defined as another sum of an easily invertible matrix and a low rank matrix.

Along these lines, here are a few additional useful identities that follow from (53) for quantities that can be computed
without V 2 time or storage. Here, we assume that both A�1 and tr(A�1

) can be computed inexpensively (e.g., A is
diagonal).

For any product XY >, where X and Y are V ⇥ k matrices, note that we can compute tr(XY T
) in O(V k) time as

tr(XY T
) =

X

i

X

j

XijYij . (56)

We can use this to compute the trace of the inverse of a matrix implicitly defined via the matrix inversion lemma:

tr
⇥
(A+ USV >

)

�1
⇤
= tr(A�1

)� tr

2

4A�1U(S�1
+ V >A�1U)

�1

| {z }
X

V >A�1
| {z }

Y >

3

5 . (57)

More generally, Let Z and W be V ⇥ k matrices, then we compute

tr
⇥
(A+ USV >

)

�1ZW>⇤
= tr(A�1Z| {z }

X

W>
|{z}
Y >

)� tr

2

4A�1U(S�1
+ V >A�1U)

�1

| {z }
X

V >A�1ZW>
| {z }

Y >

3

5 (58)

We use (58) when computing the Likelihood in Section A.3.

C. SSID Initialization vs. Random Initialization
In Figure 2, we contrast the progress of EM, in terms of the log-likelihood of the training data, when initializing with SSID
vs. initializing randomly (Random). Note that the initial values of SSID and Random are nearly identical. This is due to
model mispecification, and the fact that we chose the lengthscales of the random parameters post-hoc, by looking at the
lengthscales of the SSID parameters. Over the course of 100 EM iterations, the model initialized with SSID climbs quickly
and begins leveling out, whereas it takes a long time for the Random model to begin climbing at all. We truncate at 100
EM iterations, since we actually use the SSID-initialized model after the 50th iteration. After that, we find that local POS
tagging accuracy diminished.



A Linear Dynamical System Model for Text

0 50 100−4.6865

−4.686

−4.6855

−4.685x 1014

Iterations

Lo
g−

Li
ke

lih
oo

d

 

 

RANDOM
SSID

Figure 2. EM Log-Likelihood vs. training iterations for random initialization and SSID initialization.


