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A. Proof of the statement in Eq. (3)
In order to show the the result in Eq. (3), we break-
down the process in Eq. (2) into two steps: Let us denote
X̃ =

∑
φk∈Φ αkφk and X = d(X̃) where Φ is a set of s

basis functions. Since the set of X̃ functions create a linear
subspace, every member can be written as a linear combi-
nation of at least s other functions:

X̃i =
∑
j 6=i

βjX̃j . (7)

Given the fact that the set of deformations is a group, the
inverse of deformation operators are also in the set and we
can rewrite Eq. (7) as

d−1
i (Xi) =

∑
j 6=i

βjd
−1
j (Xj), (8)

Xi = di

(∑
j 6=i

βjd
−1
j (Xj)

)
. (9)

Since the operators are assumed to be linear maps, we can
rewrite Eq. (9) as follows

Xi =
∑
j 6=i

βjdi(d
−1
j (Xj)). (10)

Group’s closure property guarantees that for all i and j,
there exists d̃j in the group such that d̃j = di ◦ d−1

j . Thus
we can rewrite Eq. (10) as

Xi =
∑
j 6=i

βj d̃j(Xj).

B. Proof of the Theorem
To prove the statement of the theorem, we need to show
that by selection of the termination criterion as the theorem
suggests, the Algorithm 1 will stop before adding any func-
tions from other subspaces. In other words, Let us study
the correctness of the theorem for neighbors of an arbitrary
function Yi; heretoafter we drop the i index for simplicity
of notation whenever it is not ambiguous. If Rk denotes
the residual at kth step, define the normalized residual as
R̄k = Rk/‖R‖2; we need to show that the following qual-
ity cannot be larger than ε:

max
V 6∈Yi,d

〈
R̄k, d̄(V )

〉
< ε.

where d̄(Y ) = d(Y )/‖d(Y )‖2 for any function Y . Fur-
thermore, define

µ` = max
`′ 6=`

sup
V ∈S`,Z∈S`′ ,d,d

′

| 〈d(V ), d′(U))〉 |
‖d(V )‖2‖d′(U)‖2

.

Algorithm 2: Spectral clustering for FSC.
Data: Affinity matrixA
Result: Clustering assignments for Yi, i = 1, . . . , n.

1 D ← diag(A1)

2 L←D−
1
2AD−

1
2

3 λ,V ← eig(L)
4 m? ← argmaxi=1,...,n−1(λi − λi+1)

5 Apply k-means to the first m? column of V .

We note that we always have µ` ≤ θ`, as Y` ⊂ S`. Also,
let us define the span of d(Y`) as the span of the set of
functions {d(Y )

∣∣Y ∈ Y`}.
To prove the main statement, we proceed with induction,
as in (Dyer et al., 2013). Given the assumptions and the
quantity of ε in the theorem, the first step holds, because
Rk = Yi. Now, assume that at kth iteration all of the previ-
ous functions have been selected from the correct subspace.
Given the result in Eq. (3), the residual is still in the span of
the d(Y`). Thus, we can write R̄k = d̄1(U) + E where U
is the closes function in Y` to R̄k and E ∈ Si, the latter is
due to the assumption that d is a linear map. We can write:

max
Yj 6∈Y1,d1,d2

|R̄k, d̄2(Yj)〉|

= max
Yj 6∈Y1,d1,d2

|〈d̄1(U) + E, d̄2(Yj)〉|

≤ max
Yj 6∈Y1,d1,d2

|〈d̄1(U), d̄2(Yj)〉|+ |〈E, d̄2(Yj)〉|

≤ µ` + max
Yj 6∈Y1,d1,d2

|〈E, d̄2(Yj)〉|

≤ µ` + cos θ0‖E‖2‖d̄2(Yj)‖2, (11)

where θ is the minimum principal angle between Si and all
other subspaces. We can bound the ‖E‖2 as follows:

‖E‖2 = ‖R̄k − d̄1(U)‖2

=
√
‖R̄k‖22 + ‖d̄1(U)‖22 − 2〈R̄k, d̄1(U)〉

≤
√

2− 2
√

1− (r`/2)2. (12)

Plugging the result in Eq. (12) in Eq. (11) yields:

max
Yj 6∈Y1,d1,d2

|R̄k, d̄2(Yj)〉| ≤ µ` + cos θ0

√
2−

√
4− r2

`

≤ µ` + cos θ0
r`

4
√

12
,

where the last step is due to (Dyer et al., 2013, Lemma 1).
Given the fact that cos θ is an upper bound for µ`, we can
obtain the statement in the theorem.

C. Spectral Clustering
Note that we use the eigen-gap statistic (Line 4 in Algo-
rithm 2 to determine the dimension of the embedding (Tib-
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Figure 4. Mean and standard deviation trajectories for twelve
variables in Physionet dataset, for patients who survived (blue)
and deceased (red). Note the similarity of time series and the fact
that they are almost indistinguishable by naked eye.

shirani et al., 2001; Von Luxburg, 2007).


